
Linear classifiers: Outline
• Examples of classification models: nearest neighbor, linear
• Empirical loss minimization framework
• Linear classification models

1. Linear regression
2. Logistic regression
3. Perceptron training algorithm
4. Support vector machines

• Multi-class classification



Logistic regression
• Let’s learn a probabilistic classifier estimating the probability 

of the input 𝑥 having a positive label, given by putting a 
sigmoid function around the linear response 𝑤!𝑥:

𝑃" 𝑦 = 1 𝑥 = 𝜎 𝑤!𝑥 = #
#$%&'()"!*)



Logistic loss
• Given: 𝑥, , 𝑦, , 𝑖 = 1,… , 𝑛 , 𝑦, ∈ {−1,1}
• Maximum (conditional) likelihood estimate: find 𝑤 that minimizes

0𝐿 𝑤 = −
1
𝑛
2
,-#

.

log 𝑃" 𝑦, 𝑥,

𝑙 𝑤, 𝑥, , 𝑦, = − log𝑃" 𝑦, 𝑥,
• If 𝑦, = 1:

𝑃" 𝑦, 𝑥, =𝜎 𝑤!𝑥,
• If 𝑦, = −1:

𝑃" 𝑦, 𝑥, =1 − 𝜎 𝑤!𝑥, = 𝜎 −𝑤!𝑥,
• Thus,

𝑙 𝑤, 𝑥, , 𝑦, = − log 𝜎 𝑦,𝑤!𝑥,



Logistic loss
𝑙 𝑤, 𝑥, , 𝑦, = − log 𝜎 𝑦,𝑤!𝑥,

Figure source𝑦!𝑤"𝑥!

http://www.cs.toronto.edu/~rgrosse/courses/csc321_2017/slides/lec4.pdf


Logistic loss: Optimization
• Given: 𝑥, , 𝑦, , 𝑖 = 1,… , 𝑛 , 𝑦, ∈ {−1,1}
• Find 𝑤 that minimizes

0𝐿 𝑤 = −
1
𝑛
2
,-#

.

log 𝑃" 𝑦, 𝑥,

= −
1
𝑛
2
,-#

.

log 𝜎 𝑦,𝑤!𝑥,

• How do we find the minimum?



Stochastic gradient descent (SGD)
• At each iteration, take a single data point 𝑥, , 𝑦, and perform 

a parameter update using ∇𝑙 𝑤, 𝑥, , 𝑦, , the gradient of the 
loss for that point: 

𝑤 ← 𝑤 − 𝜂 ∇𝑙 𝑤, 𝑥, , 𝑦,



SGD for logistic regression
𝑙 𝑤, 𝑥, , 𝑦, = − log 𝜎 𝑦,𝑤!𝑥,

• Let’s find the gradient:
∇𝑙 𝑤, 𝑥, , 𝑦, = −∇" log 𝜎 𝑦,𝑤!𝑥,

= −
∇"𝜎 𝑦,𝑤!𝑥,
𝜎 𝑦,𝑤!𝑥,

• Derivative of log:

log 𝑔 𝑎 / =
𝑔′(𝑎)
𝑔(𝑎)



SGD for logistic regression
𝑙 𝑤, 𝑥, , 𝑦, = − log 𝜎 𝑦,𝑤!𝑥,

• Let’s find the gradient:
∇𝑙 𝑤, 𝑥, , 𝑦, = −∇" log 𝜎 𝑦,𝑤!𝑥,

= −
∇"𝜎 𝑦,𝑤!𝑥,
𝜎 𝑦,𝑤!𝑥,

= −
𝜎 𝑦,𝑤!𝑥, 𝜎 −𝑦,𝑤!𝑥, 𝑦,𝑥,

𝜎 𝑦,𝑤!𝑥,
Derivative of sigmoid: 

𝜎/ 𝑎 = 𝜎 𝑎 1 − 𝜎(𝑎) = 𝜎 𝑎 𝜎 −𝑎



SGD for logistic regression
𝑙 𝑤, 𝑥, , 𝑦, = − log 𝜎 𝑦,𝑤!𝑥,

• Let’s find the gradient:
∇𝑙 𝑤, 𝑥, , 𝑦, = −∇" log 𝜎 𝑦,𝑤!𝑥,

= −
∇"𝜎 𝑦,𝑤!𝑥,
𝜎 𝑦,𝑤!𝑥,

= −
𝜎 𝑦,𝑤!𝑥, 𝜎 −𝑦,𝑤!𝑥, 𝑦,𝑥,

𝜎 𝑦,𝑤!𝑥,
• We also used the chain rule: 𝑔0 𝑔# 𝑎

/
= 𝑔0/ 𝑔# 𝑎 𝑔#/(𝑎)



SGD for logistic regression
𝑙 𝑤, 𝑥, , 𝑦, = − log 𝜎 𝑦,𝑤!𝑥,

• Let’s find the gradient:
∇𝑙 𝑤, 𝑥, , 𝑦, = −∇" log 𝜎 𝑦,𝑤!𝑥,

= −
∇"𝜎 𝑦,𝑤!𝑥,
𝜎 𝑦,𝑤!𝑥,

= −
𝜎 𝑦,𝑤!𝑥, 𝜎 −𝑦,𝑤!𝑥, 𝑦,𝑥,

𝜎 𝑦,𝑤!𝑥,
= −𝜎 −𝑦,𝑤!𝑥, 𝑦,𝑥,

• SGD update:
𝑤 ← 𝑤 + 𝜂 𝜎 −𝑦,𝑤!𝑥, 𝑦,𝑥,



SGD for logistic regression
• Let’s take a closer look at the SGD update:

𝑤 ← 𝑤 + 𝜂 𝜎 −𝑦,𝑤!𝑥, 𝑦,𝑥,
• What happens if 𝑥, is incorrectly, but confidently, classified? 

• The update rule approaches 𝑤 ← 𝑤 + 𝜂 𝑦$𝑥$
• What happens if 𝑥, is correctly, and confidently, classified? 

• The update approaches zero (but never actually reaches zero)
• What happens if all training points are correctly and 

confidently classified?



SGD for logistic regression
• Logistic regression does not converge for linearly separable 

data! 
• Scaling 𝑤 by ever larger constants makes the classifier more 

confident and keeps increasing the likelihood of the data

Image source

https://i.stack.imgur.com/KcX81.png


Linear classifiers: Outline
• Example classification models: nearest neighbor, linear
• Empirical loss minimization
• Linear classification models

1. Linear regression (least squares)
2. Logistic regression
3. Perceptron loss



Recall: The shape of logistic loss
𝑙 𝑤, 𝑥, , 𝑦, = − log 𝜎 𝑦,𝑤!𝑥,

Figure source𝑦!𝑤"𝑥!

http://www.cs.toronto.edu/~rgrosse/courses/csc321_2017/slides/lec4.pdf


Perceptron
• Let’s define the perceptron hinge loss:

𝑙 𝑤, 𝑥, , 𝑦, = max 0,−𝑦,𝑤!𝑥,

𝑦!𝑤"𝑥!

Incorrectly 
classified

Correctly 
classified

Perceptron hinge loss



Perceptron
• Let’s define the perceptron hinge loss:

𝑙 𝑤, 𝑥, , 𝑦, = max 0,−𝑦,𝑤!𝑥,

• Training: find 𝑤 that minimizes

0𝐿 𝑤 =
1
𝑛
2
,-#

.

𝑙 𝑤, 𝑥, , 𝑦, =
1
𝑛
2
,-#

.

max 0,−𝑦,𝑤!𝑥,

• Once again, there is no closed-form solution, so let’s go 
straight to SGD



Deriving the perceptron update
• Let’s differentiate the perceptron hinge loss:

𝑙 𝑤, 𝑥, , 𝑦, = max 0,−𝑦,𝑤!𝑥,
(Strictly speaking, this loss is not differentiable, so we need to 
find a sub-gradient)

𝑦!𝑤"𝑥!

Incorrectly 
classified

Correctly 
classified



Deriving the perceptron update
• Let’s differentiate the perceptron hinge loss: 

𝑙 𝑤, 𝑥, , 𝑦, = max 0,−𝑦,𝑤!𝑥,
∇𝑙 𝑤, 𝑥, , 𝑦, = −𝕀[𝑦,𝑤!𝑥, < 0]𝑦,𝑥,

1
12
max 0, 𝑎 = 𝕀[𝑎 > 0]

𝑦!𝑤"𝑥!

Incorrectly 
classified

Correctly 
classified



Deriving the perceptron update
• Let’s differentiate the perceptron hinge loss: 

𝑙 𝑤, 𝑥, , 𝑦, = max 0,−𝑦,𝑤!𝑥,
∇𝑙 𝑤, 𝑥, , 𝑦, = −𝕀[𝑦,𝑤!𝑥, < 0]𝑦,𝑥,

• We also used the chain rule: 𝑔0 𝑔# 𝑎
/ = 𝑔0/ 𝑔# 𝑎 𝑔#/(𝑎)



Deriving the perceptron update
• Let’s differentiate the perceptron hinge loss: 

𝑙 𝑤, 𝑥, , 𝑦, = max 0,−𝑦,𝑤!𝑥,
∇𝑙 𝑤, 𝑥, , 𝑦, = −𝕀[𝑦,𝑤!𝑥, < 0]𝑦,𝑥,

• Corresponding SGD update (𝑤 ← 𝑤 − 𝜂 ∇𝑙 𝑤, 𝑥, , 𝑦, ):
𝑤 ← 𝑤 + 𝜂 𝕀[𝑦,𝑤!𝑥, < 0]𝑦,𝑥,

• If 𝑥$ is correctly classified: do nothing
• If 𝑥$ is incorrectly classified: 𝑤 ← 𝑤 + 𝜂 𝑦$𝑥$



Understanding the perceptron update rule
• Perceptron update rule: If 𝑦, ≠ sgn(𝑤!𝑥,) then update weights:

𝑤 ← 𝑤 + 𝜂 𝑦,𝑥,

• The raw response of the classifier changes to

𝑤!𝑥, + 𝜂 𝑦, 𝑥, 0

• How does the response change if 𝑦, = 1? 
• The response 𝑤%𝑥$ is initially negative and will be increased

• How does the response change if 𝑦, = −1? 
• The response 𝑤%𝑥$ is initially positive and will be decreased



Linear classifiers: Outline
• Example classification models: nearest neighbor, linear
• Empirical loss minimization
• Linear classification models

1. Linear regression (least squares)
2. Logistic regression
3. Perceptron loss
4. Support vector machine (SVM) loss



• When the data is linearly separable, which of the many 
possible solutions should we prefer?

• Perceptron training algorithm: 
no special criterion, solution depends 
on initialization

Support vector machines



• When the data is linearly separable, which of the many 
possible solutions should we prefer?

• Perceptron training algorithm: 
no special criterion, solution depends 
on initialization

• SVM criterion: maximize the margin, 
or distance between the hyperplane 
and the closest training example

Support vector machines

Margin

Support 
vectors

Separating 
hyperplane



• We want to maximize the margin, or distance between the 
hyperplane 𝑤!𝑥 = 0 and the closest training example 𝑥3

• This distance is given by  |"
!*"|
"

(for derivation see, e.g., here)
• Assuming the data is linearly 

separable, we can fix the scale of 𝑤
so that 𝑦,𝑤!𝑥, = 1 for support vectors 
and 𝑦,𝑤!𝑥, ≥ 1 for all other points 

• Then the margin is given by #
"

Finding the maximum margin hyperplane

https://math.stackexchange.com/questions/1210545/distance-from-a-point-to-a-hyperplane


Finding the maximum margin hyperplane
• We want to maximize margin #

"
while correctly classifying all 

training data: 𝑦,𝑤!𝑥, ≥ 1
• Equivalent problem:

min"
1
2
𝑤 0 s. t. 𝑦,𝑤!𝑥, ≥ 1 ∀𝑖

• This is a quadratic objective with linear constraints: convex 
optimization problem, global optimum can be found using 
well-studied methods



“Soft margin” formulation
• What about non-separable data?
• And even for separable data, we may prefer a larger margin 

with a few constraints violated

Source

http://www.robots.ox.ac.uk/~az/lectures/ml/lect2.pdf


“Soft margin” formulation
• What about non-separable data?
• And even for separable data, we may prefer a larger margin 

with a few constraints violated

Source

http://www.robots.ox.ac.uk/~az/lectures/ml/lect2.pdf


“Soft margin” formulation
• Penalize margin violations using SVM hinge loss:

min"
𝜆
2
𝑤 0 + 2

,-#

.

max[0,1 −𝑦,𝑤!𝑥,]

+1

-1
0

𝑦!𝑤"𝑥!

Incorrectly 
classified

Correctly 
classified

(1,0)

(0,1)

Hinge loss



“Soft margin” formulation
• Penalize margin violations using SVM hinge loss:

min"
𝜆
2
𝑤 0 + 2

,-#

.

max[0,1 −𝑦,𝑤!𝑥,]

+1

-1
0

𝑦!𝑤"𝑥!

Incorrectly 
classified

Correctly 
classified

(1,0)

(0,1)

Hinge loss

Recall hinge loss used by the 
perceptron update algorithm!



“Soft margin” formulation
• Penalize margin violations using SVM hinge loss:

min"
𝜆
2
𝑤 0 + 2

,-#

.

max[0,1 −𝑦,𝑤!𝑥,]

Maximize margin –
a.k.a. regularization

Minimize misclassification loss



SGD update for SVM

𝑙 𝑤, 𝑥, , 𝑦, = 5
0.

𝑤 0 +max[0, 1 − 𝑦,𝑤!𝑥,]

∇𝑙 𝑤, 𝑥, , 𝑦, = 5
.
𝑤 − 𝕀[𝑦,𝑤!𝑥, < 1]𝑦,𝑥,

Recall: 1
12
max 0, 𝑎 = 𝕀[𝑎 > 0]



SGD update for SVM

𝑙 𝑤, 𝑥, , 𝑦, = 5
0.

𝑤 0 +max[0, 1 − 𝑦,𝑤!𝑥,]

∇𝑙 𝑤, 𝑥, , 𝑦, = 5
.
𝑤 − 𝕀[𝑦,𝑤!𝑥, < 1]𝑦,𝑥,

• SGD update:
• If 𝑦$𝑤%𝑥$ ≥ 1: 𝑤 ← 𝑤 −𝜂 &'𝑤

• If 𝑦$𝑤%𝑥$ < 1: 𝑤 ← 𝑤 + 𝜂 𝑦$𝑥$ −
&
'
𝑤

S. Shalev-Schwartz et al., Pegasos: Primal Estimated sub-GrAdient
SOlver for SVM, Mathematical Programming, 2011

http://ttic.uchicago.edu/~nati/Publications/PegasosMPB.pdf


Linear classifiers: Outline
• Examples of classification models: nearest neighbor, linear
• Empirical loss minimization framework
• Linear classification models

1. Linear regression
2. Logistic regression
3. Perceptron training algorithm
4. Support vector machines

• General recipe: data loss, regularization



General recipe
• Find parameters 𝑤 that minimize the sum of a regularization 

loss and a data loss:

0𝐿 𝑤 = 𝜆𝑅 𝑤 +
1
𝑛
2
,-#

.

𝑙(𝑤, 𝑥, , 𝑦,)
empirical loss data lossregularization

L2 regularization: 

𝑅(𝑤) =
1
2
𝑤 (

(



Closer look at L2 regularization

• Regularized objective: 0𝐿(𝑤) = 5
0
𝑤 0

0 + ∑,-#. 𝑙(𝑤, 𝑥, , 𝑦,)

• Gradient of objective: 

∇0𝐿(𝑤) = 𝜆𝑤 +2
,-#

.

∇𝑙(𝑤, 𝑥, , 𝑦,)

• SGD update:

𝑤 ← 𝑤 − 𝜂
𝜆
𝑛
𝑤 + ∇𝑙 𝑤, 𝑥, , 𝑦,

𝑤 ← 1 −
𝜂𝜆
𝑛

𝑤 − 𝜂∇𝑙 𝑤, 𝑥, , 𝑦,

• Interpretation: weight decay



General recipe
• Find parameters 𝑤 that minimize the sum of a regularization 

loss and a data loss:

0𝐿 𝑤 = 𝜆𝑅 𝑤 +
1
𝑛
2
,-#

.

𝑙(𝑤, 𝑥, , 𝑦,)
empirical loss data lossregularization

L2 regularization: 

𝑅(𝑤) =
1
2
𝑤 (

(

L1 regularization: 
𝑅(𝑤) = 𝑤 )



Closer look at L1 regularization
• Regularized objective:

0𝐿 𝑤 = 𝜆 𝑤 # +2
,-#

.

𝑙 𝑤, 𝑥, , 𝑦,

= 𝜆2
1

𝑤(1) +2
,-#

.

𝑙 𝑤, 𝑥, , 𝑦,

• Gradient: ∇0𝐿 𝑤 = 𝜆 sgn(𝑤) + ∑,-#. ∇𝑙(𝑤, 𝑥, , 𝑦,)
(here sgn is an elementwise function)

• SGD update:

𝑤 ← 𝑤 −
𝜂𝜆
𝑛
sgn 𝑤 − 𝜂∇𝑙 𝑤, 𝑥, , 𝑦,

• Interpretation: encouraging sparsity



Linear classifiers: Outline
• Examples of classification models: nearest neighbor, linear
• Empirical loss minimization framework
• Linear classification models

1. Linear regression
2. Logistic regression
3. Perceptron training algorithm
4. Support vector machines

• General recipe: data loss, regularization
• Multi-class classification



One-vs-all classification
• Let 𝑦 ∈ {1,… , 𝐶}
• Learn 𝐶 scoring functions 𝑓#, 𝑓0, … , 𝑓6
• Classify 𝑥 to class X𝑦 = argmax7 𝑓7(𝑥)
• Let’s start with multi-class perceptrons:

𝑓7 𝑥 = 𝑤7!𝑥

Inputs
Perceptrons 

w/ weights 𝑤#

Argmax



Multi-class perceptrons
• Multi-class perceptrons: 𝑓7 𝑥 = 𝑤7!𝑥
• Let 𝑊 be the matrix with rows 𝑤7
• What loss should we use for multi-class classification?

Figure source: Stanford 231n

http://cs231n.github.io/linear-classify/


Multi-class perceptrons
• Multi-class perceptrons: 𝑓7 𝑥 = 𝑤7!𝑥
• Let 𝑊 be the matrix with rows 𝑤7
• What loss should we use for multi-class classification?
• For (𝑥, , 𝑦,), let the loss be the sum of hinge losses associated 

with predictions for all incorrect classes:

𝑙 𝑊, 𝑥, , 𝑦, = 2
789#

max[0, 𝑤7!𝑥, −𝑤9#
! 𝑥,]

Score for correct class (𝑦!) 
has to be greater than the 

score for the incorrect class (𝑐)



Multi-class perceptrons

𝑙 𝑊, 𝑥, , 𝑦, = 2
789#

max[0, 𝑤7!𝑥, −𝑤9#
! 𝑥,]

• Gradient w.r.t. 𝑤9#:

− 2
789#

𝕀 [𝑤7!𝑥, > 𝑤9#
! 𝑥,]𝑥,

Recall: 1
12
max 0, 𝑎 = 𝕀[𝑎 > 0]



Multi-class perceptrons

𝑙 𝑊, 𝑥, , 𝑦, = 2
789#

max[0, 𝑤7!𝑥, −𝑤9#
! 𝑥,]

• Gradient w.r.t. 𝑤9#:

− 2
789#

𝕀 [𝑤7!𝑥, > 𝑤9#
! 𝑥,]𝑥,

• Gradient w.r.t. 𝑤7, 𝑐 ≠ 𝑦,:

𝕀[𝑤7!𝑥, > 𝑤9#
! 𝑥,]𝑥,

• Update rule: for each 𝑐 s.t. 𝑤7!𝑥, > 𝑤9#
! 𝑥,:

𝑤9# ← 𝑤9# + 𝜂𝑥,
𝑤7 ← 𝑤7 − 𝜂𝑥,



Multi-class perceptrons
• Update rule: for each 𝑐 s.t. 𝑤7!𝑥, > 𝑤9#

! 𝑥,:
𝑤9# ← 𝑤9# + 𝜂𝑥,
𝑤7 ← 𝑤7 − 𝜂𝑥,

• Is this equivalent to training 𝐶 independent one-vs-all 
classifiers?

Cat score:   65.1

Dog score:  101.4

Ship score:  24.9

Independent

Do nothing

Decrease 

Decrease

Multi-class

Increase

Decrease

Do nothing



Multi-class SVM
• Recall single-class SVM loss: 

𝑙 𝑤, 𝑥, , 𝑦, = 5
0.

𝑤 0 +max[0, 1 − 𝑦,𝑤!𝑥,]

• Generalization to multi-class:

𝑙 𝑊, 𝑥, , 𝑦, = 5
0.

𝑊 0 + ∑789#max[0, 1 − 𝑤9#
! 𝑥, +𝑤7!𝑥,]

Score for correct class – score for incorrect class

(1,0)

(0,1)

Score for correct class has to be 
greater than the score for the incorrect 

class by at least a margin of 1

Source: Stanford 231n

http://cs231n.github.io/linear-classify/


Multi-class SVM

𝑙 𝑊, 𝑥, , 𝑦, = 5
0.

𝑊 0 + ∑789#max[0, 1 − 𝑤9#
! 𝑥, +𝑤7!𝑥,]

• Gradient w.r.t. 𝑤9#:
𝜆
𝑛
𝑤9# − 2

789#

𝕀 𝑤9#
! 𝑥, −𝑤7!𝑥, < 1 𝑥,

• Gradient w.r.t. 𝑤7, 𝑐 ≠ 𝑦,:
𝜆
𝑛
𝑤7 + 𝕀[𝑤9#

! 𝑥, −𝑤7!𝑥, < 1]𝑥,

• Update rule (almost* equivalent to above):
• For each 𝑐 ≠ 𝑦, s.t. 𝑤9#

! 𝑥, −𝑤7!𝑥, < 1: 𝑤9# ← 𝑤9# + 𝜂𝑥,, 𝑤7 ← 𝑤7 − 𝜂𝑥,

• For 𝑐 = 1,… , 𝐶: 𝑤7 ← 1 − 𝜂 5
.
𝑤7



Softmax
• We want to squash the vector of responses 𝑓#, … , 𝑓7 into a 

vector of “probabilities”:

softmax 𝑓#, … , 𝑓7 =
exp(𝑓#)
∑: exp(𝑓:)

, … ,
exp(𝑓6)
∑: exp(𝑓:)

• The entries are between 0 and 1 and sum to 1
• If one of the inputs is much larger than the others, then the 

corresponding softmax value will be close to 1 and others will 
be close to 0



Softmax and sigmoid
• For two classes:

softmax 𝑓,−𝑓 =
exp(𝑓)

exp(𝑓) + exp(−𝑓)
,

exp(−𝑓)
exp 𝑓 + exp(−𝑓)

= #
#$%&'()0;)

, #
%&' 0; $#

= 𝜎 2𝑓 , 𝜎(−2𝑓)

• Thus, softmax is the generalization of sigmoid for more than 
two classes



Cross-entropy loss
• It is natural to use negative log likelihood loss with softmax:

𝑙 𝑊, 𝑥, , 𝑦, = − log𝑃< 𝑦, 𝑥, = −log
exp 𝑤9#

! 𝑥,
∑: exp 𝑤:!𝑥,

• This is also the cross-entropy between the “empirical” distribution 
0𝑃 𝑐 𝑥, = 𝕀[𝑐 = 𝑦,] and “estimated” distribution 𝑃<(𝑐|𝑥,):

−2
7
0𝑃 𝑐 𝑥, log 𝑃<(𝑐|𝑥,)

Empirical distribution +𝑃 𝑐 𝑥! Estimated distribution 𝑃$(𝑐|𝑥!)

𝑃(correct class | 𝑥!) = 1

𝑃(incorrect class | 𝑥!) = 0



SVM loss vs. cross-entropy loss

Source: Stanford 231n

Correct class is the third one 
(blue)

http://cs231n.github.io/linear-classify/


SGD with cross-entropy loss

𝑙 𝑊, 𝑥, , 𝑦, = − log𝑃< 𝑦, 𝑥, = −log
exp 𝑤9#

! 𝑥,
∑: exp 𝑤:!𝑥,

= −𝑤9#
! 𝑥, + log 2

:
exp 𝑤:!𝑥,

• Gradient w.r.t. 𝑤9#:

−𝑥, +
exp 𝑤9#

! 𝑥, 𝑥,
∑: exp 𝑤:!𝑥,

= (𝑃< 𝑦, 𝑥, − 1)𝑥,

• Gradient w.r.t. 𝑤7, 𝑐 ≠ 𝑦,:
exp 𝑤7!𝑥, 𝑥,
∑: exp 𝑤:!𝑥,

= 𝑃< 𝑐 𝑥, 𝑥,



SGD with cross-entropy loss
• Gradient w.r.t. 𝑤9#: (𝑃< 𝑦, 𝑥, − 1)𝑥,

• Gradient w.r.t. 𝑤7, 𝑐 ≠ 𝑦,: 𝑃< 𝑐 𝑥, 𝑥,

• Update rule: 
• For 𝑦,:

𝑤9# ← 𝑤9# + 𝜂 1 − 𝑃< 𝑦, 𝑥, 𝑥,
• For 𝑐 ≠ 𝑦,:

𝑤7 ← 𝑤7 − 𝜂𝑃< 𝑐 𝑥, 𝑥,



Softmax trick: Avoiding overflow
• Exponentiated values exp 𝑓7 can become very large and 

cause overflow
• Note that adding the same constant to all softmax inputs 

(logits) does not change the output of the softmax:

exp 𝑓7
∑: exp 𝑓:

=
𝐾 exp 𝑓7
∑:𝐾 exp 𝑓:

=
exp 𝑓7 + log𝐾
∑: exp 𝑓: + log𝐾

• Then we can let log𝐾 = −max: 𝑓: (i.e., make largest input to 
softmax be 0)



Softmax trick: Temperature scaling
• Suppose we divide every input to the softmax by the same 

constant 𝑇:

softmax 𝑓#, … , 𝑓7; 𝑇 =
exp(𝑓#/𝑇)
∑: exp(𝑓:/𝑇)

, … ,
exp(𝑓6/𝑇)
∑: exp(𝑓:/𝑇)

• What does this accomplish?
• Prior to normalization, each entry exp(𝑓)) is raised to the power 1/𝑇
• If 𝑇 is close to 0, the largest entry will dominate and output 

distribution will tend to one-hot
• If 𝑇 is high, output distribution will tend to uniform



Softmax trick: Temperature scaling
Low temperature:
More concentrated 

distribution

Higher temperature:
More uniform 
distribution

Figure source

https://www.researchgate.net/figure/An-example-of-categorical-probability-distributions-of-high-temperature-softmax-output_fig1_325016605


Softmax trick: Label smoothing
• Recall: cross-entropy loss measures the difference between the 

“observed” label distribution 0𝑃 𝑐 𝑥, and “estimated” distribution 
𝑃<(𝑐|𝑥,):

−2
7
0𝑃 𝑐 𝑥, log 𝑃<(𝑐|𝑥,)

Empirical distribution +𝑃 𝑐 𝑥! Estimated distribution 𝑃$(𝑐|𝑥!)

𝑃(correct class | 𝑥!) = 1

𝑃(incorrect class | 𝑥!) = 0

“Hard” prediction targets



Softmax trick: Label smoothing
• Recall: cross-entropy loss measures the difference between the 

“observed” label distribution 0𝑃 𝑐 𝑥, and “estimated” distribution 
𝑃<(𝑐|𝑥,):

−2
7
0𝑃 𝑐 𝑥, log 𝑃<(𝑐|𝑥,)

Empirical distribution +𝑃 𝑐 𝑥! Estimated distribution 𝑃$(𝑐|𝑥!)

𝑃(correct class | 𝑥!) = 1 − 𝜖

𝑃(incorrect class | 𝑥!) =
%

&'(

“Soft” prediction targets



Softmax trick: Label smoothing
• When using softmax loss, replace hard 1 and 0 prediction 

targets with “soft” targets of 1 − 𝜖 and =
6)#

• Why is this a good idea? 
• A form of regularization to avoid overly confident predictions, 

account for label noise



Recap: Three ways to think about linear classifiers

𝑓5(𝑥) = 𝑊𝑥

Algebraic Viewpoint Visual Viewpoint Geometric Viewpoint

One template 
per class

Hyperplanes 
cutting up space

Source: J. Johnson

https://web.eecs.umich.edu/~justincj/slides/eecs498/WI2022/598_WI2022_lecture03.pdf

