(8. Parameterized Learning

In our previous chapter we learned about the k-NN classifier — a machine learning model so simple
that it doesn’t do any actual “learning” at all. We simply have to store the training data inside
the model, and then predictions are made at test time by comparing the testing data points to
our training data.

We’ve already discussed many of the pros and cons of k-NN, but in the context of large-scale
datasets and deep learning, the most prohibitive aspect of k-NN is the data itself. While training
may be simple, testing is quite slow, with the bottleneck being the distance computation between
vectors. Computing the distances between training and testing points scales linearly with the
number of points in our dataset, making the method impractical when our datasets become quite
large. And while we can apply Approximate Nearest Neighbor methods such as ANN [76], FLANN
[71], or Annoy [77], to speed up the search, that still doesn’t alleviate the problem that k-NN cannot
function without maintaining a replica of data inside the instantiation (or at least have a pointer to
training set on disk, etc.)

To see why storing an exact replica of the training data inside the model is an issue, consider
training a k-NN model and then deploying it to a customer base of 100, 1,000, or even 1,000,000
users. If your training set is only a few megabytes, this may not be a problem — but if your training
set is measured in gigabytes to terabytes (as is the case for many datasets that we apply deep
learning to), you have a real problem on your hands.

Consider the training set of the ImageNet dataset [42] which includes over 1.2 million images.
If we trained a k-NN model on this dataset and then tried to deploy it to a set of users, we would
need these users to download the k-NN model which internally represents replicas of the 1.2
million images. Depending on how you compress and store the data, this model could measure in
hundreds of gigabytes to terabytes in storage costs and network overhead. Not only is this a waste
of resources, its also not optimal for constructing a machine learning model.

Instead, a more desirable approach would be to define a machine learning model that can learn
patterns from our input data during training time (requiring us to spend more time on the training
process), but have the benefit of being defined by a small number of parameters that can easily be
used to represent the model, regardless of training size. This type of machine learning is called
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parameterized learning, which is defined as:

“A learning model that summarizes data with a set of parameters of fixed size
(independent of the number of training examples) is called a parametric model. No
matter how much data you throw at the parametric model, it won’t change its mind
about how many parameters it needs.” — Russell and Norvig (2009) [78]

In this chapter, we’ll review the concept of parameterized learning and discuss how to implement
a simple linear classifier. As we’ll see later in this book, parameterized learning is the cornerstone
of modern day machine learning and deep learning algorithms.

R) Much of this chapter was inspired by Andrej Karpathy’s excellent Linear Classification notes
inside Stanford’s cs231n class [79]. A big thank you to Karpathy and the rest of the cs231n
teaching assistants for putting together such accessible notes.

An Introduction to Linear Classification

The first half of this chapter focuses on the fundamental theory and mathematics surrounding linear
classification — and in general, parameterized classification algorithms that learn patterns from
their training data. From there, I provide an actual linear classification implementation and example
in Python so we can see how these types of algorithms work in code.

Four Components of Parameterized Learning

I've used the word “parameterized” a few times now, but what exactly does it mean?

Simply put: parameterization is the process of defining the necessary parameters of a
given model. In the task of machine learning, parameterization involves defining a problem in
terms of four key components: data, a scoring function, a loss function, and weights and biases.
We’ll review each of these below.

Data
This component is our input data that we are going to learn from. This data includes both the data
points (i.e., raw pixel intensities from images, extracted features, etc.) and their associated class
labels. Typically we denote our data in terms of a multi-dimensional design matrix [10].

Each row in the design matrix represents a data point while each column (which itself could be
a multi-dimensional array) of the matrix corresponds to a different feature. For example, consider
a dataset of 100 images in the RGB color space, each image sized 32 x 32 pixels. The design
matrix for this dataset would be X C R'00%(32x32x3) where X; defines the i-th image in R. Using
this notation, X is the first image, X, the second image, and so on.

Along with the design matrix, we also define a vector y where y; provides the class label for the
i-th example in the dataset.

Scoring Function

The scoring function accepts our data as an input and maps the data to class labels. For instance,
given our set of input images, the scoring function takes these data points, applies some function
f (our scoring function), and then returns the predicted class labels, similar to the pseudocode
below:

INPUT_IMAGES => F(INPUT_IMAGES) => OUTPUT_CLASS_LABELS
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Loss Function

A loss function quantifies how well our predicted class labels agree with our ground-truth labels.
The higher level of agreement between these two sets of labels, the lower our loss (and higher our
classification accuracy, at least on the training set).

Our goal when training a machine learning model is to minimize the loss function, thereby
increasing our classification accuracy.

Weights and Biases

The weight matrix, typically denoted as W and the bias vector b are called the weights or
parameters of our classifier that we’ll actually be optimizing. Based on the output of our scoring
function and loss function, we’ll be tweaking and fiddling with the values of the weights and biases
to increase classification accuracy.

Depending on your model type, there may exist many more parameters, but at the most basic
level, these are the four building blocks of parameterized learning that you’ll commonly encounter.
Once we’ve defined these four key components, we can then apply optimization methods that allow
us to find a set of parameters W and b that minimize our loss function with respect to our scoring
function (while increasing classification accuracy on our data).

Next, let’s look at how these components can work together to build a linear classifier, trans-
forming the input data into actual predictions.

Linear Classification: From Images to Labels

In this section, we are going to look at a more mathematical motivation of the parameterized model
approach to machine learning.

To start, we need our data. Let’s assume that our training dataset is denoted as x; where each
image has an associated class label y;. We’ll assume thati =1, ....Nand y; = 1, ..., K, implying
that we have N data points of dimensionality D, separated into K unique categories.

To make this idea more concrete, consider our “Animals” dataset from Chapter 7. In this dataset,
we have N = 3,000 total images. Each image is 32 x 32 pixels, represented in the RGB color
space (i.e,. three channels per image). We can represent each image as D = 32 x32x3=3,072
distinct values. Finally, we know there are a total of K = 3 class labels: one for the dog, cat, and
panda classes, respectively.

Given these variables, we must now define a scoring function f that maps the images to the
class label scores. One method to accomplish this scoring is via a simple linear mapping:

f(xi,W,b) = Wx;+b 8.1)

Let’s assume that each x; is represented as a single column vector with shape [D x 1] (in this
example we would flatten the 32 x 32 x 3 image into a list of 3,072 integers). Our weight matrix
W would then have a shape of [K x D] (the number of class labels by the dimensionality of the
input images). Finally b, the bias vector would be of size [K x 1]. The bias vector allows us to
shift and translate our scoring function in one direction or another without actually influencing our
weight matrix W. The bias parameter is often critical for successful learning.

Going back to the Animals dataset example, each x; is represented by a list of 3,072 pixel
values, so x;, therefore, has the shape [3,072 x 1]. The weight matrix W will have a shape of
[3 x 3,072] and finally the bias vector b will be of size [3 x 1].

Figure 8.1 follows an illustration of the linear classification scoring function f. On the left, we
have our original input image, represented as a 32 x 32 x 3 image. We then flatten this image into a
list of 3,072 pixel intensities by taking the 3D array and reshaping it into a 1D list.
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Feature Extraction
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Figure 8.1: Illustrating the dot product of the weight matrix W and feature vector x, followed
by the addition of the bias term. Figure inspired by Karpathy’s example in Stanford University’s
¢s231n course [57].

Our weight matrix W contains three rows (one for each class label) and 3,072 columns (one
for each of the pixels in the image). After taking the dot product between W and x;, we add in the
bias vector b — the result is our actual scoring function. Our scoring function yields three values
on the right: the scores associated with the dog, cat, and panda labels, respectively.

R) Readers who are unfamiliar with taking dot products should read this quick and concise
tutorial: http://pyimg.co/fgcvp. For readers interested in studying linear algebra in depth, I
highly recommend working through Coding the Matrix Linear Algebra through Applications
to Computer Science by Philip N. Klein [80].

Looking at the above figure and equation, you can convince yourself that the input x; and y; are
fixed and not something we can modify. Sure, we can obtain different x;s by applying various
transformations to the input image — but once we pass the image into the scoring function, these
values do not change. In fact, the only parameters that we have any control over (in terms of
parameterized learning) are our weight matrix W and our bias vector b. Therefore, our goal is to
utilize both our scoring function and loss function to optimize (i.e., modify in a systematic way) the
weight and bias vectors such that our classification accuracy increases.

Exactly how we optimize the weight matrix depends on our loss function, but typically involves
some form of gradient descent. We’ll be reviewing loss functions later in this chapter. Optimization
methods such as gradient descent (and its variants) will be discussed in Chapter 9. However, for the
time being, simply understand that given a scoring function, we will also define a loss function that
tells us how “good” our predictions are on the input data.

Advantages of Parameterized Learning and Linear Classification

There are two primary advantages to utilizing parameterized learning:

1. Once we are done training our model, we can discard the input data and keep only the
weight matrix W and the bias vector b. This substantially reduces the size of our model
since we need to store two sets of vectors (versus the entire training set).

2. Classifying new test data is fast. In order to perform a classification, all we need to do is
take the dot product of W and x;, follow by adding in the bias b (i.e., apply our scoring
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function). Doing it this way is significantly faster than needing to compare each testing point
to every training example, as in the k-NN algorithm.

A Simple Linear Classifier With Python

Now that we’ve reviewed the concept of parameterized learning and linear classification, let’s
implement a very simple linear classifier using Python.

The purpose of this example is not to demonstrate how we train a model from start to finish
(we’ll be covering that in a later chapter as we still have some ground to cover before we’re ready
to train a model from scratch), but to simply show how we would initialize a weight matrix W,
bias vector b, and then use these parameters to classify an image via a simple dot product.

Let’s go ahead and get this example started. Our goal here is to write a Python script that will
correctly classify Figure 8.2 as “dog”.

Figure 8.2: Our example input image that we are going to classifier with a simple linear classifier.

To see how we can accomplish this classification, open a new file, name it 1inear_example. py,
and insert the following code:

# import the necessary packages
import numpy as np
import cv2

# number generator so we can reproduce our results
labels = ["dog", "cat", "panda']

1
2
3
4
5 # initialize the class labels and set the seed of the pseudorandom
6
7
8 np.random.seed(1)

Lines 2 and 3 import our required Python packages. We’ll use NumPy for our numerical
processing and OpenCV to load our example image from disk.

Line 7 initializes the list of target class labels for the “Animals” dataset while Line 8 sets the
pseudorandom number generator for NumPy, ensuring that we can reproduce the results of this
experiment.

Next, let’s initialize our weight matrix and bias vector:

10 # randomly initialize our weight matrix and bias vector -- in a
11 # *real* training and classification task, these parameters would
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12 # be *learned* by our model, but for the sake of this example,
13 # let’s use random values

14 W = np.random.randn(3, 3072)

15 b = np.random.randn(3)

Line 14 initializes the weight matrix W with random values from a uniform distribution, sampled
over the range [0, 1]. This weight matrix has 3 rows (one for each of the class labels) and 3072
columns (one for each of the pixels in our 32 x 32 x 3 image).

We then initialize the bias vector on Line 15 — this vector is also randomly filled with values
uniformly sampled over the distribution [0, 1]. Our bias vector has 3 rows (corresponding to the
number of class labels) along with one column.

If we were training this linear classifier from scratch we would need to learn the values of W
and b through an optimization process. However, since we have not reached the optimization stage
of training a model, I have initialized the pseudorandom number generator with a value 1 to ensure
the random values give us the “correct” classification (I tested random initialization values ahead of
time to determine which value gives us the correct classification). For the time being, simply treat
the weight matrix W and the bias vector b as "black box arrays" that are optimized in a magical way
—we’ll pull back the curtain and reveal how these parameters are learned in the next chapter.

Now that our weight matrix and bias vector are initialized, let’s load our example image from
disk:

17 # load our example image, resize it, and then flatten it into our
18 # "feature vector" representation

19 orig = cv2.imread("beagle.png")

20 image = cv2.resize(orig, (32, 32)).flatten()

Line 19 loads our image from disk via cv2.imread. We then resize the image to 32 x 32 pixels
(ignoring the aspect ratio) on Line 20 — our image is now represented as a (32, 32, 3) NumPy
array, which we flatten into 3,072-dim vector.

The next step is to compute the output class label scores by applying our scoring function:

22 # compute the output scores by taking the dot product between the
23 # weight matrix and image pixels, followed by adding in the bias
24 scores = W.dot(image) + b

Line 24 is the scoring function itself — it’s simply the dot product between the weight matrix W
and the input image pixel intensities, followed by adding in the bias b.

Finally, our last code block handles writing the scoring function values for each of the class
labels to our terminal, then displaying the result to our screen:

26 # loop over the scores + labels and display them
27 for (label, score) in zip(labels, scores):
28 print (" [INFO] {}: {:.2f}".format(label, score))

30 # draw the label with the highest score on the image as our

31 # prediction

32 cv2.putText(orig, "Label: {}".format(labels[np.argmax(scores)]),
33 (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2)
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35 # display our input image
36 cv2.imshow("Image", orig)
37 cv2.waitKey(0)

To execute our example, just issue the following command:

$ python linear_example.py
[INFO] dog: 7963.93

[INFO] cat: -2930.99
[INFO] panda: 3362.47

Notice how the dog class has the largest scoring function value, which implies that the “dog”
class would be chosen as the prediction by our classifier. In fact, we can see the text dog correctly
drawn on our input image (Figure 8.2) in Figure 8.3.

X/ Image

Figure 8.3: In this example, our linear classifier was correctly able to label the input image as dog;
however, keep in mind that this is a worked example. Later in this book you’ll learn how to train
our weights and biases to automatically make these predictions.

Again, keep in mind that this was a worked example. 1 purposely set the random state of our
Python script to generate W and b values that would lead to the correct classification (you can change
the pseudorandom seed value on Line 8 to see for yourself how different random initializations
will produce different output predictions).

In practice, you would never initialize your W and b values and assume they would give you the
correct classification without some sort of learning process. Instead, when training our own machine
learning models from scratch we would need to optimize and learn W and b via an optimization
algorithm, such as gradient descent.

We’ll cover optimization and gradient descent in the next chapter, but in the meantime, simply
take the time to ensure you understand Line 24 and how a linear classifier makes a classification
by taking the dot product between a weight matrix and an input data point, followed by adding in
the bias. Our entire model can therefore be defined via two values: the weight matrix and the bias
vector. This representation is not only compact but also quite powerful when we train machine
learning models from scratch.
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The Role of Loss Functions

In our last section we discussed the concept of parameterized learning. This type of learning allows
us to take sets of input data and class labels, and actually learn a function that maps the input to the
output predictions by defining a set of parameters and optimizing over them.

But in order to actually “learn” the mapping from the input data to class labels via our scoring
function, we need to discuss two important concepts:

1. Loss functions

2. Optimization methods

The rest of this chapter is dedicated to common loss functions you’ll encounter when building
neural networks and deep learning networks. Chapter 9 of the Starter Bundle is dedicated entirely
to basic optimization methods while Chapter 7 of the Practitioner Bundle discusses more advanced
optimization methods.

Again, this chapter is meant to be a brief review of loss functions and their role in parameterized
learning. A thorough discussion of loss functions is outside the scope of this book and I would
highly recommend Andrew Ng’s Coursera course [81], Witten et al. [82], Harrington [83], and
Marsland [84] if you would like to complement this chapter with more mathematically rigorous
derivations.

What Are Loss Functions?

s Model Loss on CIFAR-10
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Figure 8.4: The training losses for two separate models trained on the CIFAR-10 dataset are plotted
over time. Our loss function quantifies how “good” or “bad” of a job a given model is doing at
classifying data points from the dataset. Model #1 achieves considerably lower loss than Model #2.

At the most basic level, a loss function quantifies how “good” or “bad” a given predictor is at
classifying the input data points in a dataset. A visualization of loss functions plotted over time
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for two separate models trained on the CIFAR-10 dataset is shown in Figure 8.4. The smaller
the loss, the better a job the classifier is at modeling the relationship between the input data and
output class labels (although there is a point where we can overfit our model — by modeling the
training data foo closely, our model loses the ability to generalize, a phenomenon we’ll discuss in
detail in Chapter 17). Conversely, the larger our loss, the more work needs to be done to increase
classification accuracy.

To improve our classification accuracy, we need to tune the parameters of our weight matrix
W or bias vector b. Exactly how we go about updating these parameters is an optimization
problem, which we’ll be covering in the next chapter. For the time being, simply understand that a
loss function can be used to quantify how well our scoring function is doing at classifying input
data points.

Ideally, our loss should decrease over time as we tune our model parameters. As Figure 8.4
demonstrates, Model #1°s loss starts slightly higher than Model #2, but then decreases rapidly and
continues to stay low when trained on the CIFAR-10 dataset. Conversely, the loss for Model #2
decreases initially but quickly stagnates. In this specific example, Model #1 is achieving lower
overall loss and is likely a more desirable model to be used on classifying other images from the
CIFAR-10 dataset. I say "likely" because there is a chance that Model #1 has overfit to the training
data. We’ll cover this concept of overfitting and how to spot it in Chapter 17.

Multi-class SVM Loss

Multi-class SVM Loss (as the name suggests) is inspired by (Linear) Support Vector Machines
(SVMs) [43] which uses a scoring function f to map our data points to numerical scores for each
class labels. This function f is a simple learning mapping:

f(xi,W,b) =Wx; +b (8.2)

Now that we have our scoring function, we need to determine how “good” or “bad” this function
is (given the weight matrix W and bias vector b) at making predictions. To make this determination,
we need a loss function.

Recall that when creating a machine learning model we have a design matrix X, where each
row in X contains a data point we wish to classify. In the context of image classification, each row
in X is an image and we seek to correctly label this image. We can access the i-th image inside
X via the syntax x;.

Similarly, we also have a vector y which contains our class labels for each X . These y values
are our ground-truth labels and what we hope our scoring function will correctly predict. Just like
Wwe can access a given image as x;, we can access the associated class label via y;.

As a matter of simplicity, let’s abbreviate our scoring function as s:

s = f(xiaw) (83)

Which implies that we can obtain the predicted score of the j-th class via the i-th data point:

sj=fx,W); (8.4)

Using this syntax, we can put it all together, obtaining the hinge loss function:

Li=Y max(0,s;— s, +1) (8.5)
J#i
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R) Nearly all loss functions include a regularization term. I am skipping this idea for now as
we’ll review regularization in Chapter 9 once we better understand loss functions.

Looking at the hinge loss equation above, you might be confused at what it’s actually doing.
Essentially, the hinge loss function is summing across all incorrect classes (i # j) and comparing
the output of our scoring function s returned for the j-th class label (the incorrect class) and the y;-th
class (the correct class). We apply the max operation to clamp values at zero, which is important to
ensure we do not sum negative values.

A given x; is classified correctly when the loss L; = 0 (I’ll provide a numerical example in the
following section). To derive the loss across our entire training set, we simply take the mean over
each individual L;:

L= L (8.6)

=z =
=
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-

Another related loss function you may encounter is the squared hinge loss:

Li=Y max(0,s;—sy,+1)? (8.7)
JAYi

The squared term penalizes our loss more heavily by squaring the output, which leads to
quadratic growth in loss in a prediction that is incorrect (versus a linear growth).

As for which loss function you should use, that is entirely dependent on your dataset. It’s
typical to see the standard hinge loss function used more, but on some datasets the squared variation
may obtain better accuracy. Overall, this is a hyperparameter that you should consider tuning.

A Multi-class SVM Loss Example

Now that we’ve taken a look at the mathematics behind hinge loss, let’s examine a worked example.
We’ll again be using the “Animals” dataset which aims to classify a given image as containing a
cat, dog, or panda. To start, take a look at Figure 8.5 where I have included three training examples
from the three classes of the “Animals” dataset.

Given some arbitrary weight matrix W and bias vector b, the output scores of f(x,W) =
Wx + b are displayed in the body of the matrix. The larger the scores are, the more confident our
scoring function is regarding the prediction.

Let’s start by computing the loss L; for the “dog” class:

1 >>> max(0, 1.33 - 4.26 + 1) + max(0, -1.01 - 4.26 + 1)
2 0

Notice how our equation here includes two terms — the difference between the predicted dog
score and both the cat and panda score. Also observe how the loss for “dog” is zero — this implies
that the dog was correctly predicted. A quick investigation of Image #1 from Figure 8.5 above
demonstrates this result to be true: the “dog” score is greater than both the “cat” and “panda” scores.

Similarly, we can compute the hinge loss for Image #2, this one containing a cat:

3 >>> max(0, 3.76 - (-1.20) + 1) + max(0, -3.81 - (-1.20) + 1)
4 5.96
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Image #1 Image #2 Image #3
Dog 4.26 3.76 -2.37
Cat 1.33 -1.20 1.03
Panda -1.01 -3.81 -2.27

Figure 8.5: At the top of the figure we have three input images: one for each of the dog, cat, and
panda class, respectively. The body of the table contains the scoring function outputs for each of
the classes. We will use the scoring function to derive the total loss for each input image.

In this case, our loss function is greater than zero, indicating that our prediction is incorrect.
Looking at our scoring function, we see that our model predicts dog as the proposed label with a
score of 3.76 (as this is the label with the highest score). We know that this label is incorrect — and
in Chapter 9 we’ll learn how to automatically tune our weights to correct these predictions.

Finally, let’s compute the hinge loss for the panda example:

s >>> max(0, -2.37 - (-2.27) + 1) + max(0, 1.03 - (-2.27) + 1)
6 5.199999999999999

Again, our loss is non-zero, so we know we have an incorrect prediction. Looking at our scoring
function, our model has incorrectly labeled this image as “cat” when it should be “panda”.
We can then obtain the fotal loss over the three examples by taking the average:

7 >>> (0.0 + 5.96 + 5.2) / 3.0
s 3.72

Therefore, given our three training examples our overall hinge loss is 3.72 for the parameters
W and b.

Also take note that our loss was zero for only one of the three input images, implying that two
of our predictions were incorrect. In our next chapter we’ll learn how to optimize W and b to make
better predictions by using the loss function to help drive and steer us in the right direction.

Cross-entropy Loss and Softmax Classifiers

While hinge loss is quite popular, you’re much more likely to run into cross-entropy loss and
Softmax classifiers in the context of deep learning and convolutional neural networks.

Why is this? Simply put:

Softmax classifiers give you probabilities for each class label while hinge loss gives you the
margin.
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It’s much easier for us as humans to interpret probabilities rather than margin scores. Fur-
thermore, for datasets such as ImageNet, we often look at the rank-5 accuracy of Convolutional
Neural Networks (where we check to see if the ground-truth label is in the top-5 predicted labels
returned by a network for a given input image). Seeing if (1) the true class label exists in the top-5
predictions and (2) the probability associated with each label is a nice property.

Understanding Cross-entropy Loss

The Softmax classifier is a generalization of the binary form of Logistic Regression. Just like in
hinge loss or squared hinge loss, our mapping function f is defined such that it takes an input set of
data x; and maps them to output class labels via dot product of the data x; and weight matrix W
(omitting the bias term for brevity):

FOi, W) =Wax; (8.8)

However, unlike hinge loss, we can interpret these scores as unnormalized log probabilities for
each class label, which amounts to swapping out the hinge loss function with cross-entropy loss:

L= —log(es"i/ZeSf) (8.9)
J

So, how did I arrive here? Let’s break the function apart and take a look. To start, our loss
function should minimize the negative log likelihood of the correct class:

Li = —logP(Y = yi|X = x;) (8.10)

The probability statement can be interpreted as:

PY =klX=x)=e"/) e 8.11)
j

Where we use our standard scoring function form:

s=f(x,W) (8.12)

As a whole, this yields our final loss function for a single data point, just like above:

Li — _log(es,\'i/ZeSj) (813)
J

Take note that your logarithm here is actually base e (natural logarithm) since we are taking the
inverse of the exponentiation over e earlier. The actual exponentiation and normalization via the
sum of exponents is our Softmax function. The negative log yields our actual cross-entropy loss.

Just as in hinge loss and squared hinge loss, computing the cross-entropy loss over an entire
dataset is done by taking the average:

1 N
L==-Y1, 8.14
Ni; (8.14)

Again, I’'m purposely omitting the regularization term from our loss function. We’ll return to
regularization, explain what it is, how to use it, and why it’s critical to neural networks and deep
learning in Chapter 9. If the equations above seem scary, don’t worry — we’re about to work through
numerical examples in the next section to ensure you understand how cross-entropy loss works.
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A Worked Softmax Example

Scoring Function

Dog -3.44
Cat 1.16
Panda 3.91 &
Scoring Function Unnormalized Input Image
Probabilities
Dog -3.44 0.03
Cat 1.16 3.19
Panda 3.91 49.90
Scoring Function Unnormalized Normalized
Probabilities Probabilities
Dog -3.44 0.0321 0.0006
Cat 1.16 3.1899 0.0601
Panda 3.91 49.8990 0.9393
Scoring Function Unnormalized Normalized Negative Log Loss
Probabilities Probabilities
Dog -3.44 0.0321 0.0006
Cat 1.16 3.1899 0.0601
Panda 3.91 49.8990 0.9393 0.0626

Figure 8.6: First Table: To compute our cross-entropy loss, let’s start with the output of the scoring
function. Second Table: Exponentiating the output values from the scoring function gives us
our unnormalized probabilities. Third Table: To obtain the actual probabilities, we divide each
individual unnormalized probabilities by the sum of all unnormalized probabilities. Fourth Table:
Taking the negative natural logarithm of the probability for the correct ground-truth yields the final
loss for the data point.

To demonstrate cross-entropy loss in action, consider Figure 8.6. Our goal is to classify whether
the image above contains a dog, cat, or panda. Clearly, we can see that the image is a “panda” —
but what does our Softmax classifier think? To find out, we’ll need to work through each of the four
tables in the figure.

The first table includes the output of our scoring function f for each of the three classes,
respectively. These values are our unnormalized log probabilities for the three classes. Let’s
exponentiate the output of the scoring function (e, where s is our score function value), yielding
our unnormalized probabilities (second table).

The next step is to take the denominator of Equation 8.11, sum the exponents, and divide by
the sum, thereby yielding the actual probabilities associated with each class label (third table).
Notice how the probabilities sum to one.

Finally, we can take the negative natural logarithm, —In(p), where p is the normalized proba-



8.3

94 Chapter 8. Parameterized Learning

bility, yielding our final loss (the fourth and final table).

In this case, our Softmax classifier would correctly report the image as panda with 93.93%
confidence. We can then repeat this process for all images in our training set, take the average, and
obtain the overall cross-entropy loss for the training set. This process allows us to quantify how
good or bad a set of parameters are performing on our training set.

R) T used arandom number generator to obtain the score function values for this particular
example. These values are simply used to demonstrate how the calculations of the Softmax
classifier/cross-entropy loss function are performed. In reality, these values would not be
randomly generated — they would instead be the output of your scoring function f based on
your parameters W and b. We’ll see how all the components of parameterized learning fit
together in our next chapter, but for the time being, we are working with example numbers to
demonstrate how loss functions work.

Summary

In this chapter, we reviewed four components of parameterized learning:

1. Data

2. Scoring function
3. Loss function
4. Weights and biases

In the context of image classification, our input data is our dataset of images. The scoring
function produces predictions for a given input image. The loss function then quantifies how good
or bad a set of predictions are over the dataset. Finally, the weight matrix and bias vectors are what
enable us to actually “learn” from the input data — these parameters will be tweaked and tuned via
optimization methods in an attempt to obtain higher classification accuracy.

We then reviewed two popular loss functions: hinge loss and cross-entropy loss. While hinge
loss is used in many machine learning applications (such as SVMs), I can almost guarantee with
absolutely certainty that you’ll see cross-entropy loss with more frequency primarily due to the
fact that Softmax classifiers output probabilities rather than margins. Probabilities are much easier
for us as humans to interpret, so this fact is a particularly nice quality of cross-entropy loss and
Softmax classifiers. For more information on loss hinge loss and cross-entropy loss, please refer to
Stanford University’s c¢s231n course [57, 79].

In our next chapter we’ll review optimization methods that are used to tune our weight matrix
and bias vector. Optimization methods allow our algorithms to actually /earn from our input data
by updating the weight matrix and bias vector based on the output of our scoring and loss functions.
Using these techniques we can take incremental steps towards parameter values that obtain lower
loss and higher accuracy. Optimization methods are the cornerstone of modern day neural networks
and deep learning, and without them, we would be unable to learn patterns from our input data, so
be sure to pay attention to the upcoming chapter.



