Linear classifiers: Outline

- Examples of classification models: nearest neighbor, linear
- Empirical loss minimization framework
- Linear classification models
 - 1. Linear regression
 - 2. Logistic regression
 - 3. Perceptron training algorithm
 - 4. Support vector machines
- Multi-class classification

Logistic regression

 Let's learn a probabilistic classifier estimating the probability of the input x having a positive label, given by putting a sigmoid function around the linear response w^T x:

$$P_w(y = 1|x) = \sigma(w^T x) = \frac{1}{1 + \exp(-w^T x)}$$

Logistic loss

- Given: { $(x_i, y_i), i = 1, ..., n$ }, $y_i \in \{-1, 1\}$
- Maximum (conditional) likelihood estimate: find w that minimizes

n

$$\hat{L}(w) = -\frac{1}{n} \sum_{i=1}^{n} \log P_w(y_i | x_i)$$
$$l(w, x_i, y_i) = -\log P_w(y_i | x_i)$$
$$P_w(y_i | x_i) = \sigma(w^T x_i)$$

• If $y_i = 1$:

• If
$$y_i = -1$$
:

$$P_w(y_i|x_i) = 1 - \sigma(w^T x_i) = \sigma(-w^T x_i)$$

• Thus,

$$l(w, x_i, y_i) = -\log \sigma(y_i w^T x_i)$$

Logistic loss

Figure source

Logistic loss: Optimization

- Given: { $(x_i, y_i), i = 1, ..., n$ }, $y_i \in \{-1, 1\}$
- Find *w* that minimizes

$$\hat{L}(w) = -\frac{1}{n} \sum_{i=1}^{n} \log P_w(y_i | x_i)$$
$$= -\frac{1}{n} \sum_{i=1}^{n} \log \sigma(y_i w^T x_i)$$

• How do we find the minimum?

Stochastic gradient descent (SGD)

 At each iteration, take a single data point (x_i, y_i) and perform a parameter update using ∇l(w, x_i, y_i), the gradient of the loss for that point:

 $w \leftarrow w - \eta \, \nabla l(w, x_i, y_i)$

$$l(w, x_i, y_i) = -\log \sigma(y_i w^T x_i)$$

$$\nabla l(w, x_i, y_i) = -\nabla_w \log \sigma(y_i w^T x_i)$$
$$= -\frac{\nabla_w \sigma(y_i w^T x_i)}{\sigma(y_i w^T x_i)}$$

• Derivative of log:

$$\left[\log(g(a))\right]' = \frac{g'(a)}{g(a)}$$

$$l(w, x_i, y_i) = -\log \sigma(y_i w^T x_i)$$

$$\nabla l(w, x_i, y_i) = -\nabla_w \log \sigma(y_i w^T x_i)$$
$$= -\frac{\nabla_w \sigma(y_i w^T x_i)}{\sigma(y_i w^T x_i)}$$
$$= -\frac{\sigma(y_i w^T x_i) \sigma(-y_i w^T x_i) y_i x_i}{\sigma(y_i w^T x_i)}$$

Derivative of sigmoid:

$$\sigma'(a) = \sigma(a)(1 - \sigma(a)) = \sigma(a)\sigma(-a)$$

$$l(w, x_i, y_i) = -\log \sigma(y_i w^T x_i)$$

$$\nabla l(w, x_i, y_i) = -\nabla_w \log \sigma(y_i w^T x_i)$$
$$= -\frac{\nabla_w \sigma(y_i w^T x_i)}{\sigma(y_i w^T x_i)}$$
$$= -\frac{\sigma(y_i w^T x_i) \sigma(-y_i w^T x_i) y_i x_i}{\sigma(y_i w^T x_i)}$$

• We also used the *chain rule*: $[g_2(g_1(a))]' = g_2'(g_1(a))g_1'(a)$

$$l(w, x_i, y_i) = -\log \sigma(y_i w^T x_i)$$

$$\nabla l(w, x_i, y_i) = -\nabla_w \log \sigma(y_i w^T x_i)$$

$$= -\frac{\nabla_w \sigma(y_i w^T x_i)}{\sigma(y_i w^T x_i)}$$

$$= -\frac{\sigma(y_i w^T x_i) \sigma(-y_i w^T x_i) y_i x_i}{\sigma(y_i w^T x_i)}$$

• SGD update:

$$w \leftarrow w + \eta \ \sigma(-y_i w^T x_i) y_i x_i$$

SGD for logistic regression

- Let's take a closer look at the SGD update: $w \leftarrow w + \eta \sigma(-y_i w^T x_i) y_i x_i$
- What happens if x_i is *incorrectly*, but confidently, classified?
 - The update rule approaches $w \leftarrow w + \eta y_i x_i$
- What happens if x_i is *correctly*, and confidently, classified?
 - The update approaches zero (but never actually reaches zero)
- What happens if all training points are correctly and confidently classified?

SGD for logistic regression

- Logistic regression *does not converge* for linearly separable data!
 - Scaling *w* by ever larger constants makes the classifier more confident and keeps increasing the likelihood of the data

Linear classifiers: Outline

- Example classification models: nearest neighbor, linear
- Empirical loss minimization
- Linear classification models
 - 1. Linear regression (least squares)
 - 2. Logistic regression
 - 3. Perceptron loss

Recall: The shape of logistic loss

Figure source

Perceptron

• Let's define the *perceptron hinge loss*:

$$l(w, x_i, y_i) = \max(0, -y_i w^T x_i)$$

Perceptron

• Let's define the *perceptron hinge loss*:

$$l(w, x_i, y_i) = \max(0, -y_i w^T x_i)$$

• Training: find w that minimizes 1^n

$$\hat{L}(w) = \frac{1}{n} \sum_{i=1}^{n-1} l(w, x_i, y_i) = \frac{1}{n} \sum_{i=1}^{n-1} \max(0, -y_i w^T x_i)$$

 Once again, there is no closed-form solution, so let's go straight to SGD

• Let's differentiate the perceptron hinge loss:

 $l(w, x_i, y_i) = \max(0, -y_i w^T x_i)$

(Strictly speaking, this loss is not differentiable, so we need to find a *sub-gradient*)

• Let's differentiate the perceptron hinge loss:

• Let's differentiate the perceptron hinge loss:

 $l(w, x_i, y_i) = \max(0, -y_i w^T x_i)$ $\nabla l(w, x_i, y_i) = -\mathbb{I}[y_i w^T x_i < 0]y_i x_i$

• We also used the chain rule: $\left[g_2(g_1(a))\right]' = g_2'(g_1(a))g_1'(a)$

• Let's differentiate the perceptron hinge loss:

 $l(w, x_i, y_i) = \max(0, -y_i w^T x_i)$ $\nabla l(w, x_i, y_i) = -\mathbb{I}[y_i w^T x_i < 0]y_i x_i$

- Corresponding SGD update $(w \leftarrow w \eta \nabla l(w, x_i, y_i))$: $w \leftarrow w + \eta \mathbb{I}[y_i w^T x_i < 0]y_i x_i$
 - If x_i is correctly classified: do nothing
 - If x_i is incorrectly classified: $w \leftarrow w + \eta y_i x_i$

Understanding the perceptron update rule

• **Perceptron update rule:** If $y_i \neq \operatorname{sgn}(w^T x_i)$ then update weights:

 $w \leftarrow w + \eta y_i x_i$

• The raw response of the classifier changes to

 $w^T x_i + \eta y_i \|x_i\|^2$

- How does the response change if $y_i = 1$?
 - The response $w^T x_i$ is initially *negative* and will be *increased*
- How does the response change if $y_i = -1$?
 - The response $w^T x_i$ is initially *positive* and will be *decreased*

Linear classifiers: Outline

- Example classification models: nearest neighbor, linear
- Empirical loss minimization
- Linear classification models
 - 1. Linear regression (least squares)
 - 2. Logistic regression
 - 3. Perceptron loss
 - 4. Support vector machine (SVM) loss

Support vector machines

- When the data is linearly separable, which of the many possible solutions should we prefer?
 - Perceptron training algorithm: no special criterion, solution depends on initialization

Support vector machines

- When the data is linearly separable, which of the many possible solutions should we prefer?
 - Perceptron training algorithm: no special criterion, solution depends on initialization
 - SVM criterion: maximize the *margin*, or distance between the hyperplane and the closest training example

Finding the maximum margin hyperplane

- We want to maximize the margin, or distance between the hyperplane $w^T x = 0$ and the closest training example x_0
- This distance is given by $\frac{|w^T x_0|}{||w||}$ (for derivation see, e.g., <u>here</u>)
- Assuming the data is linearly separable, we can fix the scale of wso that $y_i w^T x_i = 1$ for support vectors and $y_i w^T x_i \ge 1$ for all other points
- Then the margin is given by $\frac{1}{\|w\|}$

Finding the maximum margin hyperplane

- We want to maximize margin $\frac{1}{\|w\|}$ while correctly classifying all training data: $y_i w^T x_i \ge 1$
- Equivalent problem:

$$\min_{w} \frac{1}{2} \|w\|^2 \quad \text{s.t.} \quad y_i w^T x_i \ge 1 \quad \forall i$$

 This is a quadratic objective with linear constraints: convex optimization problem, global optimum can be found using well-studied methods

- What about non-separable data?
- And even for separable data, we may prefer a larger margin with a few constraints violated

- What about non-separable data?
- And even for separable data, we may prefer a larger margin with a few constraints violated

• Penalize margin violations using SVM hinge loss:

• Penalize margin violations using SVM hinge loss:

a.k.a. regularization

• Penalize margin violations using SVM hinge loss:

SGD update for SVM

$$\mathbb{E}(w, x_i, y_i) = \frac{\lambda}{2n} \|w\|^2 + \max[0, 1 - y_i w^T x_i]$$
$$\nabla l(w, x_i, y_i) = \frac{\lambda}{n} w - \mathbb{I}[y_i w^T x_i < 1] y_i x_i$$
$$\text{Recall: } \frac{d}{da} \max(0, a) = \mathbb{I}[a > 0]$$

SGD update for SVM

$$l(w, x_i, y_i) = \frac{\lambda}{2n} ||w||^2 + \max[0, 1 - y_i w^T x_i]$$
$$\nabla l(w, x_i, y_i) = \frac{\lambda}{n} w - \mathbb{I}[y_i w^T x_i < 1]y_i x_i$$

- SGD update:
 - If $y_i w^T x_i \ge 1$: $w \leftarrow w \eta \frac{\lambda}{n} w$
 - If $y_i w^T x_i < 1$: $w \leftarrow w + \eta \left(y_i x_i \frac{\lambda}{n} w \right)$

S. Shalev-Schwartz et al., <u>Pegasos: Primal Estimated sub-GrAdient</u> <u>SOlver for SVM</u>, *Mathematical Programming*, 2011

Linear classifiers: Outline

- Examples of classification models: nearest neighbor, linear
- Empirical loss minimization framework
- Linear classification models
 - 1. Linear regression
 - 2. Logistic regression
 - 3. Perceptron training algorithm
 - 4. Support vector machines
- General recipe: data loss, regularization

General recipe

• Find parameters *w* that minimize the sum of a *regularization loss* and a *data loss*:

 $1 \frac{n}{1}$

0L -3

-2

-1

0

2

3

$$\hat{L}(w) = \lambda R(w) + \frac{1}{n} \sum_{i=1}^{n} l(w, x_i, y_i)$$
empirical loss
$$L2 \text{ regularization:}$$

$$R(w) = \frac{1}{2} ||w||_2^2$$

Closer look at L2 regularization

- Regularized objective: $\hat{L}(w) = \frac{\lambda}{2} ||w||_2^2 + \sum_{i=1}^n l(w, x_i, y_i)$
- Gradient of objective:

$$\nabla \hat{L}(w) = \lambda w + \sum_{i=1}^{n} \nabla l(w, x_i, y_i)$$

• SGD update:

$$w \leftarrow w - \eta \left(\frac{\lambda}{n} w + \nabla l(w, x_i, y_i) \right)$$
$$w \leftarrow \left(1 - \frac{\eta \lambda}{n} \right) w - \eta \nabla l(w, x_i, y_i)$$

Interpretation: weight decay

General recipe

• Find parameters *w* that minimize the sum of a *regularization loss* and a *data loss*:

 $1 \frac{n}{1}$

3

$$\hat{L}(w) = \lambda R(w) + \frac{1}{n} \sum_{i=1}^{n} l(w, x_i, y_i)$$
empirical loss
$$L2 \text{ regularization:}$$

$$R(w) = \frac{1}{2} ||w||_2^2$$

$$L1 \text{ regularization:}$$

$$R(w) = ||w||_1$$

Closer look at L1 regularization

• Regularized objective:

$$\hat{L}(w) = \lambda ||w||_{1} + \sum_{\substack{i=1 \\ n}}^{n} l(w, x_{i}, y_{i})$$
$$= \lambda \sum_{d} |w^{(d)}| + \sum_{\substack{i=1 \\ i=1}}^{n} l(w, x_{i}, y_{i})$$

- Gradient: $\nabla \hat{L}(w) = \lambda \operatorname{sgn}(w) + \sum_{i=1}^{n} \nabla l(w, x_i, y_i)$ (here sgn is an elementwise function)
- SGD update:

$$w \leftarrow w - \frac{\eta \lambda}{n} \operatorname{sgn}(w) - \eta \nabla l(w, x_i, y_i)$$

• Interpretation: encouraging sparsity

Linear classifiers: Outline

- Examples of classification models: nearest neighbor, linear
- Empirical loss minimization framework
- Linear classification models
 - 1. Linear regression
 - 2. Logistic regression
 - 3. Perceptron training algorithm
 - 4. Support vector machines
- General recipe: data loss, regularization
- Multi-class classification

One-vs-all classification

- Let $y \in \{1, ..., C\}$
- Learn *C* scoring functions $f_1, f_2, ..., f_C$
- Classify x to class $\hat{y} = \operatorname{argmax}_c f_c(x)$
- Let's start with multi-class perceptrons: $f_c(x) = w_c^T x$

- Multi-class perceptrons: $f_c(x) = w_c^T x$
- Let W be the matrix with rows w_c
- What loss should we use for multi-class classification?

l(

- Multi-class perceptrons: $f_c(x) = w_c^T x$
- Let W be the matrix with rows w_c
- What loss should we use for multi-class classification?
- For (*x_i*, *y_i*), let the loss be the *sum of hinge losses* associated with predictions for all *incorrect* classes:

$$(W, x_i, y_i) = \sum_{c \neq y_i} \max[0, w_c^T x_i - w_{y_i}^T x_i]$$

Score for correct class (y_i)
has to be greater than the
score for the incorrect class (c)

$$l(W, x_i, y_i) = \sum_{c \neq y_i} \max[0, w_c^T x_i - w_{y_i}^T x_i]$$

• Gradient w.r.t. w_{y_i} :

$$-\sum_{c \neq y_i} \mathbb{I}\left[w_c^T x_i > w_{y_i}^T x_i\right] x_i$$

Recall: $\frac{d}{da} \max(0, a) = \mathbb{I}[a > 0]$

$$l(W, x_i, y_i) = \sum_{c \neq y_i} \max[0, w_c^T x_i - w_{y_i}^T x_i]$$

• Gradient w.r.t. w_{y_i} :

$$-\sum_{c\neq y_i} \mathbb{I}\left[w_c^T x_i > w_{y_i}^T x_i\right] x_i$$

• Gradient w.r.t. w_c , $c \neq y_i$:

 $\mathbb{I}[w_c^T x_i > w_{y_i}^T x_i] x_i$

• Update rule: for each c s.t. $w_c^T x_i > w_{y_i}^T x_i$:

$$w_{y_i} \leftarrow w_{y_i} + \eta x_i$$
$$w_c \leftarrow w_c - \eta x_i$$

• Update rule: for each *c* s.t. $w_c^T x_i > w_{y_i}^T x_i$: $w_{y_i} \leftarrow w_{y_i} + \eta x_i$

$$w_c \leftarrow w_c - \eta x_i$$

Is this equivalent to training C independent one-vs-all classifiers?

input image

IndependentMulti-classCat score:65.1Do nothingIncreaseDog score:101.4DecreaseDecreaseShip score:24.9DecreaseDo nothing

Multi-class SVM

• Recall single-class SVM loss:

$$l(w, x_i, y_i) = \frac{\lambda}{2n} \|w\|^2 + \max[0, 1 - y_i w^T x_i]$$

• Generalization to multi-class:

$$l(W, x_i, y_i) = \frac{\lambda}{2n} \|W\|^2 + \sum_{c \neq y_i} \max[0, 1 - w_{y_i}^T x_i + w_c^T x_i]$$

Score for correct class has to be greater than the score for the incorrect class *by at least a margin of* 1

Score for correct class – score for incorrect class

Source: Stanford 231n

Multi-class SVM

$$l(W, x_i, y_i) = \frac{\lambda}{2n} \|W\|^2 + \sum_{c \neq y_i} \max[0, 1 - w_{y_i}^T x_i + w_c^T x_i]$$

• Gradient w.r.t. w_{y_i} :

$$\frac{\lambda}{n} w_{y_i} - \sum_{c \neq y_i} \mathbb{I} \big[w_{y_i}^T x_i - w_c^T x_i < 1 \big] x_i$$

- Gradient w.r.t. w_c , $c \neq y_i$: $\frac{\lambda}{n} w_c + \mathbb{I}[w_{y_i}^T x_i - w_c^T x_i < 1]x_i$
- Update rule (almost* equivalent to above):
 - For each $c \neq y_i$ s.t. $w_{y_i}^T x_i w_c^T x_i < 1$: $w_{y_i} \leftarrow w_{y_i} + \eta x_i$, $w_c \leftarrow w_c \eta x_i$

• For
$$c = 1, ..., C$$
: $w_c \leftarrow \left(1 - \eta \frac{\lambda}{n}\right) w_c$

Softmax

We want to squash the vector of responses (*f*₁, ..., *f_c*) into a vector of "probabilities":

softmax
$$(f_1, \dots, f_c) = \left(\frac{\exp(f_1)}{\sum_j \exp(f_j)}, \dots, \frac{\exp(f_c)}{\sum_j \exp(f_j)}\right)$$

- The entries are between 0 and 1 and sum to 1
- If one of the inputs is much larger than the others, then the corresponding softmax value will be close to 1 and others will be close to 0

• For two classes:

softmax
$$(f, -f) = \left(\frac{\exp(f)}{\exp(f) + \exp(-f)}, \frac{\exp(-f)}{\exp(f) + \exp(-f)}\right)$$
$$= \left(\frac{1}{1 + \exp(-2f)}, \frac{1}{\exp(2f) + 1}\right)$$
$$= (\sigma(2f), \sigma(-2f))$$

Thus, softmax is the generalization of sigmoid for more than
two classes

Cross-entropy loss

- It is natural to use negative log likelihood loss with softmax: $l(W, x_i, y_i) = -\log P_W(y_i | x_i) = -\log \left(\frac{\exp(w_{y_i}^T x_i)}{\sum_i \exp(w_i^T x_i)}\right)$
- This is also the *cross-entropy* between the "empirical" distribution $\hat{P}(c|x_i) = \mathbb{I}[c = y_i]$ and "estimated" distribution $P_W(c|x_i)$:

$$-\sum_{c} \hat{P}(c|x_{i}) \log P_{W}(c|x_{i})$$

$$P(\text{correct class } | x_{i}) = 1$$

$$P(\text{incorrect class } | x_{i}) = 0$$
Empirical distribution $\hat{P}(c|x_{i})$
Estimated distribution $P_{W}(c|x_{i})$

SVM loss vs. cross-entropy loss

SGD with cross-entropy loss

$$l(W, x_i, y_i) = -\log P_W(y_i | x_i) = -\log \left(\frac{\exp(w_{y_i}^T x_i)}{\sum_j \exp(w_j^T x_i)} \right)$$
$$= -w_{y_i}^T x_i + \log \left(\sum_j \exp(w_j^T x_i) \right)$$

- Gradient w.r.t. w_{y_i} : $-x_i + \frac{\exp(w_{y_i}^T x_i)x_i}{\sum_j \exp(w_j^T x_i)} = (P_W(y_i|x_i) - 1)x_i$
- Gradient w.r.t. w_c , $c \neq y_i$: $\frac{\exp(w_c^T x_i) x_i}{\sum_j \exp(w_j^T x_i)} = P_W(c|x_i) x_i$

SGD with cross-entropy loss

- Gradient w.r.t. w_{y_i} : $(P_W(y_i|x_i) 1)x_i$
- Gradient w.r.t. w_c , $c \neq y_i$: $P_W(c|x_i)x_i$
- Update rule:
 - For *y_i*:

$$w_{y_i} \leftarrow w_{y_i} + \eta \big(1 - P_W(y_i | x_i) \big) x_i$$

• For $c \neq y_i$:

 $w_c \leftarrow w_c - \eta P_W(c|x_i)x_i$

Softmax trick: Avoiding overflow

- Exponentiated values $\exp(f_c)$ can become very large and cause overflow
- Note that adding the same constant to all softmax inputs (*logits*) does not change the output of the softmax:

$$\frac{\exp(f_c)}{\sum_j \exp(f_j)} = \frac{K \exp(f_c)}{\sum_j K \exp(f_j)} = \frac{\exp(f_c + \log K)}{\sum_j \exp(f_j + \log K)}$$

• Then we can let $\log K = -\max_j f_j$ (i.e., make largest input to softmax be 0)

Softmax trick: Temperature scaling

• Suppose we divide every input to the softmax by the same constant *T*:

softmax
$$(f_1, \dots, f_c; T) = \left(\frac{\exp(f_1/T)}{\sum_j \exp(f_j/T)}, \dots, \frac{\exp(f_c/T)}{\sum_j \exp(f_j/T)}\right)$$

- What does this accomplish?
 - Prior to normalization, each entry $\exp(f_1)$ is raised to the power 1/T
 - If *T* is close to 0, the largest entry will dominate and output distribution will tend to *one-hot*
 - If *T* is high, output distribution will tend to uniform

Softmax trick: Temperature scaling

Figure source

Softmax trick: Label smoothing

• Recall: cross-entropy loss measures the difference between the "observed" label distribution $\hat{P}(c|x_i)$ and "estimated" distribution $P_W(c|x_i)$:

$$-\sum_{c}\widehat{P}(c|x_{i})\log P_{W}(c|x_{i})$$

"Hard" prediction targets

Softmax trick: Label smoothing

• Recall: cross-entropy loss measures the difference between the "observed" label distribution $\hat{P}(c|x_i)$ and "estimated" distribution $P_W(c|x_i)$:

$$-\sum_{c}\widehat{P}(c|x_{i})\log P_{W}(c|x_{i})$$

"Soft" prediction targets

$$P(\text{correct class} \mid x_i) = 1 - \epsilon$$

$$P(\text{incorrect class} \mid x_i) = \frac{\epsilon}{c-1}$$
Empirical distribution $\hat{P}(c|x_i)$

Softmax trick: Label smoothing

- When using softmax loss, replace hard 1 and 0 prediction targets with "soft" targets of 1ϵ and $\frac{\epsilon}{c-1}$
- Why is this a good idea?
 - A form of regularization to avoid overly confident predictions, account for label noise

Recap: Three ways to think about linear classifiers

Algebraic Viewpoint

Visual Viewpoint

Geometric Viewpoint

 $f_W(x) = Wx$

Hyperplanes cutting up space

