
9. Optimization Methods and Regularization

“Nearly all of deep learning is powered by one very important algorithm: Stochas-
tic Gradient Descent (SGD)” – Goodfellow et al. [10]

At this point we have a strong understanding of the concept of parameterized learning. Over
the past few chapters, we have discussed the concept of parameterized learning and how this type
of learning enables us to define a scoring function that maps our input data to output class labels.

This scoring function is defined in terms of two important parameters; specifically, our weight
matrix W and our bias vector b. Our scoring function accepts these parameters as inputs and
returns a prediction for each input data point xi.

We have also discussed two common loss functions: Multi-class SVM loss and cross-entropy
loss. Loss functions, at the most basic level, are used to quantify how “good” or “bad” a given
predictor (i.e., a set of parameters) is at classifying the input data points in our data.

Given these building blocks, we can now move on to the most important aspect of machine
learning, neural networks, and deep learning – optimization. Optimization algorithms are the
engines that power neural networks and enable them to learn patterns from data. Throughout this
discussion, we’ve learned that obtaining a high accuracy classifier is dependent on finding a set of
weights W and b such that our data points are correctly classified.

But how do we go about finding and obtaining a weight matrix W and bias vector b that
obtains high classification accuracy? Do we randomly initialize them, evaluate, and repeat over
and over again, hoping that at some point we land on a set of parameters that obtains reasonable
classification? We could – but given that modern deep learning networks have parameters that
number in the tens of millions, it may take us a long time to blindly stumble upon a reasonable set
of parameters.

Instead of relying on pure randomness, we need to define an optimization algorithm that allows
us to literally improve W and b. In this chapter, we’ll be looking at the most common algorithm
used to train neural networks and deep learning models – gradient descent. Gradient descent has
many variants (which we’ll also touch on), but, in each case, the idea is the same: iteratively
evaluate your parameters, compute your loss, then take a small step in the direction that will
minimize your loss.

96 Chapter 9. Optimization Methods and Regularization

9.1 Gradient Descent
The gradient descent algorithm has two primary flavors:

1. The standard “vanilla” implementation.
2. The optimized “stochastic” version that is more commonly used.
In this section we’ll be reviewing the basic vanilla implementation to form a baseline for our

understanding. After we understand the basics of gradient descent, we’ll move on to the stochastic
version. We’ll then review some of the “bells and whistles” that we can add on to gradient descent,
including momentum, and Nesterov acceleration.

9.1.1 The Loss Landscape and Optimization Surface
The gradient descent method is an iterative optimization algorithm that operates over a loss
landscape (also called an optimization surface). The canonical gradient descent example is to
visualize our weights along the x-axis and then the loss for a given set of weights along the y-axis
(Figure 9.1, left):

Figure 9.1: Left: The “naive loss” visualized as a 2D plot. Right: A more realistic loss landscape
can be visualized as a bowl that exists in multiple dimensions. Our goal is to apply gradient descent
to navigate to the bottom of this bowl (where there is low loss).

As we can see, our loss landscape has many peaks and valleys based on which values our
parameters take on. Each peak is a local maximum that represents very high regions of loss –
the local maximum with the largest loss across the entire loss landscape is the global maximum.
Similarly, we also have local minimum which represents many small regions of loss.

The local minimum with the smallest loss across the loss landscape is our global minimum. In
an ideal world, we would like to find this global minimum, ensuring our parameters take on the
most optimal possible values.

So that raises the question: “If we want to reach a global minimum, why not just directly jump
to it? It’s clearly visible on the plot?”

Therein lies the problem – the loss landscape is invisible to us. We don’t actually know what it
looks like. If we’re an optimization algorithm, we would be blindly placed somewhere on the plot,
having no idea what the landscape in front of us looks like, and we would have to navigate our way
to a loss minimum without accidentally climbing to the top of a local maximum.

Personally, I’ve never liked this visualization of the loss landscape – it’s too simple, and it often
leads readers to think that gradient descent (and its variants) will eventually find either a local or
global minimum. This statement isn’t true, especially for complex problems – and I’ll explain why

9.1 Gradient Descent 97

later in this chapter. Instead, let’s look at a different visualization of the loss landscape that I believe
does a better job depicting the problem. Here we have a bowl, similar to the one you may eat cereal
or soup out of (Figure 9.1, right).

The surface of our bowl is the loss landscape, which is a plot of the loss function. The
difference between our loss landscape and your cereal bowl is that your cereal bowl only exists in
three dimensions, while your loss landscape exists in many dimensions, perhaps tens, hundreds, or
thousands of dimensions.

Each position along the surface of the bowl corresponds to a particular loss value given a set of
parameters W (weight matrix) and b (bias vector). Our goal is to try different values of W and b,
evaluate their loss, and then take a step towards more optimal values that (ideally) have lower loss.

9.1.2 The “Gradient” in Gradient Descent
To make our explanation of gradient descent a little more intuitive, let’s pretend that we have a
robot – let’s name him Chad (Figure 9.2, left). When performing gradient descent, we randomly
drop Chad somewhere on our loss landscape (Figure 9.2, right).

Figure 9.2: Left: Our robot, Chad. Right: It’s Chad’s job to navigate our loss landscape and
descend to the bottom of the basin. Unfortunately, the only sensor Chad can use to control his
navigation is a special function, called a loss function, L. This function must guide him to an area
of lower loss.

It’s now Chad’s job to navigate to the bottom of the basin (where there is minimum loss). Seems
easy enough right? All Chad has to do is orient himself such that he’s facing “downhill” and ride
the slope until he reaches the bottom of the bowl.

But here’s the problem: Chad isn’t a very smart robot. Chad has only one sensor – this sensor
allows him to take his parameters W and b and then compute a loss function L. Therefore, Chad is
able to compute his relative position on the loss landscape, but he has absolutely no idea in which
direction he should take a step to move himself closer to the bottom of the basin.

What is Chad to do? The answer is to apply gradient descent. All Chad needs to do is follow
the slope of the gradient W . We can compute the gradient W across all dimensions using the
following equation:

d f (x)
dx

= lim
h!0

f (x+h)� f (x)
h

(9.1)

In > 1 dimensions, our gradient becomes a vector of partial derivatives. The problem with this
equation is that:

98 Chapter 9. Optimization Methods and Regularization

1. It’s an approximation to the gradient.
2. It’s painfully slow.
In practice, we use the analytic gradient instead. The method is exact and fast, but extremely

challenging to implement due to partial derivatives and multi-variable calculus. Full derivation of
the multivariable calculus used to justify gradient descent is outside the scope of this book. If you
are interested in learning more about numeric and analytic gradients, I would suggest this lecture
by Zibulevsky [85], Andrew Ng’s cs229 machine learning notes [86], as well as the cs231n notes
[87].

For the sake of this discussion, simply internalize what gradient descent is: attempting to
optimize our parameters for low loss and high classification accuracy via an iterative process of
taking a step in the direction that minimizes loss.

9.1.3 Treat It Like a Convex Problem (Even if It’s Not)
Using the a bowl in Figure 9.1 (right) as a visualization of the loss landscape also allows us to draw
an important conclusion in modern day neural networks – we are treating the loss landscape as
a convex problem, even if it’s not. If some function F is convex, then all local minima are also
global minima. This idea fits the visualization of the bowl nicely. Our optimization algorithm
simply has to strap on a pair of skis at the top of the bowl, then slowly ride down the gradient until
we reach the bottom.

The issue is that nearly all problems we apply neural networks and deep learning algorithms to
are not neat, convex functions. Instead, inside this bowl we’ll find spike-like peaks, valleys that are
more akin to canyons, steep dropoffs, and even slots where loss drops dramatically only to sharply
rise again.

Given the non-convex nature of our datasets, why do we apply gradient descent? The answer is
simple: because it does a good enough job. To quote Goodfellow et al. [10]:

“[An] optimization algorithm may not be guaranteed to arrive at even a local
minimum in a reasonable amount of time, but it often finds a very low value of the
[loss] function quickly enough to be useful.”

We can set the high expectation of finding a local/global minimum when training a deep learning
network, but this expectation rarely aligns with reality. Instead, we end up finding a region of low
loss – this area may not even be a local minimum, but in practice, it turns out that this is good
enough.

9.1.4 The Bias Trick
Before we move on to implementing gradient descent, I want to take the time to discuss a technique
called the “bias trick”, a method of combining our weight matrix W and bias vector b into a
single parameter. Recall from our previous decisions that our scoring function is defined as:

f (xi,W,b) =Wxi +b (9.2)

It’s often tedious to keep track of two separate variables, both in terms of explanation and im-
plementation – to avoid situation this entirely, we can combine W and b together. To combine both
the bias and weight matrix, we add an extra dimension (i.e., column) to our input data X that holds
a constant 1 – this is our bias dimension.

Typically we either append the new dimension to each individual xi as the first dimension or
the last dimension. In reality, it doesn’t matter. We can choose any arbitrary location to insert a

9.1 Gradient Descent 99

column of ones into our design matrix, as long as it exists. Doing so allows us to rewrite our scoring
function via a single matrix multiply:

f (xi,W) =Wxi (9.3)

Again, we are allowed to omit the b term here as it is embedded into our weight matrix.
In the context of our previous examples in the “Animals” dataset, we’ve worked with 32⇥

32⇥ 3 images with a total of 3,072 pixels. Each xi is represented by a vector of [3072⇥ 1].
Adding in a dimension with a constant value of one now expands the vector to be [3073⇥ 1].
Similarly, combining both the bias and weight matrix also expands our weight matrix W to be
[3⇥3073] rather than [3⇥3072]. In this way, we can treat the bias as a learnable parameter within
the weight matrix that we don’t have to explicitly keep track of in a separate variable.

Figure 9.3: Left: Normally we treat the weight matrix and bias vector as two separate parameters.
Right: However, we can actually embed the bias vector into the weight matrix (thereby making it a
trainable parameter directly inside the weight matrix by initializing our input data X with an extra
column of ones.

To visualize the bias trick, consider Figure 9.3 (left) where we separate the weight matrix and
bias. Up until now, this figure depicts how we have thought of our scoring function. But instead,
we can combine the W and b together, provided that we insert a new column into every xi where
every entry is one (Figure 9.3, right). Applying the bias trick allows us to learn only a single matrix
of weights, hence why we tend to prefer this method for implementation. For all future examples
in this book, whenever I mention W , assume that the bias vector b is implicitly included in the
weight matrix as well.

R We are actually inserting a new row in our feature vector in Figure 9.3 with a value of 1. In
our implementation in Section 9.1.6 you will see that we add a column to our feature matrix
filled with ones. So, which is correct? It actually depends on how you perform your linear
algebra and how you are transposing each matrix. You will see both used in implementation
and I want to ensure you are prepared for that now.

9.1.5 Pseudocode for Gradient Descent
Below I have included Python-like pseudocode for the standard, vanilla gradient descent algorithm
(pseudocode inspired by cs231n slides [88]):

100 Chapter 9. Optimization Methods and Regularization

1 while True:
2 Wgradient = evaluate_gradient(loss, data, W)
3 W += -alpha * Wgradient

This pseudocode is what all variations of gradient descent are built off of. We start off on Line
1 by looping until some condition is met, typically either:

1. A specified number of epochs has passed (meaning our learning algorithm has “seen” each
of the training data points N times).

2. Our loss has become sufficiently low or training accuracy satisfactory high.
3. Loss has not improved in M subsequent epochs.
Line 2 then calls a function named evaluate_gradient. This function requires three parame-

ters:
1. loss: A function used to compute the loss over our current parameters W and input data.
2. data: Our training data where each training sample is represented by an image (or feature

vector).
3. W: Our actual weight matrix that we are optimizing over. Our goal is to apply gradient descent

to find a W that yields minimal loss.
The evaluate_gradient function returns a vector that is K-dimensional, where K is the

number of dimensions in our image/feature vector. The Wgradient variable is the actual gradient,
where we have a gradient entry for each dimension.

We then apply gradient descent on Line 3. We multiply our Wgradient by alpha (a), which
is our learning rate. The learning rate controls the size of our step.

In practice, you’ll spend a lot of time finding an optimal value of a – it is by far the most
important parameter in your model. If a is too large, you’ll spend all of your time bouncing
around the loss landscape, never actually “descending” to the bottom of the basin (unless your
random bouncing takes you there by pure luck). Conversely, if a is too small, then it will take
many (perhaps prohibitively many) iterations to reach the bottom of the basin. Finding the optimal
value of a will cause you many headaches – and you’ll spend a considerable amount of your time
trying to find an optimal value for this variable for your model and dataset.

9.1.6 Implementing Basic Gradient Descent in Python
Now that we know the basics of gradient descent, let’s implement it in Python and use it to classify
some data. Open up a new file, name it gradient_descent.py, and insert the following code:

1 # import the necessary packages
2 from sklearn.model_selection import train_test_split
3 from sklearn.metrics import classification_report
4 from sklearn.datasets import make_blobs
5 import matplotlib.pyplot as plt
6 import numpy as np
7 import argparse
8

9 def sigmoid_activation(x):
10 # compute the sigmoid activation value for a given input
11 return 1.0 / (1 + np.exp(-x))
12

13 def sigmoid_deriv(x):
14 # compute the derivative of the sigmoid function ASSUMING
15 # that the input ‘x‘ has already been passed through the sigmoid
16 # activation function
17 return x * (1 - x)

9.1 Gradient Descent 101

Lines 2-7 import our required Python packages. We have seen all of these imports before, with
the exception of make_blobs, a function used to create “blobs" of normally distributed data points
– this is a handy function when testing or implementing our own models from scratch.

We then define the sigmoid_activation function on Line 9. When plotted this function will
resemble an “S”-shaped curve (Figure 9.4). We call it an activation function because the function
will “activate” and fire “ON” (output value > 0.5) or “OFF” (output value <= 0.5) based on the
inputs x.

Lines 13-17 define the derivative of the sigmoid function. We need to compute the derivative
of this function to derive the actual gradient. The gradient is what enables us to travel down the
slope of the optimization surface. We will discuss this topic more in Chapter 10, so if you are new
to computing the derivative of an activation function, don’t worry — this is simply an example.
We’ll be covering it in more detail in our next chapter.

Figure 9.4: The sigmoid activation function. This function is centered at x = 0.5,y = 0.5. The
function saturates at the tails.

The predict function applies our sigmoid activation function and then thresholds it based on
whether the neuron is firing (1) or not (0):

19 def predict(X, W):
20 # take the dot product between our features and weight matrix
21 preds = sigmoid_activation(X.dot(W))
22

23 # apply a step function to threshold the outputs to binary
24 # class labels
25 preds[preds <= 0.5] = 0
26 preds[preds > 0] = 1
27

28 # return the predictions
29 return preds

Given a set of input data points X and weights W, we call the sigmoid_activation function
on them to obtain a set of predictions (Line 21). We then threshold the predictions: any prediction

102 Chapter 9. Optimization Methods and Regularization

with a value <= 0.5 is set to 0 while any prediction with a value > 0.5 is set to 1 (Lines 25 and
26). The predictions are then returned to the calling function on Line 29.

While there are other (better) alternatives to the sigmoid activation function, it makes for an
excellent starting point in our discussion of neural networks, deep learning, and gradient-based
optimization. I’ll be discussing other activation functions in Chapter 10 of the Starter Bundle and
Chapter 7 of the Practitioner Bundle, but for the time being, simply keep in mind that the sigmoid
is a non-linear activation function that we can use to threshold our predictions.

Next, let’s parse our command line arguments:

31 # construct the argument parse and parse the arguments
32 ap = argparse.ArgumentParser()
33 ap.add_argument("-e", "--epochs", type=float, default=100,
34 help="# of epochs")
35 ap.add_argument("-a", "--alpha", type=float, default=0.01,
36 help="learning rate")
37 args = vars(ap.parse_args())

We can provide two (optional) command line arguments to our script:
• --epochs: The number of epochs that we’ll use when training our classifier using gradient

descent.
• --alpha: The learning rate for the gradient descent. We typically see 0.1, 0.01, and 0.001 as

initial learning rate values, but again, this is a hyperparameter you’ll need to tune for your own
classification problems.

Now that our command line arguments are parsed, let’s generate some data to classify:

39 # generate a 2-class classification problem with 1,000 data points,
40 # where each data point is a 2D feature vector
41 (X, y) = make_blobs(n_samples=1000, n_features=2, centers=2,
42 cluster_std=1.5, random_state=1)
43 y = y.reshape((y.shape[0], 1))
44

45 # insert a column of 1’s as the last entry in the feature
46 # matrix -- this little trick allows us to treat the bias
47 # as a trainable parameter within the weight matrix
48 X = np.c_[X, np.ones((X.shape[0]))]
49

50 # partition the data into training and testing splits using 50% of
51 # the data for training and the remaining 50% for testing
52 (trainX, testX, trainY, testY) = train_test_split(X, y,
53 test_size=0.5, random_state=42)

On Line 41 we make a call to make_blobs which generates 1,000 data points separated into
two classes. These data points are 2D, implying that the “feature vectors” are of length 2. The
labels for each of these data points are either 0 or 1. Our goal is to train a classifier that correctly
predicts the class label for each data point.

Line 48 applies the “bias trick” (detailed above) that allows us to skip explicitly keeping track
of our bias vector b, by inserting a brand new column of 1s as the last entry in our design matrix X.
Adding a column containing a constant value across all feature vectors allows us to treat our bias as
a trainable parameter within the weight matrix W rather than as an entirely separate variable.

Once we have inserted the column of ones, we partition the data into our training and testing
splits on Lines 52 and 53, using 50% of the data for training and 50% for testing.

9.1 Gradient Descent 103

Our next code block handles randomly initializing our weight matrix using a uniform dis-
tribution such that it has the same number of dimensions as our input features (including the
bias):

55 # initialize our weight matrix and list of losses
56 print("[INFO] training...")
57 W = np.random.randn(X.shape[1], 1)
58 losses = []

You might also see both zero and one weight initialization, but as we’ll find out later in this
book, good initialization is critical to training a neural network in a reasonable amount of time, so
random initialization along with simple heuristics win out in the vast majority of circumstances
[89].

Line 58 initializes a list to keep track of our losses after each epoch. At the end of your Python
script, we’ll plot the loss (which should ideally decrease over time).

All of our variables are now initialized, so we can move on to the actual training and gradient
descent procedure:

60 # loop over the desired number of epochs
61 for epoch in np.arange(0, args["epochs"]):
62 # take the dot product between our features ‘X‘ and the weight
63 # matrix ‘W‘, then pass this value through our sigmoid activation
64 # function, thereby giving us our predictions on the dataset
65 preds = sigmoid_activation(trainX.dot(W))
66

67 # now that we have our predictions, we need to determine the
68 # ‘error‘, which is the difference between our predictions and
69 # the true values
70 error = preds - trainY
71 loss = np.sum(error ** 2)
72 losses.append(loss)

On Line 61 we start looping over the supplied number of --epochs. By default, we’ll allow
the training procedure to “see” each of the training points a total of 100 times (thus, 100 epochs).

Line 65 takes the dot product between our entire training set trainX and our weight matrix
W. The output of this dot product is fed through the sigmoid activation function, yielding our
predictions.

Given our predictions, the next step is to determine the “error” of the predictions, or more
simply, the difference between our predictions and the true values (Line 70). Line 71 computes
the least squares error over our predictions, a simple loss typically used for binary classification
problems. The goal of this training procedure is to minimize our least squares error. We append
this loss to our losses list on Line 72, so we can later plot the loss over time.

Now that we have our error, we can compute the gradient and then use it to update our
weight matrix W:

74 # the gradient descent update is the dot product between our
75 # (1) features and (2) the error of the sigmoid derivative of
76 # our predictions
77 d = error * sigmoid_deriv(preds)
78 gradient = trainX.T.dot(d)

104 Chapter 9. Optimization Methods and Regularization

79

80 # in the update stage, all we need to do is "nudge" the weight
81 # matrix in the negative direction of the gradient (hence the
82 # term "gradient descent" by taking a small step towards a set
83 # of "more optimal" parameters
84 W += -args["alpha"] * gradient
85

86 # check to see if an update should be displayed
87 if epoch == 0 or (epoch + 1) % 5 == 0:
88 print("[INFO] epoch={}, loss={:.7f}".format(int(epoch + 1),
89 loss))

Line 77 and 78 handles computing the gradient, which is the dot product between our data
points and the error multiplied by the sigmoid derivative of our predictions.

Line 84 is the most critical step in our algorithm and where the actual gradient descent takes
place. Here we update our weight matrix W by taking a step in the negative direction of the gradient,
thereby allowing us to move towards the bottom of the basin of the loss landscape (hence the
term, gradient descent). After updating our weight matrix, we check to see if an update should be
displayed to our terminal (Lines 87-89) and then keep looping until the desired number of epochs
has been met – gradient descent is thus an iterative algorithm.

Our classifier is now trained. The next step is evaluation:

91 # evaluate our model
92 print("[INFO] evaluating...")
93 preds = predict(testX, W)
94 print(classification_report(testY, preds))

To actually make predictions using our weight matrix W, we call the predict method on testX
and W on Line 85. Given the predictions, we display a nicely formatted classification report to our
terminal on Line 94.

Our last code block handles plotting (1) the testing data so we can visualize the dataset we are
trying to classify and (2) our loss over time:

96 # plot the (testing) classification data
97 plt.style.use("ggplot")
98 plt.figure()
99 plt.title("Data")

100 plt.scatter(testX[:, 0], testX[:, 1], marker="o", c=testY[:, 0], s=30)
101

102 # construct a figure that plots the loss over time
103 plt.style.use("ggplot")
104 plt.figure()
105 plt.plot(np.arange(0, args["epochs"]), losses)
106 plt.title("Training Loss")
107 plt.xlabel("Epoch #")
108 plt.ylabel("Loss")
109 plt.show()

9.1.7 Simple Gradient Descent Results
To execute our script, simply issue the following command:

9.1 Gradient Descent 105

$ python gradient_descent.py
[INFO] training...
[INFO] epoch=1, loss=194.3629849
[INFO] epoch=5, loss=9.3225755
[INFO] epoch=10, loss=5.2176352
[INFO] epoch=15, loss=3.0483912
[INFO] epoch=20, loss=1.8903512
[INFO] epoch=25, loss=1.3532867
[INFO] epoch=30, loss=1.0746259
[INFO] epoch=35, loss=0.9074719
[INFO] epoch=40, loss=0.7956885
[INFO] epoch=45, loss=0.7152976
[INFO] epoch=50, loss=0.6547454
[INFO] epoch=55, loss=0.6078759
[INFO] epoch=60, loss=0.5711027
[INFO] epoch=65, loss=0.5421195
[INFO] epoch=70, loss=0.5192554
[INFO] epoch=75, loss=0.5011559
[INFO] epoch=80, loss=0.4866579
[INFO] epoch=85, loss=0.4747733
[INFO] epoch=90, loss=0.4647116
[INFO] epoch=95, loss=0.4558868
[INFO] epoch=100, loss=0.4478966

As we can see from Figure 9.5 (left), our dataset is clearly linear separable (i.e., we can draw a
line that separates the two classes of data). Our loss also drops dramatically, starting out very high
and then quickly dropping (right). We can see just how quickly the loss drops by investigating the
terminal output above. Notice how the loss is initially > 194 but drops to ⇡ 0.6 by epoch 50. By
the time training terminates by epoch 100, our loss has to 0.045.

Figure 9.5: Left: The input dataset that we are trying to classify into two sets: red and blue. This
dataset is clearly linearly separable as we can draw a single line that neatly divides the dataset into
two classes. Right: Learning a set of parameters to classify our dataset via gradient descent. Loss
starts very high but rapidly drops to nearly zero.

This plot validates that our weight matrix is being updated in a manner that allows the classifier
to learn from the training data. We can see the classification report for our dataset below:

106 Chapter 9. Optimization Methods and Regularization

[INFO] evaluating...
precision recall f1-score support

0 1.00 1.00 1.00 250
1 1.00 1.00 1.00 250

avg / total 1.00 1.00 1.00 500

Notice how both classes are correctly classified 100% of the time, again, implying that our
dataset is both: (1) linearly separable and (2) our gradient descent algorithm was able to descend
into an area of low loss, capable of separating the two classes.

That said, it’s important to keep in mind how the vanilla gradient descent algorithm works.
Vanilla gradient descent only performs a weight update once for every epoch – in this example, we
trained our model for 100 epochs, so only 100 updates took place. Depending on the initialization
of the weight matrix and the size of the learning rate, it’s possible that we may not be able to learn
a model that can separate the points (even though they are linearly separable).

For simple gradient descent, you are better off training for more epochs with a smaller learning
rate to help overcome this issue. However, as we’ll see in the next section, a variant of gradient
descent called Stochastic Gradient Descent performs a weight update for every batch of training
data, implying there are multiple weight updates per epoch. This approach leads to a faster, more
stable convergence.

9.2 Stochastic Gradient Descent (SGD)
In the previous section, we discussed gradient descent, a first-order optimization algorithm that
can be used to learn a set of classifier weights for parameterized learning. However, this “vanilla”
implementation of gradient descent can be prohibitively slow to run on large datasets – in fact, it
can even be considered computational wasteful.

Instead, we should apply Stochastic Gradient Descent (SGD), a simple modification to the
standard gradient descent algorithm that computes the gradient and updates the weight matrix
W on small batches of training data, rather than the entire training set. While this modification
leads to “more noisy” updates, it also allows us to take more steps along the gradient (one step per
each batch versus one step per epoch), ultimately leading to faster convergence and no negative
effects to loss and classification accuracy.

SGD is arguably the most important algorithm when it comes to training deep neural networks.
Even though the original incarnation of SGD was introduced over 57 years ago [90], it is still the
engine that enables us to train large networks to learn patterns from data points. Above all other
algorithms covered in this book, take the time to understand SGD.

9.2.1 Mini-batch SGD
Reviewing the vanilla gradient descent algorithm, it should be (somewhat) obvious that the method
will run very slowly on large datasets. The reason for this slowness is because each iteration of
gradient descent requires us to compute a prediction for each training point in our training data
before we are allowed to update our weight matrix. For image datasets such as ImageNet were we
have over 1.2 million training images, this computation can take a long time.

It also turns out that computing predictions for every training point before taking a step along
our weight matrix is computationally wasteful and does little to help our model coverage.

Instead, what we should do is batch our updates. We can update the pseudocode to transform
vanilla gradient descent to become SGD by adding an extra function call:

9.2 Stochastic Gradient Descent (SGD) 107

1 while True:
2 batch = next_training_batch(data, 256)
3 Wgradient = evaluate_gradient(loss, batch, W)
4 W += -alpha * Wgradient

The only difference between vanilla gradient descent and SGD is the addition of the next_training_batch
function. Instead of computing our gradient over the entire data set, we instead sample our data,
yielding a batch. We evaluate the gradient on the batch, and update our weight matrix W. From an
implementation perspective, we also try to randomize our training samples before applying SGD
since the algorithm is sensitive to batches.

After looking at the pseudocode for SGD, you’ll immediately notice an introduction of a new
parameter: the batch size. In a “purist” implementation of SGD, your mini-batch size would be 1,
implying that we would randomly sample one data point from the training set, compute the gradient,
and update our parameters. However, we often use mini-batches that are > 1. Typical batch sizes
include 32, 64, 128, and 256.

So, why bother using batch sizes > 1? To start, batch sizes > 1 help reduce variance in the
parameter update (http://pyimg.co/pd5w0), leading to a more stable convergence. Secondly, powers
of two are often desirable for batch sizes as they allow internal linear algebra optimization libraries
to be more efficient.

In general, the mini-batch size is not a hyperparameter you should worry too much about [57].
If you’re using a GPU to train your neural network, you determine how many training examples
will fit into your GPU and then use the nearest power of two as the batch size such that the batch
will fit on the GPU. For CPU training, you typically use one of the batch sizes listed above to ensure
you reap the benefits of linear algebra optimization libraries.

9.2.2 Implementing Mini-batch SGD
Let’s go ahead and implement SGD and see how it differs from standard vanilla gradient descent.
Open up a new file, name it sgd.py, and insert the following code:

1 # import the necessary packages
2 from sklearn.model_selection import train_test_split
3 from sklearn.metrics import classification_report
4 from sklearn.datasets import make_blobs
5 import matplotlib.pyplot as plt
6 import numpy as np
7 import argparse
8

9 def sigmoid_activation(x):
10 # compute the sigmoid activation value for a given input
11 return 1.0 / (1 + np.exp(-x))
12

13 def sigmoid_deriv(x):
14 # compute the derivative of the sigmoid function ASSUMING
15 # that the input ‘x‘ has already been passed through the sigmoid
16 # activation function
17 return x * (1 - x)

Lines 2-7 import our required Python packages, exactly the same as the gradient_descent.py
example earlier in this chapter. Lines 9-17 defines our sigmoid_activation and sigmoid_deriv
functions, both of which are identical to the previous version of gradient descent.

In fact, the predict method doesn’t change either:

108 Chapter 9. Optimization Methods and Regularization

19 def predict(X, W):
20 # take the dot product between our features and weight matrix
21 preds = sigmoid_activation(X.dot(W))
22

23 # apply a step function to threshold the outputs to binary
24 # class labels
25 preds[preds <= 0.5] = 0
26 preds[preds > 0] = 1
27

28 # return the predictions
29 return preds

However, what does change is the addition of the next_batch function:

31 def next_batch(X, y, batchSize):
32 # loop over our dataset ‘X‘ in mini-batches, yielding a tuple of
33 # the current batched data and labels
34 for i in np.arange(0, X.shape[0], batchSize):
35 yield (X[i:i + batchSize], y[i:i + batchSize])

The next_batch method requires three parameters:
1. X: Our training dataset of feature vectors/raw image pixel intensities.
2. y: The class labels associated with each of the training data points.
3. batchSize: The size of each mini-batch that will be returned.
Lines 34 and 35 then loop over the training examples, yielding subsets of both X and y as

mini-batches.
Next, we can parse our command line arguments:

37 # construct the argument parse and parse the arguments
38 ap = argparse.ArgumentParser()
39 ap.add_argument("-e", "--epochs", type=float, default=100,
40 help="# of epochs")
41 ap.add_argument("-a", "--alpha", type=float, default=0.01,
42 help="learning rate")
43 ap.add_argument("-b", "--batch-size", type=int, default=32,
44 help="size of SGD mini-batches")
45 args = vars(ap.parse_args())

We have already reviewed both the --epochs (number of epochs) and --alpha (learning rate)
switch from the vanilla gradient descent example – but also notice we are introducing a third switch:
--batch-size, which as the name indicates is the size of each of our mini-batches. We’ll default
this value to be 32 data points per mini-batch.

Our next code block handles generating our 2-class classification problem with 1,000 data
points, adding the bias column, and then performing the training and testing split:

47 # generate a 2-class classification problem with 1,000 data points,
48 # where each data point is a 2D feature vector
49 (X, y) = make_blobs(n_samples=1000, n_features=2, centers=2,
50 cluster_std=1.5, random_state=1)
51 y = y.reshape((y.shape[0], 1))

9.2 Stochastic Gradient Descent (SGD) 109

52

53 # insert a column of 1’s as the last entry in the feature
54 # matrix -- this little trick allows us to treat the bias
55 # as a trainable parameter within the weight matrix
56 X = np.c_[X, np.ones((X.shape[0]))]
57

58 # partition the data into training and testing splits using 50% of
59 # the data for training and the remaining 50% for testing
60 (trainX, testX, trainY, testY) = train_test_split(X, y,
61 test_size=0.5, random_state=42)

We’ll then initialize our weight matrix and losses just like in the previous example:

63 # initialize our weight matrix and list of losses
64 print("[INFO] training...")
65 W = np.random.randn(X.shape[1], 1)
66 losses = []

The real change comes next where we loop over the desired number of epochs, sampling
mini-batches along the way:

68 # loop over the desired number of epochs
69 for epoch in np.arange(0, args["epochs"]):
70 # initialize the total loss for the epoch
71 epochLoss = []
72

73 # loop over our data in batches
74 for (batchX, batchY) in next_batch(trainX, trainY, args["batch_size"]):
75 # take the dot product between our current batch of features
76 # and the weight matrix, then pass this value through our
77 # activation function
78 preds = sigmoid_activation(batchX.dot(W))
79

80 # now that we have our predictions, we need to determine the
81 # ‘error‘, which is the difference between our predictions
82 # and the true values
83 error = preds - batchY
84 epochLoss.append(np.sum(error ** 2))

On Line 69 we start looping over the supplied number of --epochs. We then loop over our
training data in batches on Line 74. For each batch, we compute the dot product between the
batch and W, then pass the result through the sigmoid activation function to obtain our predictions.
We compute the error for the batch on Line 83 and use this value to update our least squares
epochLoss on Line 84.

Now that we have the error, we can compute the gradient descent update, identical to com-
puting the gradient from vanilla gradient descent, only this time we are performing the update on
batches rather than the entire training set:

86 # the gradient descent update is the dot product between our
87 # (1) current batch and (2) the error of the sigmoid
88 # derivative of our predictions

110 Chapter 9. Optimization Methods and Regularization

89 d = error * sigmoid_deriv(preds)
90 gradient = batchX.T.dot(d)
91

92 # in the update stage, all we need to do is "nudge" the
93 # weight matrix in the negative direction of the gradient
94 # (hence the term "gradient descent" by taking a small step
95 # towards a set of "more optimal" parameters
96 W += -args["alpha"] * gradient

Line 96 handles updating our weight matrix based on the gradient, scaled by our learning rate
--alpha. Notice how the weight update stage takes place inside the batch loop – this implies there
are multiple weight updates per epoch.

We can then update our loss history by taking the average across all batches in the epoch and
then displaying an update to our terminal if necessary:

98 # update our loss history by taking the average loss across all
99 # batches

100 loss = np.average(epochLoss)
101 losses.append(loss)
102

103 # check to see if an update should be displayed
104 if epoch == 0 or (epoch + 1) % 5 == 0:
105 print("[INFO] epoch={}, loss={:.7f}".format(int(epoch + 1),
106 loss))

Evaluating our classifier is done in the same way as in vanilla gradient descent – simply call
predict on the testX data using our learned W weight matrix:

108 # evaluate our model
109 print("[INFO] evaluating...")
110 preds = predict(testX, W)
111 print(classification_report(testY, preds))

We’ll end our script by plotting the testing classification data and along with the loss per epoch:

113 # plot the (testing) classification data
114 plt.style.use("ggplot")
115 plt.figure()
116 plt.title("Data")
117 plt.scatter(testX[:, 0], testX[:, 1], marker="o", c=testY[:, 0], s=30)
118

119 # construct a figure that plots the loss over time
120 plt.style.use("ggplot")
121 plt.figure()
122 plt.plot(np.arange(0, args["epochs"]), losses)
123 plt.title("Training Loss")
124 plt.xlabel("Epoch #")
125 plt.ylabel("Loss")
126 plt.show()

9.3 Extensions to SGD 111

9.2.3 SGD Results
To visualize the results from our implementation, just execute the following command:

$ python sgd.py
[INFO] training...
[INFO] epoch=1, loss=0.1317637
[INFO] epoch=5, loss=0.0162487
[INFO] epoch=10, loss=0.0112798
[INFO] epoch=15, loss=0.0100234
[INFO] epoch=20, loss=0.0094581
[INFO] epoch=25, loss=0.0091053
[INFO] epoch=30, loss=0.0088366
[INFO] epoch=35, loss=0.0086082
[INFO] epoch=40, loss=0.0084031
[INFO] epoch=45, loss=0.0082138
[INFO] epoch=50, loss=0.0080364
[INFO] epoch=55, loss=0.0078690
[INFO] epoch=60, loss=0.0077102
[INFO] epoch=65, loss=0.0075593
[INFO] epoch=70, loss=0.0074153
[INFO] epoch=75, loss=0.0072779
[INFO] epoch=80, loss=0.0071465
[INFO] epoch=85, loss=0.0070207
[INFO] epoch=90, loss=0.0069001
[INFO] epoch=95, loss=0.0067843
[INFO] epoch=100, loss=0.0066731
[INFO] evaluating...

precision recall f1-score support

0 1.00 1.00 1.00 250
1 1.00 1.00 1.00 250

avg / total 1.00 1.00 1.00 500

We’ll be using the same “blob” dataset as in Figure 9.5 (left) above for classification so we can
compare our SGD results to vanilla gradient descent. Furthermore, SGD example uses the same
learning rate (0.1) and the same number of epochs (100) as vanilla gradient descent. The results of
which can be seen in Figure 9.6.

Investigating the actual loss values at the end of the 100th epoch, you’ll notice that loss obtained
by SGD is nearly two orders of magnitude lower than vanilla gradient descent (0.006 vs 0.447,
respectively). This difference is due to the multiple weight updates per epoch, giving our model
more chances to learn from the updates made to the weight matrix. This effect is even more
pronounced on large datasets, such as ImageNet where we have millions of training examples and
small, incremental updates in our parameters can lead to a low loss (but not necessarily optimal)
solution.

9.3 Extensions to SGD
There are two primary extensions that you’ll encounter to SGD in practice. The first is momentum
[91], a method used to accelerate SGD, enabling it to learn faster by focusing on dimensions whose
gradient point in the same direction. The second method is Nesterov acceleration [92], an extension
to standard momentum.

112 Chapter 9. Optimization Methods and Regularization

Figure 9.6: Applying Stochastic Gradient Descent to our dataset of red and blue data points from
Figure 9.5. We are able to nearly two orders of magnitude lower loss by the end of the 100th epoch
(as compared to standard, vanilla gradient descent) due to the multiple weight updates per batch.

9.3.1 Momentum
Consider your favorite childhood playground where you spent days rolling down a hill, covering
yourself in grass and dirt (much to your mother’s chagrin). As you travel down the hill, you build
up more and more momentum, which in turn carries you faster down the hill.

Momentum applied to SGD has the same effect – our goal is to build upon the standard weight
update to include a momentum term, thereby allowing our model to obtain lower loss (and higher
accuracy) in less epochs. The momentum term should, therefore, increase the strength of updates for
dimensions who gradients point in the same direction and then decrease the strength of updates for
dimensions who gradients switch directions [91, 93].

Our previous weight update rule simply included the scaling the gradient by our learning rate:

W =W �a—W f (W) (9.4)

We now introduce the momentum term V , scaled by g:

V = gVt�1 +a—W f (W) W =W �Vt (9.5)

The momentum term g is commonly set to 0.9; although another common practice is to set g
to 0.5 until learning stabilizes and then increase it to 0.9 – it is extremely rare to see momentum
< 0.5. For a more detailed review of momentum, please refer to Sutton [94] and Qian [91].

9.3.2 Nesterov’s Acceleration
Let’s suppose that you are back on your childhood playground, rolling down the hill. You’ve built
up momentum and are moving quite fast – but there’s a problem. At the bottom of the hill is the
brick wall of your school, one that you would like to avoid hitting at full speed.

9.3 Extensions to SGD 113

The same thought can be applied to SGD. If we build up too much momentum, we may
overshoot a local minimum and keep on rolling. Therefore, it would be advantageous to have a
smarter roll, one that knows when to slow down, which is where Nesterov accelerated gradient [92]
comes in.

Nesterov acceleration can be conceptualized as a corrective update to the momentum which
lets us obtain an approximate idea of where our parameters will be after the update. Looking at
Hinton’s Overview of mini-batch gradient descent slides [95], we can see a nice visualization of
Nesterov acceleration (Figure 9.7).

Figure 9.7: A graphical depecition of Nesterov acceleration. First, we make a big jump in the
direction of the previous gradient, then measure the gradient where we ended up and make the
correction.

Using standard momentum, we compute the gradient (small blue vector) and then take a big
jump in the in the direction of the gradient (large blue vector). Under Nesterov acceleration we
would first make a big jump in the direction of our previous gradient (brown vector), measure the
gradient, and then make a correction (red vector) – the green vector is the final corrected update by
Nesterov acceleration (paraphrased from Ruder [93]).

A thorough theoretical and mathematical treatment of Nesterov acceleration are outside the
scope of this book. For those interested in studying Nesterov acceleration in more detail, please
refer to Ruder [93], Bengio [96], and Sutskever [97].

9.3.3 Anecdotal Recommendations

Momentum is an important term that can increase the convergence of our model; we tend not
to worry with this hyperparameter as much, as compared to our learning rate and regularization
penalty (discussed in the next section), which are by far the most important knobs to tweak.

My personal rule of thumb is that whenever using SGD, also apply momentum. In most cases,
you can set it (and leave it) at 0.9 although Karpathy [98] suggests starting at 0.5 and increasing it
to larger values as your epochs increase.

As for Nesterov acceleration, I tend to use it on smaller datasets, but for larger datasets (such as
ImageNet), I almost always avoid it. While Nesterov acceleration has sound theoretical guarantees,
all major publications trained on ImageNet (e.x., AlexNet [99], VGGNet [100], ResNet [101],
Inception [102], etc.) use SGD with momentum – not a single paper from this seminal group utilizes
Nesterov acceleration.

My personal experience has lead me to find that when training deep networks on large
datasets, SGD is easier to work with when using momentum and leaving out Nesterov accel-
eration. Smaller datasets, on the other hand, tend to enjoy the benefits of Nesterov acceleration.
However, keep in mind that this is my anecdotal opinion and that your mileage may vary.

114 Chapter 9. Optimization Methods and Regularization

9.4 Regularization
“Many strategies used in machine learning are explicitly designed to reduce the

test error, possibly at the expense of increased training error. These strategies are
collectively known as regularization.” – Goodfellow et al. [10]

In earlier sections of this chapter, we discussed two important loss functions: Multi-class SVM
loss and cross-entropy loss. We then discussed gradient descent and how a network can actually
learn by updating the weight parameters of a model. While our loss function allows us to determine
how well (or poorly) our set of parameters are performing on a given classification task, the loss
function itself does not take into account how the weight matrix “looks”.

What do I mean by “looks”? Well, keep in mind that we are working in a real-valued space,
thus there are an infinite set of parameters that will obtain reasonable classification accuracy on our
dataset (for some definition of “reasonable”).

How do we go about choosing a set of parameters that help ensure our model generalizes well?
Or, at the very least, lessen the effects of overfitting. The answer is regularization. Second only to
your learning rate, regularization is the most important parameter of your model that can you tune.

There are various types of regularization techniques, such as L1 regularization, L2 regularization
(commonly called “weight decay”), and Elastic Net [103], that are used by updating the loss function
itself, adding an additional parameter to constrain the capacity of the model.

We also have types of regularization that can be explicitly added to the network architecture
– dropout is the quintessential example of such regularization. We then have implicit forms of
regularization that are applied during the training process. Examples of implicit regularization
include data augmentation and early stopping. Inside this section, we’ll mainly be focusing on the
parameterized regularization obtained by modifying our loss and update functions.

In Chapter 11 of the Starter Bundle, we’ll review dropout and then in Chapter 17 we’ll discuss
overfitting in more depth, as well as how we can use early stopping as a regularizer. Inside the
Practitioner Bundle, you’ll find examples of data augmentation used as regularization.

9.4.1 What Is Regularization and Why Do We Need It?
Regularization helps us control our model capacity, ensuring that our models are better at
making (correct) classifications on data points that they were not trained on, which we call the
ability to generalize. If we don’t apply regularization, our classifiers can easily become too complex
and overfit to our training data, in which case we lose the ability to generalize to our testing data
(and data points outside the testing set as well, such as new images in the wild).

However, too much regularization can be a bad thing. We can run the risk of underfitting, in
which case our model performs poorly on the training data and is not able to model the relationship
between the input data and output class labels (because we limited model capacity too much). For
example, consider the following plot of points, along with various functions that fit to these points
(Figure 9.8).

The orange line is an example of underfitting – we are not capturing the relationship between the
points. On the other hand, the blue line is an example of overfitting – we have too many parameters
in our model, and while it hits all points in the dataset, it also wildly varies between the points. It is
not a smooth, simple fit that we would prefer. We then have the green function which also hits all
points in our dataset, but does so in a much more predictable, simple manner.

The goal of regularization is to obtain these types of “green functions” that fit our training
data nicely, but avoid overfitting to our training data (blue) or failing to model the underlying
relationship (orange). We discuss how to monitor training and spot both underfitting and overfitting
in Chapter 17; however, for the time being, simply understand that regularization is a critical aspect
of machine learning and we use regularization to control model generalization. To understand

9.4 Regularization 115

Figure 9.8: An example of underfitting (orange line), overfitting (blue line), and generalizing (green
line). Our goal when building deep learning classifiers is to obtain these types of “green functions”
that fit our training data nicely, but avoid overfitting. Regularization can help us obtain this type of
desired fit.

regularization and the impact it has on our loss function and weight update rule, let’s proceed to the
next section.

9.4.2 Updating Our Loss and Weight Update To Include Regularization

Let’s start with our cross-entropy loss function (Section 8.2.3):

Li =�log(esyi/Â
j

es j) (9.6)

The loss over the entire training set can be written as:

L =
1
N

N

Â
i=1

Li (9.7)

Now, let’s say that we have obtained a weight matrix W such that every data point in our
training set is classified correctly, which means that our loss L = 0 for all Li.

Awesome, we’re getting 100% accuracy – but let me ask you a question about this weight
matrix – is it unique? Or, in other words, are there better choices of W that will improve our
model’s ability to generalize and reduce overfitting?

If there is such a W , how do we know? And how can we incorporate this type of penalty into
our loss function? The answer is to define a regularization penalty, a function that operates on
our weight matrix. The regularization penalty is commonly written as a function, R(W). Equation
9.8 below shows the most common regularization penalty, L2 regularization (also called weight

116 Chapter 9. Optimization Methods and Regularization

decay):

R(W) = Â
i

Â
j

W 2
i, j (9.8)

What is the function doing exactly? In terms of Python code, it’s simply taking the sum of
squares over an array:

1 penalty = 0
2

3 for i in np.arange(0, W.shape[0]):
4 for j in np.arange(0, W.shape[1]):
5 penalty += (W[i][j] ** 2)

What we are doing here is looping over all entries in the matrix and taking the sum of squares.
The sum of squares in the L2 regularization penalty discourages large weights in our matrix W ,
preferring smaller ones. Why might we want to discourage large weight values? In short, by
penalizing large weights, we can improve the ability to generalize, and thereby reduce overfitting.

Think of it this way – the larger a weight value is, the more influence it has on the output
prediction. Dimensions with larger weight values can almost singlehandedly control the output
prediction of the classifier (provided the weight value is large enough, of course) which will almost
certainly lead to overfitting.

To mitigate the effect various dimensions have on our output classifications, we apply regular-
ization, thereby seeking W values that take into account all of the dimensions rather than the few
with large values. In practice you may find that regularization hurts your training accuracy slightly,
but actually increases your testing accuracy.

Again, our loss function has the same basic form, only now we add in regularization:

L =
1
N

N

Â
i=1

Li +lR(W) (9.9)

The first term we have seen before – it is the average loss over all samples in our training set.
The second term is new – this is our regularization penalty. The l variable is a hyperparam-

eter that controls the amount or strength of the regularization we are applying. In practice, both the
learning rate a and the regularization term l are the hyperparameters that you’ll spend the most
time tuning.

Expanding cross-entropy loss to include L2 regularization yields the following equation:

L =
1
N

N

Â
i=1

[�log(esyi/Â
j

es j)]+l Â
i

Â
j

W 2
i, j (9.10)

We can also expand Multi-class SVM loss as well:

L =
1
N

N

Â
i=1

Â
j 6=yi

[max(0,s j � syi +1)]+l Â
i

Â
j

W 2
i, j (9.11)

Now, let’s take a look at our standard weight update rule:

W =W �a—W f (W) (9.12)

9.4 Regularization 117

This method updates our weights based on the gradient multiple by a learning rate a . Taking
into account regularization, the weight update rule becomes:

W =W �a—W f (W)�lR(W) (9.13)

Here we are adding a negative linear term to our gradients (i.e., gradient descent), penalizing
large weights, with the end goal of making it easier for our model to generalize.

9.4.3 Types of Regularization Techniques
In general, you’ll see three common types of regularization that are applied directly to the loss
function. The first, we reviewed earlier, L2 regularization (aka “weight decay”):

R(W) = Â
i

Â
j

W 2
i, j (9.14)

We also have L1 regularization which takes the absolute value rather than the square:

R(W) = Â
i

Â
j
|Wi, j| (9.15)

Elastic Net [103] regularization seeks to combine both L1 and L2 regularization:

R(W) = Â
i

Â
j

bW 2
i, j + |Wi, j| (9.16)

Other types of regularization methods exist such as directly modifying the architecture of a
network along with how the network is actually trained – we will review these methods in later
chapters.

In terms of which regularization method you should be using (including none at all), you
should treat this choice as a hyperparameter you need to optimize over and perform experiments to
determine if regularization should be applied, and if so which method of regularization, and what
the proper value of l is. For more details on regularization, refer to Chapter 7 of Goodfellow et al.
[10], the “Regularization” section from the DeepLearning.net tutorial [104], and the notes from
Karpathy’s cs231n Neural Networks II lecture [105].

9.4.4 Regularization Applied to Image Classification
To demonstrate regularization in action, let’s write some Python code to apply it to our “Animals”
dataset. Open up a new file, name it regularization.py, and insert the following code:

1 # import the necessary packages
2 from sklearn.linear_model import SGDClassifier
3 from sklearn.preprocessing import LabelEncoder
4 from sklearn.model_selection import train_test_split
5 from pyimagesearch.preprocessing import SimplePreprocessor
6 from pyimagesearch.datasets import SimpleDatasetLoader
7 from imutils import paths
8 import argparse

118 Chapter 9. Optimization Methods and Regularization

Lines 2-8 import our required Python packages. We’ve seen all of these imports before,
except the scikit-learn SGDClassifier. As the name of this class suggests, this implementation
encapsulates all the concepts we have reviewed in this chapter, including:

• Loss functions
• Number of epochs
• Learning rate
• Regularization terms
Thus making it the perfect example to demonstrate all these concepts in action.
Next, we can parse our command line arguments and grab the list of images from disk:

10 # construct the argument parse and parse the arguments
11 ap = argparse.ArgumentParser()
12 ap.add_argument("-d", "--dataset", required=True,
13 help="path to input dataset")
14 args = vars(ap.parse_args())
15

16 # grab the list of image paths
17 print("[INFO] loading images...")
18 imagePaths = list(paths.list_images(args["dataset"]))

Given the image paths, we’ll resize them to 32⇥32 pixels, load them from disk into memory,
and then flatten them into a 3,072-dim array:

20 # initialize the image preprocessor, load the dataset from disk,
21 # and reshape the data matrix
22 sp = SimplePreprocessor(32, 32)
23 sdl = SimpleDatasetLoader(preprocessors=[sp])
24 (data, labels) = sdl.load(imagePaths, verbose=500)
25 data = data.reshape((data.shape[0], 3072))

We’ll also encode the labels as integers and perform a training testing split, using 75% of the
data for training and the remaining 25% for testing:

27 # encode the labels as integers
28 le = LabelEncoder()
29 labels = le.fit_transform(labels)
30

31 # partition the data into training and testing splits using 75% of
32 # the data for training and the remaining 25% for testing
33 (trainX, testX, trainY, testY) = train_test_split(data, labels,
34 test_size=0.25, random_state=5)

Let’s apply a few different types of regularization when training our SGDClassifier:

36 # loop over our set of regularizers
37 for r in (None, "l1", "l2"):
38 # train a SGD classifier using a softmax loss function and the
39 # specified regularization function for 10 epochs
40 print("[INFO] training model with ‘{}‘ penalty".format(r))
41 model = SGDClassifier(loss="log", penalty=r, max_iter=10,

9.5 Summary 119

42 learning_rate="constant", eta0=0.01, random_state=42)
43 model.fit(trainX, trainY)
44

45 # evaluate the classifier
46 acc = model.score(testX, testY)
47 print("[INFO] ‘{}‘ penalty accuracy: {:.2f}%".format(r,
48 acc * 100))

Line 37 loops over our regularizers, including no regularization. We then initialize and train
the SGDClassifier on Lines 41-43.

We’ll be using cross-entropy loss, with regularization penalty of r and a default l of 0.0001.
We’ll use SGD to train the model for 10 epochs with a learning rate of a = 0.01. We then evaluate
the classifier and display the accuracy results to our screen on Lines 46-48.

To see our SGD model trained with various regularization types, just execute the following
command:

$ python regularization.py --dataset ../datasets/animals
[INFO] loading images...
...
[INFO] training model with ‘None‘ penalty
[INFO] ‘None‘ penalty accuracy: 50.40%
[INFO] training model with ‘l1‘ penalty
[INFO] ‘l1‘ penalty accuracy: 52.53%
[INFO] training model with ‘l2‘ penalty
[INFO] ‘l2‘ penalty accuracy: 55.07%

We can see with no regularization we obtain an accuracy of 50.40%. Using L1 regularization
our accuracy increases to 52.53%. L2 regularization obtains the highest accuracy of 55.07%.

R Using different random_state values for train_test_split will yield different results.
The dataset here is too small and the classifier too simplistic to see the full impact of
regularization, so consider this a “worked example”. As we continue to work through this
book you’ll see more advanced uses of regularization that will have dramatic impacts on your
accuracy.

Realistically, this example is too small to show all the advantages of applying regularization
– for that, we’ll have to wait until we start training Convolutional Neural Networks. However, in
the meantime simply appreciate that regularization can provide a boost in our testing accuracy and
reduce overfitting, provided we can tune the hyperparameters right.

9.5 Summary
In this chapter, we popped the hood on deep learning and took a deep dive into the engine that
powers modern day neural networks – gradient descent. We investigated two types of gradient
descent:

1. The standard vanilla flavor.
2. The stochastic version that is more commonly used.
Vanilla gradient descent performs only one weight update per epoch, making it very slow (if not

impossible) to converge on large datasets. The stochastic version instead applies multiple weight
updates per epoch by computing the gradient on small mini-batches. By using SGD we can

120 Chapter 9. Optimization Methods and Regularization

dramatically reduce the time it takes to train a model while also enjoying lower loss and higher
accuracy. Typical batch sizes include 32, 64, 128 and 256.

Gradient descent algorithms are controlled via a learning rate: this is by far the most important
parameter to tune correctly when training your own models.

If your learning rate is too large, you’ll simply bounce around the loss landscape and not
actually “learn” any patterns from your data. On the other hand, if your learning rate is too small,
it will take a prohibitive number of iterations to reach even a reasonable loss. To get it just right,
you’ll want to spend the majority of your time tuning the learning rate.

We then discussed regularization, which is defined as “any method that increases testing
accuracy perhaps at the expense of training accuracy”. Regularization encompasses a broad
range of techniques. We specifically focused on regularization methods that are applied to our loss
functions and weight update rules, including L1 regularization, L2 regularization, and Elastic Net.

In terms of deep learning and neural networks, you’ll commonly see L2 regularization used
for image classification – the trick is tuning the l parameter to include just the right amount of
regularization.

At this point, we have a sound foundation of machine learning, but we have yet to investigate
neural networks or train a custom neural network from scratch. That will all change in our next
chapter where we discuss neural networks, the backpropagation algorithm, and how to train your
own neural networks on custom datasets.

