
15. MiniVGGNet: Going Deeper with CNNs

In our previous chapter we discussed LeNet, a seminal Convolutional Neural Network in the deep
learning and computer vision literature. VGGNet, (sometimes referred to as simply VGG), was first
introduced by Simonyan and Zisserman in their 2014 paper, Very Deep Learning Convolutional
Neural Networks for Large-Scale Image Recognition [99]. The primary contribution of their work
was demonstrating that an architecture with very small (3⇥3) filters can be trained to increasingly
higher depths (16-19 layers) and obtain state-of-the-art classification on the challenging ImageNet
classification challenge.

Previously, network architectures in the deep learning literature used a mix of filter sizes:
The first layer of the CNN usually includes filter sizes somewhere between 7⇥ 7 [98] and

11⇥ 11 [132]. From there, filter sizes progressively reduced to 5⇥ 5. Finally, only the deepest
layers of the network used 3⇥3 filters.

VGGNet is unique in that it uses 3⇥3 kernels throughout the entire architecture. The use
of these small kernels is arguably what helps VGGNet generalize to classification problems outside
what the network was originally trained on (we’ll see this inside the Practitioner Bundle and
ImageNet Bundle when we discuss transfer learning).

Any time you see a network architecture that consists entirely of 3⇥ 3 filters, you can rest
assured that it was inspired by VGGNet. Reviewing the entire 16 and 19 layer variants of VGGNet
is too advanced for this introduction to Convolutional Neural Networks – for a detailed review of
VGG16 and VGG19, please refer to the Chapter 11 of the ImageNet Bundle.

Instead, we are going to review the VGG family of networks and define what characteristics a
CNN must exhibit to fit into this family. From there we’ll implement a smaller version of VGGNet
called MiniVGGNet that can easily be trained on your system. This implementation will also
demonstrate how to use two important layers we discussed in Chapter 11 – batch normalization
(BN) and dropout.

15.1 The VGG Family of Networks
The VGG family of Convolutional Neural Networks can be characterized by two key components:

1. All CONV layers in the network using only 3⇥3 filters.

232 Chapter 15. MiniVGGNet: Going Deeper with CNNs

2. Stacking multiple CONV => RELU layer sets (where the number of consecutive CONV =>
RELU layers normally increases the deeper we go) before applying a POOL operation.

In this section, we are going to discuss a variant of the VGGNet architecture which I call
“MiniVGGNet” due to the fact that the network is substantially more shallow than its big brother.
For a detailed review and implementation of the original VGG architecture proposed by Simonyan
and Zisserman, along with a demonstration on how to train the network on the ImageNet dataset,
please refer to Chapter 11 of the ImageNet Bundle.

15.1.1 The (Mini) VGGNet Architecture
In both ShallowNet and LeNet we have applied a series of CONV => RELU => POOL layers. How-
ever, in VGGNet, we stack multiple CONV => RELU layers prior to applying a single POOL layer.
Doing this allows the network to learn more rich features from the CONV layers prior to downsam-
pling the spatial input size via the POOL operation.

Overall, MiniVGGNet consists of two sets of CONV => RELU => CONV => RELU => POOL
layers, followed by a set of FC => RELU => FC => SOFTMAX layers. The first two CONV layers
will learn 32 filters, each of size 3⇥3. The second two CONV layers will learn 64 filters, again, each
of size 3⇥3. Our POOL layers will perform max pooling over a 2⇥2 window with a 2⇥2 stride.
We’ll also be inserting batch normalization layers after the activations along with dropout layers
(DO) after the POOL and FC layers.

The network architecture itself is detailed in Table 15.1, where the initial input image size is
assumed to be 32⇥ 32⇥ 3 as we’ll be training MiniVGGNet on CIFAR-10 later in this chapter
(and then comparing performance to ShallowNet).

Again, notice how the batch normalization and dropout layers are included in the network
architecture based on my “Rules of Thumb” in Section 11.3.2. Applying batch normalization will
help reduce the effects of overfitting and increase our classification accuracy on CIFAR-10.

15.2 Implementing MiniVGGNet
Given the description of MiniVGGNet in Table 15.1, we can now implement the network architec-
ture using Keras. To get started, add a new file named minivggnet.py inside the pyimagesearch.nn.
conv sub-module – this is where we will write our MiniVGGNet implementation:

--- pyimagesearch
| |--- __init__.py
| |--- nn
| | |--- __init__.py
...
| | |--- conv
| | | |--- __init__.py
| | | |--- lenet.py
| | | |--- minivggnet.py
| | | |--- shallownet.py

After creating the minivggnet.py file, open it up in your favorite code editor and we’ll get to
work:

1 # import the necessary packages
2 from tensorflow.keras.models import Sequential
3 from tensorflow.keras.layers import BatchNormalization
4 from tensorflow.keras.layers import Conv2D

15.2 Implementing MiniVGGNet 233

Layer Type Output Size Filter Size / Stride
INPUT IMAGE 32⇥32⇥3
CONV 32⇥32⇥32 3⇥3,K = 32
ACT 32⇥32⇥32
BN 32⇥32⇥32
CONV 32⇥32⇥32 3⇥3,K = 32
ACT 32⇥32⇥32
BN 32⇥32⇥32
POOL 16⇥16⇥32 2⇥2
DROPOUT 16⇥16⇥32
CONV 16⇥16⇥64 3⇥3,K = 64
ACT 16⇥16⇥64
BN 16⇥16⇥64
CONV 16⇥16⇥64 3⇥3,K = 64
ACT 16⇥16⇥64
BN 16⇥16⇥64
POOL 8⇥8⇥64 2⇥2
DROPOUT 8⇥8⇥64
FC 512
ACT 512
BN 512
DROPOUT 512
FC 10
SOFTMAX 10

Table 15.1: A table summary of the MiniVGGNet architecture. Output volume sizes are included
for each layer, along with convolutional filter size/pool size when relevant. Notice how only 3⇥3
convolutions are applied.

234 Chapter 15. MiniVGGNet: Going Deeper with CNNs

5 from tensorflow.keras.layers import MaxPooling2D
6 from tensorflow.keras.layers import Activation
7 from tensorflow.keras.layers import Flatten
8 from tensorflow.keras.layers import Dropout
9 from tensorflow.keras.layers import Dense

10 from tensorflow.keras import backend as K

Lines 2-10 import our required classes from the Keras library. Most of these imports you have
already seen before, but I want to bring your attention to the BatchNormalization (Line 3) and
Dropout (Line 8) – these classes will enable us to apply batch normalization and dropout to our
network architecture.

Just like our implementations of both ShallowNet and LeNet, we’ll define a build method that
can be called to construct the architecture using a supplied width, height, depth, and number of
classes:

12 class MiniVGGNet:
13 @staticmethod
14 def build(width, height, depth, classes):
15 # initialize the model along with the input shape to be
16 # "channels last" and the channels dimension itself
17 model = Sequential()
18 inputShape = (height, width, depth)
19 chanDim = -1
20

21 # if we are using "channels first", update the input shape
22 # and channels dimension
23 if K.image_data_format() == "channels_first":
24 inputShape = (depth, height, width)
25 chanDim = 1

Line 17 instantiates the Sequential class, the building block of sequential neural networks in
Keras. We then initialize the inputShape, assuming we are using channels last ordering (Line 18).

Line 19 introduces a variable we haven’t seen before, chanDim, the index of the channel
dimension. Batch normalization operates over the channels, so in order to apply BN, we need to
know which axis to normalize over. Setting chanDim = -1 implies that the index of the channel
dimension last in the input shape (i.e., channels last ordering). However, if we are using channels
first ordering (Lines 23-25), we need to update the inputShape and set chanDim = 1, since the
channel dimension is now the first entry in the input shape.

The first layer block of MiniVGGNet is defined below:

27 # first CONV => RELU => CONV => RELU => POOL layer set
28 model.add(Conv2D(32, (3, 3), padding="same",
29 input_shape=inputShape))
30 model.add(Activation("relu"))
31 model.add(BatchNormalization(axis=chanDim))
32 model.add(Conv2D(32, (3, 3), padding="same"))
33 model.add(Activation("relu"))
34 model.add(BatchNormalization(axis=chanDim))
35 model.add(MaxPooling2D(pool_size=(2, 2)))
36 model.add(Dropout(0.25))

15.2 Implementing MiniVGGNet 235

Here we can see our architecture consists of (CONV => RELU => BN) * 2 => POOL => DO.
Line 28 defines a CONV layer with 32 filters, each of which has a 3⇥3 filter size. We then apply a
ReLU activation (Line 30) which is immediately fed into a BatchNormalization layer (Line 31)
to zero-center the activations.

However, instead of applying a POOL layer to reduce the spatial dimensions of our input, we
instead apply another set of CONV => RELU => BN – this allows our network to learn more rich
features, a common practice when training deeper CNNs.

On Line 35 we use MaxPooling2D with a size of 2⇥2. Since we do not explicitly set a stride,
Keras implicitly assumes our stride to be equal to the max pooling size (which is 2⇥2).

We then apply Dropout on Line 36 with a probability of p = 0.25, implying that a node from
the POOL layer will be randomly disconnected from the next layer with a probability of 25% during
training. We apply dropout to help reduce the effects of overfitting. You can read more about
dropout in Section 11.2.7. We then add the second layer block to MiniVGGNet below:

38 # second CONV => RELU => CONV => RELU => POOL layer set
39 model.add(Conv2D(64, (3, 3), padding="same"))
40 model.add(Activation("relu"))
41 model.add(BatchNormalization(axis=chanDim))
42 model.add(Conv2D(64, (3, 3), padding="same"))
43 model.add(Activation("relu"))
44 model.add(BatchNormalization(axis=chanDim))
45 model.add(MaxPooling2D(pool_size=(2, 2)))
46 model.add(Dropout(0.25))

The code above follows the exact same pattern as the above; however, now we are learning two
sets of 64 filters (each of size 3⇥3) as opposed to 32 filters. Again, it is common to increase the
number of filters as the spatial input size decreases deeper in the network.

Next comes our first (and only) set of FC => RELU layers:

48 # first (and only) set of FC => RELU layers
49 model.add(Flatten())
50 model.add(Dense(512))
51 model.add(Activation("relu"))
52 model.add(BatchNormalization())
53 model.add(Dropout(0.5))

Our FC layer has 512 nodes, which will be followed by a ReLU activation and BN. We’ll
also apply dropout here, increasing the probability to 50% – typically you’ll see dropout with
p = 0.5 applied in between FC layers.

Finally, we apply the softmax classifier and return the network architecture to the calling
function:

55 # softmax classifier
56 model.add(Dense(classes))
57 model.add(Activation("softmax"))
58

59 # return the constructed network architecture
60 return model

Now that we’ve implemented the MiniVGGNet architecture, let’s move on to applying it to
CIFAR-10.

236 Chapter 15. MiniVGGNet: Going Deeper with CNNs

15.3 MiniVGGNet on CIFAR-10
We will follow a similar pattern training MiniVGGNet as we did for LeNet in Chapter 14, only this
time with the CIFAR-10 dataset:

• Load the CIFAR-10 dataset from disk.
• Instantiate the MiniVGGNet architecture.
• Train MiniVGGNet using the training data.
• Evaluate network performance with the testing data.
To create a driver script to train MiniVGGNet, open a new file, name it minivggnet_cifar10.py,

and insert the following code:

1 # set the matplotlib backend so figures can be saved in the background
2 import matplotlib
3 matplotlib.use("Agg")
4

5 # import the necessary packages
6 from sklearn.preprocessing import LabelBinarizer
7 from sklearn.metrics import classification_report
8 from pyimagesearch.nn.conv import MiniVGGNet
9 from tensorflow.keras.optimizers import SGD

10 from tensorflow.keras.datasets import cifar10
11 import matplotlib.pyplot as plt
12 import numpy as np
13 import argparse

Line 2 imports the matplotlib library which we’ll later use to plot our accuracy and loss over
time. We need to set the matplotlib backend to Agg to indicate to create a non-interactive that
will simply be saved to disk. Depending on what your default maplotlib backend is and whether
you are accessing your deep learning machine remotely (via SSH, for instance), X11 session may
timeout. If that happens, matplotlib will error out when it tries to display your figure. Instead,
we can simply set the background to Agg and write the plot to disk when we are done training our
network.

Lines 9-13 import the rest of our required Python packages, all of which you’ve seen before –
the exception being MiniVGGNet on Line 8 which we implemented in the previous section.

Next, let’s parse our command line arguments:

15 # construct the argument parse and parse the arguments
16 ap = argparse.ArgumentParser()
17 ap.add_argument("-o", "--output", required=True,
18 help="path to the output loss/accuracy plot")
19 args = vars(ap.parse_args())

This script will require only a single command line argument, --output, the path to our output
training and loss plot.

We can now load the CIFAR-10 dataset (pre-split into training and testing data), scale the pixels
into the range [0,1], and then one-hot encode the labels:

21 # load the training and testing data, then scale it into the
22 # range [0, 1]
23 print("[INFO] loading CIFAR-10 data...")
24 ((trainX, trainY), (testX, testY)) = cifar10.load_data()

15.3 MiniVGGNet on CIFAR-10 237

25 trainX = trainX.astype("float") / 255.0
26 testX = testX.astype("float") / 255.0
27

28 # convert the labels from integers to vectors
29 lb = LabelBinarizer()
30 trainY = lb.fit_transform(trainY)
31 testY = lb.transform(testY)
32

33 # initialize the label names for the CIFAR-10 dataset
34 labelNames = ["airplane", "automobile", "bird", "cat", "deer",
35 "dog", "frog", "horse", "ship", "truck"]

Let’s compile our model and start training MiniVGGNet:

37 # initialize the optimizer and model
38 print("[INFO] compiling model...")
39 opt = SGD(lr=0.01, decay=0.01 / 40, momentum=0.9, nesterov=True)
40 model = MiniVGGNet.build(width=32, height=32, depth=3, classes=10)
41 model.compile(loss="categorical_crossentropy", optimizer=opt,
42 metrics=["accuracy"])
43

44 # train the network
45 print("[INFO] training network...")
46 H = model.fit(trainX, trainY, validation_data=(testX, testY),
47 batch_size=64, epochs=40, verbose=1)

We’ll use SGD as our optimizer with a learning rate of a = 0.01 and momentum term of
g = 0.9. Setting nestrov=True indicates that we would like to apply Nestrov accelerated gradient
to the SGD optimizer (Section 9.3).

An optimizer term we haven’t seen yet is the decay parameter. This argument is used to slowly
reduce the learning rate over time. As we’ll discuss in more detail in the next chapter on Learning
Rate Schedulers, decaying the learning rate is helpful in reducing overfitting and obtaining higher
classification accuracy – the smaller the learning rate is, the smaller the weight updates will be. A
common setting for decay is to divide the initial learning rate by the total number of epochs – in
this case, we’ll be training our network for a total of 40 epochs with an initial learning rate of 0.01,
therefore decay = 0.01 / 40.

After training completes, we can evaluate the network and display a nicely formatted classifica-
tion report:

49 # evaluate the network
50 print("[INFO] evaluating network...")
51 predictions = model.predict(testX, batch_size=64)
52 print(classification_report(testY.argmax(axis=1),
53 predictions.argmax(axis=1), target_names=labelNames))

And with save our loss and accuracy plot to disk:

55 # plot the training loss and accuracy
56 plt.style.use("ggplot")
57 plt.figure()
58 plt.plot(np.arange(0, 40), H.history["loss"], label="train_loss")

238 Chapter 15. MiniVGGNet: Going Deeper with CNNs

59 plt.plot(np.arange(0, 40), H.history["val_loss"], label="val_loss")
60 plt.plot(np.arange(0, 40), H.history["accuracy"], label="train_acc")
61 plt.plot(np.arange(0, 40), H.history["val_accuracy"], label="val_acc")
62 plt.title("Training Loss and Accuracy on CIFAR-10")
63 plt.xlabel("Epoch #")
64 plt.ylabel("Loss/Accuracy")
65 plt.legend()
66 plt.savefig(args["output"])

When evaluating MinIVGGNet I performed two experiments:
1. One with batch normalization.
2. One without batch normalization.
Let’s go ahead and take a look at these results to compare how network performance increases

when applying batch normalization.

15.3.1 With Batch Normalization
To train MiniVGGNet on the CIFAR-10 dataset, just execute the following command:

$ python minivggnet_cifar10.py --output output/cifar10_minivggnet_with_bn.png
[INFO] loading CIFAR-10 data...
[INFO] compiling model...
[INFO] training network...
Train on 50000 samples, validate on 10000 samples
Epoch 1/40
23s - loss: 1.6001 - acc: 0.4691 - val_loss: 1.3851 - val_acc: 0.5234
Epoch 2/40
23s - loss: 1.1237 - acc: 0.6079 - val_loss: 1.1925 - val_acc: 0.6139
Epoch 3/40
23s - loss: 0.9680 - acc: 0.6610 - val_loss: 0.8761 - val_acc: 0.6909
...
Epoch 40/40
23s - loss: 0.2557 - acc: 0.9087 - val_loss: 0.5634 - val_acc: 0.8236
[INFO] evaluating network...

precision recall f1-score support

airplane 0.88 0.81 0.85 1000
automobile 0.93 0.89 0.91 1000

bird 0.83 0.68 0.75 1000
cat 0.69 0.65 0.67 1000

deer 0.74 0.85 0.79 1000
dog 0.72 0.77 0.74 1000

frog 0.85 0.89 0.87 1000
horse 0.85 0.87 0.86 1000
ship 0.89 0.91 0.90 1000

truck 0.88 0.91 0.90 1000

avg / total 0.83 0.82 0.82 10000

On my GPU, epochs were quite fast at 23s. On my CPU, epochs were considerably longer,
clocking in at 171s.

After training completed, we can see that MiniVGGNet is obtaining 83% classification accuracy
on the CIFAR-10 dataset with batch normalization – this result is substantially higher than the 60%

15.3 MiniVGGNet on CIFAR-10 239

accuracy when applying ShallowNet in Chapter 12. We thus see how a deeper network architectures
are able to learn richer, more discriminative features.

But what about the role of batch normalization? Is it actually helping us here? To find out, let’s
move on to the next section.

15.3.2 Without Batch Normalization
Go back to the minivggnet.py implementation and comment out all BatchNormalization
layers, like so:

27 # first CONV => RELU => CONV => RELU => POOL layer set
28 model.add(Conv2D(32, (3, 3), padding="same",
29 input_shape=inputShape))
30 model.add(Activation("relu"))
31 #model.add(BatchNormalization(axis=chanDim))
32 model.add(Conv2D(32, (3, 3), padding="same"))
33 model.add(Activation("relu"))
34 #model.add(BatchNormalization(axis=chanDim))
35 model.add(MaxPooling2D(pool_size=(2, 2)))
36 model.add(Dropout(0.25))

Once you’ve commented out all BatchNormalization layers from your network, re-train
MiniVGGNet on CIFAR-10:

$ python minivggnet_cifar10.py \
--output output/cifar10_minivggnet_without_bn.png

[INFO] loading CIFAR-10 data...
[INFO] compiling model...
[INFO] training network...
Train on 50000 samples, validate on 10000 samples
Epoch 1/40
13s - loss: 1.8055 - acc: 0.3426 - val_loss: 1.4872 - val_acc: 0.4573
Epoch 2/40
13s - loss: 1.4133 - acc: 0.4872 - val_loss: 1.3246 - val_acc: 0.5224
Epoch 3/40
13s - loss: 1.2162 - acc: 0.5628 - val_loss: 1.0807 - val_acc: 0.6139
...
Epoch 40/40
13s - loss: 0.2780 - acc: 0.8996 - val_loss: 0.6466 - val_acc: 0.7955
[INFO] evaluating network...

precision recall f1-score support

airplane 0.83 0.80 0.82 1000
automobile 0.90 0.89 0.90 1000

bird 0.75 0.69 0.71 1000
cat 0.64 0.57 0.61 1000

deer 0.75 0.81 0.78 1000
dog 0.69 0.72 0.70 1000

frog 0.81 0.88 0.85 1000
horse 0.85 0.83 0.84 1000
ship 0.90 0.88 0.89 1000

truck 0.84 0.89 0.86 1000

avg / total 0.79 0.80 0.79 10000

240 Chapter 15. MiniVGGNet: Going Deeper with CNNs

The first thing you’ll notice is that your network trains faster without batch normalization (13s
compared to 23s, a reduction by 43%). However, once the network finishes training, you’ll notice a
lower classification accuracy of 79%.

When we plot MiniVGGNet with batch normalization (left) and without batch normalization
(right) side-by-side in Figure 15.1, we can see the positive affect batch normalization has on the
training process:

Figure 15.1: Left: MiniVGGNet trained on CIFAR-10 with batch normalization. Right: MiniVG-
GNet trained on CIFAR-10 without batch normalization. Applying batch normalization allows us
to obtain higher classification accuracy and reduce the affects of overfitting.

Notice how the loss for MiniVGGNet without batch normalization starts to increase past epoch
30, indicating that the network is overfitting to the training data. We can also clearly see that
validation accuracy has become quite saturated by epoch 25.

On the other hand, the MiniVGGNet implementation with batch normalization is more stable.
While both loss and accuracy start to flatline past epoch 35, we aren’t overfitting as badly – this
is one of the many reasons why I suggest applying batch normalization to your own network
architectures.

15.4 Summary
In this chapter we discussed the VGG family of Convolutional Neural Networks. A CNN can be
considered VGG-net like if:

1. It makes use of only 3⇥3 filters, regardless of network depth.
2. There are multiple CONV => RELU layers applied before a single POOL operation, some-

times with more CONV => RELU layers stacked on top of each other as the network increases
in depth.

We then implemented a VGG inspired network, suitably named MiniVGGNet. This network
architecture consisted of two sets of (CONV => RELU) * 2) => POOL layers followed by an FC
=> RELU => FC => SOFTMAX layer set. We also applied batch normalization after every activation
as well as dropout after every pool and fully-connected layer. To evaluate MiniVGGNet, we used
the CIFAR-10 dataset.

Our previous best accuracy on CIFAR-10 was only 60% from the ShallowNet network (Chapter
12). However, using MiniVGGNet we were able to increase accuracy all the way to 83%.

Finally, we examined the role batch normalization plays in deep learning and CNNs with batch

15.4 Summary 241

normalization, MiniVGGNet reached 83% classification accuracy – but without batch normalization,
accuracy decreased to 79% (and we also started to see signs of overfitting).

Thus, the takeaway here is that:
1. Batch normalization can lead to a faster, more stable convergence with higher accuracy.
2. However, the advantages will come at the expense of training time – batch normalization will

require more “wall time” to train the network, even though the network will obtain higher
accuracy in less epochs.

That said, the extra training time often outweighs the negatives, and I highly encourage you to
apply batch normalization to your own network architectures.

