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Projective Geometry and Transformations of 2D

This chapter introduces the main geometric ideas and notation that are required to un-
derstand the material covered in this book. Some of these ideas are relatively familiar,
such as vanishing point formation or representing conics, whilst others are more es-
oteric, such as using circular points to remove perspective distortion from an image.
These ideas can be understood more easily in the planar (2D) case because they are
more easily visualized here. The geometry of 3-space, which is the subject of the later
parts of this book, is only a simple generalization of this planar case.

In particular, the chapter covers the geometry of projective transformations of the
plane. These transformations model the geometric distortion which arises when a plane
is imaged by a perspective camera. Under perspective imaging certain geometric prop-
erties are preserved, such as collinearity (a straight line is imaged as a straight line),
whilst others are not, for example parallel lines are not imaged as parallel lines in
general. Projective geometry models this imaging and also provides a mathematical
representation appropriate for computations.

We begin by describing the representation of points, lines and conics in homoge-
neous notation, and how these entities map under projective transformations. The line
at infinity and the circular points are introduced, and it is shown that these capture the
affine and metric properties of the plane. Algorithms for rectifying planes are then
given which enable affine and metric properties to be computed from images. We end
with a description of fixed points under projective transformations.

2.1 Planar geometry
The basic concepts of planar geometry are familiar to anyone who has studied math-
ematics even at an elementary level. In fact, they are so much a part of our everyday
experience that we take them for granted. At an elementary level, geometry is the study
of points and lines and their relationships.

To the purist, the study of geometry ought properly to be carried out from a “geomet-
ric” or coordinate-free viewpoint. In this approach, theorems are stated and proved in
terms of geometric primitives only, without the use of algebra. The classical approach
of Euclid is an example of this method. Since Descartes, however, it has been seen that
geometry may be algebraicized, and indeed the theory of geometry may be developed
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26 2 Projective Geometry and Transformations of 2D

from an algebraic viewpoint. Our approach in this book will be a hybrid approach,
sometimes using geometric, and sometimes algebraic methods. In the algebraic ap-
proach, geometric entities are described in terms of coordinates and algebraic entities.
Thus, for instance a point is identified with a vector in terms of some coordinate basis.
A line is also identified with a vector, and a conic section (more briefly, a conic) is
represented by a symmetric matrix. In fact, we often carry this identification so far as
to consider that the vector actually is a point, or the symmetric matrix is a conic, at
least for convenience of language. A significant advantage of the algebraic approach
to geometry is that results derived in this way may more easily be used to derive algo-
rithms and practical computational methods. Computation and algorithms are a major
concern in this book, which justifies the use of the algebraic method.

2.2 The 2D projective plane
As we all know, a point in the plane may be represented by the pair of coordinates
(x, y) in IR2. Thus, it is common to identify the plane with IR2. Considering IR2 as a
vector space, the coordinate pair (x, y) is a vector – a point is identified as a vector. In
this section we introduce the homogeneous notation for points and lines on a plane.

Row and column vectors. Later on, we will want to consider linear mappings be-
tween vector spaces, and represent such mappings as matrices. In the usual manner, the
product of a matrix and a vector is another vector, the image under the mapping. This
brings up the distinction between “column” and “row” vectors, since a matrix may be
multiplied on the right by a column and on the left by a row vector. Geometric entities
will by default be represented by column vectors. A bold-face symbol such as x always
represents a column vector, and its transpose is the row vector xT. In accordance with
this convention, a point in the plane will be represented by the column vector (x, y)T,
rather than its transpose, the row vector (x, y). We write x = (x, y)T, both sides of this
equation representing column vectors.

2.2.1 Points and lines
Homogeneous representation of lines. A line in the plane is represented by an equa-
tion such as ax+by+c = 0, different choices of a, b and c giving rise to different lines.
Thus, a line may naturally be represented by the vector (a, b, c)T. The correspondence
between lines and vectors (a, b, c)T is not one-to-one, since the lines ax + by + c = 0
and (ka)x + (kb)y + (kc) = 0 are the same, for any non-zero constant k. Thus, the
vectors (a, b, c)T and k(a, b, c)T represent the same line, for any non-zero k. In fact,
two such vectors related by an overall scaling are considered as being equivalent. An
equivalence class of vectors under this equivalence relationship is known as a homo-
geneous vector. Any particular vector (a, b, c)T is a representative of the equivalence
class. The set of equivalence classes of vectors in IR3 − (0, 0, 0)T forms the projective
space IP2. The notation −(0, 0, 0)T indicates that the vector (0, 0, 0)T, which does not
correspond to any line, is excluded.
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Homogeneous representation of points. A point x = (x, y)T lies on the line l =
(a, b, c)T if and only if ax + by + c = 0. This may be written in terms of an inner
product of vectors representing the point as (x, y, 1)(a, b, c)T = (x, y, 1)l = 0; that is
the point (x, y)T in IR2 is represented as a 3-vector by adding a final coordinate of 1.
Note that for any non-zero constant k and line l the equation (kx, ky, k)l = 0 if and
only if (x, y, 1)l = 0. It is natural, therefore, to consider the set of vectors (kx, ky, k)T

for varying values of k to be a representation of the point (x, y)T in IR2. Thus, just as
with lines, points are represented by homogeneous vectors. An arbitrary homogeneous
vector representative of a point is of the form x = (x1, x2, x3)T, representing the point
(x1/x3, x2/x3)T in IR2. Points, then, as homogeneous vectors are also elements of IP2.

One has a simple equation to determine when a point lies on a line, namely

Result 2.1. The point x lies on the line l if and only if xTl = 0.

Note that the expression xTl is just the inner or scalar product of the two vectors l
and x. The scalar product xTl = lTx = x.l. In general, the transpose notation lTx
will be preferred, but occasionally, we will use a . to denote the inner product. We
distinguish between the homogeneous coordinates x = (x1, x2, x3)T of a point, which
is a 3-vector, and the inhomogeneous coordinates (x, y)T, which is a 2-vector.

Degrees of freedom (dof). It is clear that in order to specify a point two values must
be provided, namely its x- and y-coordinates. In a similar manner a line is specified
by two parameters (the two independent ratios {a : b : c}) and so has two degrees
of freedom. For example, in an inhomogeneous representation, these two parameters
could be chosen as the gradient and y intercept of the line.

Intersection of lines. Given two lines l = (a, b, c)T and l′ = (a′, b′, c′)T, we wish to
find their intersection. Define the vector x = l × l′, where × represents the vector or
cross product. From the triple scalar product identity l.(l × l′) = l′.(l × l′) = 0, we
see that lTx = l′Tx = 0. Thus, if x is thought of as representing a point, then x lies on
both lines l and l′, and hence is the intersection of the two lines. This shows:

Result 2.2. The intersection of two lines l and l′ is the point x = l× l′.

Note that the simplicity of this expression for the intersection of the two lines is a direct
consequence of the use of homogeneous vector representations of lines and points.

Example 2.3. Consider the simple problem of determining the intersection of the lines
x = 1 and y = 1. The line x = 1 is equivalent to −1x + 1 = 0, and thus has
homogeneous representation l = (−1, 0, 1)T. The line y = 1 is equivalent to−1y+1 =
0, and thus has homogeneous representation l′ = (0,−1, 1)T. From result 2.2 the
intersection point is

x = l× l′ =

∣∣∣∣∣∣∣

i j k
−1 0 1
0 −1 1

∣∣∣∣∣∣∣
=

⎛

⎜⎝
1
1
1

⎞

⎟⎠

which is the inhomogeneous point (1, 1)T as required. △
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Line joining points. An expression for the line passing through two points x and x′

may be derived by an entirely analogous argument. Defining a line l by l = x × x′, it
may be verified that both points x and x′ lie on l. Thus

Result 2.4. The line through two points x and x′ is l = x× x′.

2.2.2 Ideal points and the line at infinity
Intersection of parallel lines. Consider two lines ax+by+c = 0 and ax+by+c′ = 0.
These are represented by vectors l = (a, b, c)T and l′ = (a, b, c′)T for which the first two
coordinates are the same. Computing the intersection of these lines gives no difficulty,
using result 2.2. The intersection is l× l′ = (c′ − c)(b,−a, 0)T, and ignoring the scale
factor (c′ − c), this is the point (b,−a, 0)T.

Now if we attempt to find the inhomogeneous representation of this point, we ob-
tain (b/0,−a/0)T, which makes no sense, except to suggest that the point of intersec-
tion has infinitely large coordinates. In general, points with homogeneous coordinates
(x, y, 0)T do not correspond to any finite point in IR2. This observation agrees with the
usual idea that parallel lines meet at infinity.

Example 2.5. Consider the two lines x = 1 and x = 2. Here the two lines are parallel,
and consequently intersect “at infinity”. In homogeneous notation the lines are l =
(−1, 0, 1)T, l′ = (−1, 0, 2)T, and from result 2.2 their intersection point is

x = l× l′ =

∣∣∣∣∣∣∣

i j k
−1 0 1
−1 0 2

∣∣∣∣∣∣∣
=

⎛

⎜⎝
0
1
0

⎞

⎟⎠

which is the point at infinity in the direction of the y-axis. △

Ideal points and the line at infinity. Homogeneous vectors x = (x1, x2, x3)T such
that x3 ̸= 0 correspond to finite points in IR2. One may augment IR2 by adding points
with last coordinate x3 = 0. The resulting space is the set of all homogeneous 3-
vectors, namely the projective space IP2. The points with last coordinate x3 = 0 are
known as ideal points, or points at infinity. The set of all ideal points may be written
(x1, x2, 0)T, with a particular point specified by the ratio x1 : x2. Note that this set lies
on a single line, the line at infinity, denoted by the vector l∞ = (0, 0, 1)T. Indeed, one
verifies that (0, 0, 1)(x1, x2, 0)T = 0.

Using result 2.2 one finds that a line l = (a, b, c)T intersects l∞ in the ideal point
(b,−a, 0)T (since (b,−a, 0)l = 0). A line l′ = (a, b, c′)T parallel to l intersects l∞
in the same ideal point (b,−a, 0)T irrespective of the value of c′. In inhomogeneous
notation (b,−a)T is a vector tangent to the line, and orthogonal to the line normal
(a, b), and so represents the line’s direction. As the line’s direction varies the ideal
point (b,−a, 0)T varies over l∞. For these reasons the line at infinity can be thought of
as the set of directions of lines in the plane.

Note how the introduction of the concept of points at infinity serves to simplify the
intersection properties of points and lines. In the projective plane IP2, one may state
without qualification that two distinct lines meet in a single point and two distinct



2.2 The 2D projective plane 29

π

l

xO

x 1

x

x 3

2

ideal
point

Fig. 2.1. A model of the projective plane. Points and lines of IP2 are represented by rays and planes,
respectively, through the origin in IR3. Lines lying in the x1x2-plane represent ideal points, and the
x1x2-plane represents l∞.

points lie on a single line. This is not true in the standard Euclidean geometry of IR2,
in which parallel lines form a special case.

The study of the geometry of IP2 is known as projective geometry. In a coordinate-
free purely geometric study of projective geometry, one does not make any distinction
between points at infinity (ideal points) and ordinary points. It will, however, serve
our purposes in this book sometimes to distinguish between ideal points and non-ideal
points. Thus, the line at infinity will at times be considered as a special line in projective
space.

A model for the projective plane. A fruitful way of thinking of IP2 is as a set of
rays in IR3. The set of all vectors k(x1, x2, x3)T as k varies forms a ray through the
origin. Such a ray may be thought of as representing a single point in IP2. In this
model, the lines in IP2 are planes passing through the origin. One verifies that two non-
identical rays lie on exactly one plane, and any two planes intersect in one ray. This
is the analogue of two distinct points uniquely defining a line, and two lines always
intersecting in a point.

Points and lines may be obtained by intersecting this set of rays and planes by the
plane x3 = 1. As illustrated in figure 2.1 the rays representing ideal points and the
plane representing l∞ are parallel to the plane x3 = 1.

Duality. The reader has probably noticed how the role of points and lines may be
interchanged in statements concerning the properties of lines and points. In particular,
the basic incidence equation lTx = 0 for line and point is symmetric, since lTx = 0
implies xTl = 0, in which the positions of line and point are swapped. Similarly,
result 2.2 and result 2.4 giving the intersection of two lines and the line through two
points are essentially the same, with the roles of points and lines swapped. One may
enunciate a general principle, the duality principle as follows:



30 2 Projective Geometry and Transformations of 2D

Result 2.6. Duality principle. To any theorem of 2-dimensional projective geometry
there corresponds a dual theorem, which may be derived by interchanging the roles of
points and lines in the original theorem.

In applying this principle, concepts of incidence must be appropriately translated as
well. For instance, the line through two points is dual to the point through (that is the
point of intersection of) two lines.

Note that is it not necessary to prove the dual of a given theorem once the original
theorem has been proved. The proof of the dual theorem will be the dual of the proof
of the original theorem.

2.2.3 Conics and dual conics
A conic is a curve described by a second-degree equation in the plane. In Euclidean
geometry conics are of three main types: hyperbola, ellipse, and parabola (apart from
so-called degenerate conics, to be defined later). Classically these three types of conic
arise as conic sections generated by planes of differing orientation (the degenerate con-
ics arise from planes which contain the cone vertex). However, it will be seen that
in 2D projective geometry all non-degenerate conics are equivalent under projective
transformations.

The equation of a conic in inhomogeneous coordinates is

ax2 + bxy + cy2 + dx + ey + f = 0

i.e. a polynomial of degree 2. “Homogenizing” this by the replacements:
x %→ x1/x3, y %→ x2/x3 gives

ax1
2 + bx1x2 + cx2

2 + dx1x3 + ex2x3 + fx3
2 = 0 (2.1)

or in matrix form

xTCx = 0 (2.2)

where the conic coefficient matrix C is given by

C =

⎡

⎢⎣
a b/2 d/2

b/2 c e/2
d/2 e/2 f

⎤

⎥⎦ . (2.3)

Note that the conic coefficient matrix is symmetric. As in the case of the homogeneous
representation of points and lines, only the ratios of the matrix elements are important,
since multiplying C by a non-zero scalar does not affect the above equations. Thus C is
a homogeneous representation of a conic. The conic has five degrees of freedom which
can be thought of as the ratios {a : b : c : d : e : f} or equivalently the six elements of
a symmetric matrix less one for scale.

Five points define a conic. Suppose we wish to compute the conic which passes
through a set of points, xi. How many points are we free to specify before the conic
is determined uniquely? The question can be answered constructively by providing an
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algorithm to determine the conic. From (2.1) each point xi places one constraint on the
conic coefficients, since if the conic passes through (xi, yi) then

axi
2 + bxiyi + cyi

2 + dxi + eyi + f = 0.

This constraint can be written as
(

x2
i xiyi y2

i xi yi 1
)
c = 0

where c = (a, b, c, d, e, f)T is the conic C represented as a 6-vector.
Stacking the constraints from five points we obtain

⎡

⎢⎢⎢⎢⎢⎢⎣

x2
1 x1y1 y2

1 x1 y1 1
x2

2 x2y2 y2
2 x2 y2 1

x2
3 x3y3 y2

3 x3 y3 1
x2

4 x4y4 y2
4 x4 y4 1

x2
5 x5y5 y2

5 x5 y5 1

⎤

⎥⎥⎥⎥⎥⎥⎦
c = 0 (2.4)

and the conic is the null vector of this 5 × 6 matrix. This shows that a conic is deter-
mined uniquely (up to scale) by five points in general position. The method of fitting
a geometric entity (or relation) by determining a null space will be used frequently in
the computation chapters throughout this book.

Tangent lines to conics. The line l tangent to a conic at a point x has a particularly
simple form in homogeneous coordinates:

Result 2.7. The line l tangent to C at a point x on C is given by l = Cx.

Proof. The line l = Cx passes through x, since lTx = xTCx = 0. If l has one-point
contact with the conic, then it is a tangent, and we are done. Otherwise suppose that l
meets the conic in another point y. Then yTCy = 0 and xTCy = lTy = 0. From this
it follows that (x + αy)TC(x + αy) = 0 for all α, which means that the whole line
l = Cx joining x and y lies on the conic C, which is therefore degenerate (see below).

Dual conics. The conic C defined above is more properly termed a point conic, as it
defines an equation on points. Given the duality result 2.6 of IP2 it is not surprising
that there is also a conic which defines an equation on lines. This dual (or line) conic
is also represented by a 3 × 3 matrix, which we denote as C∗. A line l tangent to the
conic C satisfies lTC∗l = 0. The notation C∗ indicates that C∗ is the adjoint matrix of C
(the adjoint is defined in section A4.2(p580) of appendix 4(p578)). For a non-singular
symmetric matrix C∗ = C−1 (up to scale).

The equation for a dual conic is straightforward to derive in the case that C has full
rank: From result 2.7, at a point x on C the tangent is l = Cx. Inverting, we find the
point x at which the line l is tangent to C is x = C−1l. Since x satisfies xTCx = 0 we
obtain (C−1l)TC(C−1l) = lTC−1l = 0, the last step following from C−T = C−1 because
C is symmetric.

Dual conics are also known as conic envelopes, and the reason for this is illustrated
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a b

Fig. 2.2. (a) Points x satisfying xTCx = 0 lie on a point conic. (b) Lines l satisfying lTC∗l = 0 are
tangent to the point conic C. The conic C is the envelope of the lines l.

in figure 2.2. A dual conic has five degrees of freedom. In a similar manner to points
defining a point conic, it follows that five lines in general position define a dual conic.

Degenerate conics. If the matrix C is not of full rank, then the conic is termed degen-
erate. Degenerate point conics include two lines (rank 2), and a repeated line (rank
1).

Example 2.8. The conic
C = lmT + mlT

is composed of two lines l and m. Points on l satisfy lTx = 0, and are on the conic
since xTCx = (xTl)(mTx) + (xTm)(lTx) = 0. Similarly, points satisfying mTx = 0
also satisfy xTCx = 0. The matrix C is symmetric and has rank 2. The null vector is
x = l×m which is the intersection point of l and m. △

Degenerate line conics include two points (rank 2), and a repeated point (rank 1).
For example, the line conic C∗ = xyT + yxT has rank 2 and consists of lines passing
through either of the two points x and y. Note that for matrices that are not invertible
(C∗)∗ ̸= C.

2.3 Projective transformations
In the view of geometry set forth by Felix Klein in his famous “Erlangen Program”,
[Klein-39], geometry is the study of properties invariant under groups of transforma-
tions. From this point of view, 2D projective geometry is the study of properties of
the projective plane IP2 that are invariant under a group of transformations known as
projectivities.

A projectivity is an invertible mapping from points in IP2 (that is homogeneous 3-
vectors) to points in IP2 that maps lines to lines. More precisely,

Definition 2.9. A projectivity is an invertible mapping h from IP2 to itself such that
three points x1, x2 and x3 lie on the same line if and only if h(x1), h(x2) and h(x3) do.

Projectivities form a group since the inverse of a projectivity is also a projectivity, and
so is the composition of two projectivities. A projectivity is also called a collineation
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(a helpful name), a projective transformation or a homography: the terms are synony-
mous.

In definition 2.9, a projectivity is defined in terms of a coordinate-free geometric
concept of point line incidence. An equivalent algebraic definition of a projectivity is
possible, based on the following result.

Theorem 2.10. A mapping h : IP2 → IP2 is a projectivity if and only if there exists a
non-singular 3× 3 matrix H such that for any point in IP2 represented by a vector x it
is true that h(x) = Hx.

To interpret this theorem, any point in IP2 is represented as a homogeneous 3-vector,
x, and Hx is a linear mapping of homogeneous coordinates. The theorem asserts that
any projectivity arises as such a linear transformation in homogeneous coordinates, and
that conversely any such mapping is a projectivity. The theorem will not be proved in
full here. It will only be shown that any invertible linear transformation of homoge-
neous coordinates is a projectivity.

Proof. Let x1, x2 and x3 lie on a line l. Thus lTxi = 0 for i = 1, . . . , 3. Let H be a
non-singular 3× 3 matrix. One verifies that lTH−1Hxi = 0. Thus, the points Hxi all lie
on the line H−Tl, and collinearity is preserved by the transformation.
The converse is considerably harder to prove, namely that each projectivity arises in
this way.

As a result of this theorem, one may give an alternative definition of a projective
transformation (or collineation) as follows.

Definition 2.11. Projective transformation. A planar projective transformation is a
linear transformation on homogeneous 3-vectors represented by a non-singular 3 × 3
matrix:

⎛

⎜⎝
x′

1

x′
2

x′
3

⎞

⎟⎠ =

⎡

⎢⎣
h11 h12 h13

h21 h22 h23

h31 h32 h33

⎤

⎥⎦

⎛

⎜⎝
x1

x2

x3

⎞

⎟⎠ , (2.5)

or more briefly, x′ = Hx.

Note that the matrix H occurring in this equation may be changed by multiplication
by an arbitrary non-zero scale factor without altering the projective transformation.
Consequently we say that H is a homogeneous matrix, since as in the homogeneous
representation of a point, only the ratio of the matrix elements is significant. There are
eight independent ratios amongst the nine elements of H, and it follows that a projective
transformation has eight degrees of freedom.

A projective transformation projects every figure into a projectively equivalent figure,
leaving all its projective properties invariant. In the ray model of figure 2.1 a projective
transformation is simply a linear transformation of IR3.
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Fig. 2.3. Central projection maps points on one plane to points on another plane. The projection
also maps lines to lines as may be seen by considering a plane through the projection centre which inter-
sects with the two planes π and π′. Since lines are mapped to lines, central projection is a projectivity
and may be represented by a linear mapping of homogeneous coordinates x′ = Hx.

Mappings between planes. As an example of how theorem 2.10 may be applied,
consider figure 2.3. Projection along rays through a common point (the centre of pro-
jection) defines a mapping from one plane to another. It is evident that this point-to-
point mapping preserves lines in that a line in one plane is mapped to a line in the other.
If a coordinate system is defined in each plane and points are represented in homoge-
neous coordinates, then the central projection mapping may be expressed by x′ = Hx
where H is a non-singular 3× 3 matrix. Actually, if the two coordinate systems defined
in the two planes are both Euclidean (rectilinear) coordinate systems then the mapping
defined by central projection is more restricted than an arbitrary projective transforma-
tion. It is called a perspectivity rather than a full projectivity, and may be represented
by a transformation with six degrees of freedom. We return to perspectivities in section
A7.4(p632).

Example 2.12. Removing the projective distortion from a perspective image of a
plane.

Shape is distorted under perspective imaging. For instance, in figure 2.4a the win-
dows are not rectangular in the image, although the originals are. In general parallel
lines on a scene plane are not parallel in the image but instead converge to a finite
point. We have seen that a central projection image of a plane (or section of a plane)
is related to the original plane via a projective transformation, and so the image is a
projective distortion of the original. It is possible to “undo” this projective transforma-
tion by computing the inverse transformation and applying it to the image. The result
will be a new synthesized image in which the objects in the plane are shown with their
correct geometric shape. This will be illustrated here for the front of the building of
figure 2.4a. Note that since the ground and the front are not in the same plane, the
projective transformation that must be applied to rectify the front is not the same as the
one used for the ground.

Computation of a projective transformation from point-to-point correspondences will
be considered in great detail in chapter 4. For now, a method for computing the trans-
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a b

Fig. 2.4. Removing perspective distortion. (a) The original image with perspective distortion – the
lines of the windows clearly converge at a finite point. (b) Synthesized frontal orthogonal view of the
front wall. The image (a) of the wall is related via a projective transformation to the true geometry of the
wall. The inverse transformation is computed by mapping the four imaged window corners to corners
of an appropriately sized rectangle. The four point correspondences determine the transformation. The
transformation is then applied to the whole image. Note that sections of the image of the ground are
subject to a further projective distortion. This can also be removed by a projective transformation.

formation is briefly indicated. One begins by selecting a section of the image corre-
sponding to a planar section of the world. Local 2D image and world coordinates are
selected as shown in figure 2.3. Let the inhomogeneous coordinates of a pair of match-
ing points x and x′ in the world and image plane be (x, y) and (x′, y′) respectively.
We use inhomogeneous coordinates here instead of the homogeneous coordinates of
the points, because it is these inhomogeneous coordinates that are measured directly
from the image and from the world plane. The projective transformation of (2.5) can
be written in inhomogeneous form as

x′ =
x′

1

x′
3

=
h11x + h12y + h13

h31x + h32y + h33
, y′ =

x′
2

x′
3

=
h21x + h22y + h23

h31x + h32y + h33
.

Each point correspondence generates two equations for the elements of H, which
after multiplying out are

x′ (h31x + h32y + h33) = h11x + h12y + h13

y′ (h31x + h32y + h33) = h21x + h22y + h23.

These equations are linear in the elements of H. Four point correspondences lead to
eight such linear equations in the entries of H, which are sufficient to solve for H up to
an insignificant multiplicative factor. The only restriction is that the four points must
be in “general position”, which means that no three points are collinear. The inverse
of the transformation H computed in this way is then applied to the whole image to
undo the effect of perspective distortion on the selected plane. The results are shown
in figure 2.4b. △

Three remarks concerning this example are appropriate: first, the computation of
the rectifying transformation H in this way does not require knowledge of any of the
camera’s parameters or the pose of the plane; second, it is not always necessary to
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Fig. 2.5. Examples of a projective transformation, x′ = Hx, arising in perspective images. (a)
The projective transformation between two images induced by a world plane (the concatenation of two
projective transformations is a projective transformation); (b) The projective transformation between
two images with the same camera centre (e.g. a camera rotating about its centre or a camera varying its
focal length); (c) The projective transformation between the image of a plane (the end of the building)
and the image of its shadow onto another plane (the ground plane). Figure (c) courtesy of Luc Van Gool.

know coordinates for four points in order to remove projective distortion: alternative
approaches, which are described in section 2.7, require less, and different types of,
information; third, superior (and preferred) methods for computing projective transfor-
mations are described in chapter 4.

Projective transformations are important mappings representing many more situa-
tions than the perspective imaging of a world plane. A number of other examples are
illustrated in figure 2.5. Each of these situations is covered in more detail later in the
book.

2.3.1 Transformations of lines and conics
Transformation of lines. It was shown in the proof of theorem 2.10 that if points xi

lie on a line l, then the transformed points x′
i = Hxi under a projective transformation

lie on the line l′ = H−Tl. In this way, incidence of points on lines is preserved, since
l′Tx′

i = lTH−1Hxi = 0. This gives the transformation rule for lines:
Under the point transformation x′ = Hx, a line transforms as

l′ = H−Tl. (2.6)

One may alternatively write l′T = lTH−1. Note the fundamentally different way
in which lines and points transform. Points transform according to H, whereas lines
(as rows) transform according to H−1. This may be explained in terms of “covariant”
or “contravariant” behaviour. One says that points transform contravariantly and lines
transform covariantly. This distinction will be taken up again, when we discuss tensors
in chapter 15 and is fully explained in appendix 1(p562).

Transformation of conics. Under a point transformation x′ = Hx, (2.2) becomes

xTCx = x′T[H−1]TCH−1x′

= x′TH−TCH−1x′
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a b c

Fig. 2.6. Distortions arising under central projection. Images of a tiled floor. (a) Similarity: the
circular pattern is imaged as a circle. A square tile is imaged as a square. Lines which are parallel or
perpendicular have the same relative orientation in the image. (b) Affine: The circle is imaged as an
ellipse. Orthogonal world lines are not imaged as orthogonal lines. However, the sides of the square
tiles, which are parallel in the world are parallel in the image. (c) Projective: Parallel world lines are
imaged as converging lines. Tiles closer to the camera have a larger image than those further away.

which is a quadratic form x′TC′x′ with C′ = H−TCH−1. This gives the transformation
rule for a conic:

Result 2.13. Under a point transformation x′ = Hx, a conic C transforms to
C′ = H−TCH−1.

The presence of H−1 in this equation may be expressed by saying that a conic transforms
covariantly. The transformation rule for a dual conic is derived in a similar manner.
This gives:

Result 2.14. Under a point transformation x′ = Hx, a dual conic C∗ transforms to
C∗′ = HC∗HT.

2.4 A hierarchy of transformations
In this section we describe the important specializations of a projective transformation
and their geometric properties. It was shown in section 2.3 that projective transforma-
tions form a group. This group is called the projective linear group, and it will be seen
that these specializations are subgroups of this group.

The group of invertible n× n matrices with real elements is the (real) general linear
group on n dimensions, or GL(n). To obtain the projective linear group the matrices
related by a scalar multiplier are identified, giving PL(n) (this is a quotient group of
GL(n)). In the case of projective transformations of the plane n = 3.

The important subgroups of PL(3) include the affine group, which is the subgroup
of PL(3) consisting of matrices for which the last row is (0, 0, 1), and the Euclidean
group, which is a subgroup of the affine group for which in addition the upper left hand
2 × 2 matrix is orthogonal. One may also identify the oriented Euclidean group in
which the upper left hand 2× 2 matrix has determinant 1.

We will introduce these transformations starting from the most specialized, the
isometries, and progressively generalizing until projective transformations are reached.
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This defines a hierarchy of transformations. The distortion effects of various transfor-
mations in this hierarchy are shown in figure 2.6.

Some transformations of interest are not groups, for example, perspectivities (be-
cause the composition of two perspectivities is a projectivity, not a perspectivity). This
point is covered in section A7.4(p632).

Invariants. An alternative to describing the transformation algebraically, i.e. as a ma-
trix acting on coordinates of a point or curve, is to describe the transformation in terms
of those elements or quantities that are preserved or invariant. A (scalar) invariant of a
geometric configuration is a function of the configuration whose value is unchanged by
a particular transformation. For example, the separation of two points is unchanged by
a Euclidean transformation (translation and rotation), but not by a similarity (e.g. trans-
lation, rotation and isotropic scaling). Distance is thus a Euclidean, but not similarity
invariant. The angle between two lines is both a Euclidean and a similarity invariant.

2.4.1 Class I: Isometries
Isometries are transformations of the plane IR2 that preserve Euclidean distance (from
iso = same, metric = measure). An isometry is represented as

⎛

⎜⎝
x′

y′

1

⎞

⎟⎠ =

⎡

⎢⎣
ϵ cos θ − sin θ tx
ϵ sin θ cos θ ty

0 0 1

⎤

⎥⎦

⎛

⎜⎝
x
y
1

⎞

⎟⎠

where ϵ = ±1. If ϵ = 1 then the isometry is orientation-preserving and is a Euclidean
transformation (a composition of a translation and rotation). If ϵ = −1 then the isome-
try reverses orientation. An example is the composition of a reflection, represented by
the matrix diag(−1, 1, 1), with a Euclidean transformation.

Euclidean transformations model the motion of a rigid object. They are by far the
most important isometries in practice, and we will concentrate on these. However, the
orientation reversing isometries often arise as ambiguities in structure recovery.

A planar Euclidean transformation can be written more concisely in block form as

x′ = HEx =

[
R t
0T 1

]

x (2.7)

where R is a 2 × 2 rotation matrix (an orthogonal matrix such that RTR = RRT = I),
t a translation 2-vector, and 0 a null 2-vector. Special cases are a pure rotation (when
t = 0) and a pure translation (when R = I). A Euclidean transformation is also known
as a displacement.

A planar Euclidean transformation has three degrees of freedom, one for the rotation
and two for the translation. Thus three parameters must be specified in order to define
the transformation. The transformation can be computed from two point correspon-
dences.

Invariants. The invariants are very familiar, for instance: length (the distance be-
tween two points), angle (the angle between two lines), and area.
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Groups and orientation. An isometry is orientation-preserving if the upper left
hand 2× 2 matrix has determinant 1. Orientation-preserving isometries form a group,
orientation-reversing ones do not. This distinction applies also in the case of similarity
and affine transformations which now follow.

2.4.2 Class II: Similarity transformations
A similarity transformation (or more simply a similarity) is an isometry composed with
an isotropic scaling. In the case of a Euclidean transformation composed with a scaling
(i.e. no reflection) the similarity has matrix representation

⎛

⎜⎝
x′

y′

1

⎞

⎟⎠ =

⎡

⎢⎣
s cos θ −s sin θ tx
s sin θ s cos θ ty

0 0 1

⎤

⎥⎦

⎛

⎜⎝
x
y
1

⎞

⎟⎠ . (2.8)

This can be written more concisely in block form as

x′ = HSx =

[
sR t
0T 1

]

x (2.9)

where the scalar s represents the isotropic scaling. A similarity transformation is also
known as an equi-form transformation, because it preserves “shape” (form). A planar
similarity transformation has four degrees of freedom, the scaling accounting for one
more degree of freedom than a Euclidean transformation. A similarity can be computed
from two point correspondences.

Invariants. The invariants can be constructed from Euclidean invariants with suitable
provision being made for the additional scaling degree of freedom. Angles between
lines are not affected by rotation, translation or isotropic scaling, and so are similarity
invariants. In particular parallel lines are mapped to parallel lines. The length between
two points is not a similarity invariant, but the ratio of two lengths is an invariant,
because the scaling of the lengths cancels out. Similarly a ratio of areas is an invariant
because the scaling (squared) cancels out.

Metric structure. A term that will be used frequently in the discussion on reconstruc-
tion (chapter 10) is metric. The description metric structure implies that the structure
is defined up to a similarity.

2.4.3 Class III: Affine transformations
An affine transformation (or more simply an affinity) is a non-singular linear transfor-
mation followed by a translation. It has the matrix representation

⎛

⎜⎝
x′

y′

1

⎞

⎟⎠ =

⎡

⎢⎣
a11 a12 tx
a21 a22 ty
0 0 1

⎤

⎥⎦

⎛

⎜⎝
x
y
1

⎞

⎟⎠ (2.10)
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φ

deformationrotation
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a b

Fig. 2.7. Distortions arising from a planar affine transformation. (a) Rotation by R(θ). (b) A defor-
mation R(−φ) D R(φ). Note, the scaling directions in the deformation are orthogonal.

or in block form

x′ = HAx =

[
A t
0T 1

]

x (2.11)

with A a 2 × 2 non-singular matrix. A planar affine transformation has six degrees of
freedom corresponding to the six matrix elements. The transformation can be com-
puted from three point correspondences.

A helpful way to understand the geometric effects of the linear component A of
an affine transformation is as the composition of two fundamental transformations,
namely rotations and non-isotropic scalings. The affine matrix A can always be decom-
posed as

A = R(θ) R(−φ) D R(φ) (2.12)

where R(θ) and R(φ) are rotations by θ and φ respectively, and D is a diagonal matrix:

D =

[
λ1 0
0 λ2

]

.

This decomposition follows directly from the SVD (section A4.4(p585)): writing A =
UDVT = (UVT)(VDVT) = R(θ) (R(−φ) D R(φ)), since U and V are orthogonal matrices.

The affine matrix A is hence seen to be the concatenation of a rotation (by φ); a
scaling by λ1 and λ2 respectively in the (rotated) x and y directions; a rotation back
(by −φ); and finally another rotation (by θ). The only “new” geometry, compared to
a similarity, is the non-isotropic scaling. This accounts for the two extra degrees of
freedom possessed by an affinity over a similarity. They are the angle φ specifying the
scaling direction, and the ratio of the scaling parameters λ1 : λ2. The essence of an
affinity is this scaling in orthogonal directions, oriented at a particular angle. Schematic
examples are given in figure 2.7.
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Invariants. Because an affine transformation includes non-isotropic scaling, the sim-
ilarity invariants of length ratios and angles between lines are not preserved under an
affinity. Three important invariants are:

(i) Parallel lines. Consider two parallel lines. These intersect at a point
(x1, x2, 0)T at infinity. Under an affine transformation this point is mapped
to another point at infinity. Consequently, the parallel lines are mapped to lines
which still intersect at infinity, and so are parallel after the transformation.

(ii) Ratio of lengths of parallel line segments. The length scaling of a line seg-
ment depends only on the angle between the line direction and scaling direc-
tions. Suppose the line is at angle α to the x-axis of the orthogonal scaling
direction, then the scaling magnitude is

√
λ2

1 cos2 α + λ2
2 sin2 α. This scaling is

common to all lines with the same direction, and so cancels out in a ratio of
parallel segment lengths.

(iii) Ratio of areas. This invariance can be deduced directly from the decomposi-
tion (2.12). Rotations and translations do not affect area, so only the scalings by
λ1 and λ2 matter here. The effect is that area is scaled by λ1λ2 which is equal to
det A. Thus the area of any shape is scaled by det A, and so the scaling cancels
out for a ratio of areas. It will be seen that this does not hold for a projective
transformation.

An affinity is orientation-preserving or -reversing according to whether det A is positive
or negative respectively. Since det A = λ1λ2 the property depends only on the sign of
the scalings.

2.4.4 Class IV: Projective transformations
A projective transformation was defined in (2.5). It is a general non-singular linear
transformation of homogeneous coordinates. This generalizes an affine transformation,
which is the composition of a general non-singular linear transformation of inhomoge-
neous coordinates and a translation. We have earlier seen the action of a projective
transformation (in section 2.3). Here we examine its block form

x′ = HPx =

[
A t
vT v

]

x (2.13)

where the vector v = (v1, v2)T. The matrix has nine elements with only their ratio
significant, so the transformation is specified by eight parameters. Note, it is not always
possible to scale the matrix such that v is unity since v might be zero. A projective
transformation between two planes can be computed from four point correspondences,
with no three collinear on either plane. See figure 2.4.

Unlike the case of affinities, it is not possible to distinguish between orientation
preserving and orientation reversing projectivities in IP2. We will return to this point
in section 2.6.



42 2 Projective Geometry and Transformations of 2D

Invariants. The most fundamental projective invariant is the cross ratio of four
collinear points: a ratio of lengths on a line is invariant under affinities, but not un-
der projectivities. However, a ratio of ratios or cross ratio of lengths on a line is a
projective invariant. We return to properties of this invariant in section 2.5.

2.4.5 Summary and comparison
Affinities (6 dof) occupy the middle ground between similarities (4 dof) and projectivi-
ties (8 dof). They generalize similarities in that angles are not preserved, so that shapes
are skewed under the transformation. On the other hand their action is homogeneous
over the plane: for a given affinity the det A scaling in area of an object (e.g. a square)
is the same anywhere on the plane; and the orientation of a transformed line depends
only on its initial orientation, not on its position on the plane. In contrast, for a given
projective transformation, area scaling varies with position (e.g. under perspective a
more distant square on the plane has a smaller image than one that is nearer, as in
figure 2.6); and the orientation of a transformed line depends on both the orientation
and position of the source line (however, it will be seen later in section 8.6(p213) that
a line’s vanishing point depends only on line orientation, not position).

The key difference between a projective and affine transformation is that the vector
v is not null for a projectivity. This is responsible for the non-linear effects of the
projectivity. Compare the mapping of an ideal point (x1, x2, 0)T under an affinity and
projectivity: First the affine transformation

[
A t
0T 1

]⎛

⎜⎝
x1

x2

0

⎞

⎟⎠ =

⎛

⎜⎝
A

(
x1

x2

)

0

⎞

⎟⎠ . (2.14)

Second the projective transformation
[

A t
vT v

]⎛

⎜⎝
x1

x2

0

⎞

⎟⎠ =

⎛

⎜⎝
A

(
x1

x2

)

v1x1 + v2x2

⎞

⎟⎠ . (2.15)

In the first case the ideal point remains ideal (i.e. at infinity). In the second it is mapped
to a finite point. It is this ability which allows a projective transformation to model
vanishing points.

2.4.6 Decomposition of a projective transformation
A projective transformation can be decomposed into a chain of transformations, where
each matrix in the chain represents a transformation higher in the hierarchy than the
previous one.

H = HS HA HP =

[
sR t
0T 1

] [
K 0
0T 1

] [
I 0
vT v

]

=

[
A t
vT v

]

(2.16)

with A a non-singular matrix given by A = sRK+ tvT, and K an upper-triangular matrix
normalized as det K = 1. This decomposition is valid provided v ̸= 0, and is unique if
s is chosen positive.
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Each of the matrices HS, HA, HP is the “essence” of a transformation of that type (as
indicated by the subscripts S, A, P). Consider the process of rectifying the perspective
image of a plane as in example 2.12: HP (2 dof) moves the line at infinity; HA (2 dof)
affects the affine properties, but does not move the line at infinity; and finally, HS is a
general similarity transformation (4 dof) which does not affect the affine or projective
properties. The transformation HP is an elation, described in section A7.3(p631).

Example 2.15. The projective transformation

H =

⎡

⎢⎣
1.707 0.586 1.0
2.707 8.242 2.0
1.0 2.0 1.0

⎤

⎥⎦

may be decomposed as

H =

⎡

⎢⎣
2 cos 45◦ −2 sin 45◦ 1
2 sin 45◦ 2 cos 45◦ 2

0 0 1

⎤

⎥⎦

⎡

⎢⎣
0.5 1 0
0 2 0
0 0 1

⎤

⎥⎦

⎡

⎢⎣
1 0 0
0 1 0
1 2 1

⎤

⎥⎦ .

△

This decomposition can be employed when the objective is to only partially deter-
mine the transformation. For example, if one wants to measure length ratios from the
perspective image of a plane, then it is only necessary to determine (rectify) the trans-
formation up to a similarity. We return to this approach in section 2.7.

Taking the inverse of H in (2.16) gives H−1 = H−1
P H−1

A H−1
S . Since H−1

P , H−1
A and H−1

S are
still projective, affine and similarity transformations respectively, a general projective
transformation may also be decomposed in the form

H = HP HA HS =

[
I 0
vT 1

] [
K 0
0T 1

] [
sR t
0T 1

]

(2.17)

Note that the actual values of K, R, t and v will be different from those of (2.16).

2.4.7 The number of invariants
The question naturally arises as to how many invariants there are for a given geometric
configuration under a particular transformation. First the term “number” needs to be
made more precise, for if a quantity is invariant, such as length under Euclidean trans-
formations, then any function of that quantity is invariant. Consequently, we seek a
counting argument for the number of functionally independent invariants. By consid-
ering the number of transformation parameters that must be eliminated in order to form
an invariant, it can be seen that:

Result 2.16. The number of functionally independent invariants is equal to, or greater
than, the number of degrees of freedom of the configuration less the number of degrees
of freedom of the transformation.
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Group Matrix Distortion Invariant properties

Projective
8 dof

[
h11 h12 h13

h21 h22 h23

h31 h32 h33

] Concurrency, collinearity, order of contact:
intersection (1 pt contact); tangency (2 pt con-
tact); inflections
(3 pt contact with line); tangent discontinuities
and cusps. cross ratio (ratio of ratio of lengths).

Affine
6 dof

[
a11 a12 tx
a21 a22 ty
0 0 1

] Parallelism, ratio of areas, ratio of lengths on
collinear or parallel lines (e.g. midpoints), lin-
ear combinations of vectors (e.g. centroids).
The line at infinity, l∞.

Similarity
4 dof

[
sr11 sr12 tx
sr21 sr22 ty
0 0 1

]
Ratio of lengths, angle. The circular points, I,J
(see section 2.7.3).

Euclidean
3 dof

[
r11 r12 tx
r21 r22 ty
0 0 1

]
Length, area

Table 2.1. Geometric properties invariant to commonly occurring planar transformations. The
matrix A = [aij ] is an invertible 2× 2 matrix, R = [rij ] is a 2D rotation matrix, and (tx, ty) a 2D trans-
lation. The distortion column shows typical effects of the transformations on a square. Transformations
higher in the table can produce all the actions of the ones below. These range from Euclidean, where
only translations and rotations occur, to projective where the square can be transformed to any arbitrary
quadrilateral (provided no three points are collinear).

For example, a configuration of four points in general position has 8 degrees of freedom
(2 for each point), and so 4 similarity, 2 affinity and zero projective invariants since
these transformations have respectively 4, 6 and 8 degrees of freedom.

Table 2.1 summarizes the 2D transformation groups and their invariant properties.
Transformations lower in the table are specializations of those above. A transformation
lower in the table inherits the invariants of those above.

2.5 The projective geometry of 1D
The development of the projective geometry of a line, IP1, proceeds in much the same
way as that of the plane. A point x on the line is represented by homogeneous coordi-
nates (x1, x2)T, and a point for which x2 = 0 is an ideal point of the line. We will use
the notation x̄ to represent the 2-vector (x1, x2)T. A projective transformation of a line
is represented by a 2× 2 homogeneous matrix,

x̄′ = H2×2x̄

and has 3 degrees of freedom corresponding to the four elements of the matrix less one
for overall scaling. A projective transformation of a line may be determined from three
corresponding points.
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Fig. 2.8. Projective transformations between lines. There are four sets of four collinear points in this
figure. Each set is related to the others by a line-to-line projectivity. Since the cross ratio is an invariant
under a projectivity, the cross ratio has the same value for all the sets shown.

The cross ratio. The cross ratio is the basic projective invariant of IP1. Given 4 points
x̄i the cross ratio is defined as

Cross(x̄1, x̄2, x̄3, x̄4) =
|x̄1x̄2||x̄3x̄4|
|x̄1x̄3||x̄2x̄4|

where

|x̄ix̄j| = det

[
xi1 xj1

xi2 xj2

]

.

A few comments on the cross ratio:

(i) The value of the cross ratio is not dependent on which particular homogeneous
representative of a point x̄i is used, since the scale cancels between numerator
and denominator.

(ii) If each point x̄i is a finite point and the homogeneous representative is chosen
such that x2 = 1, then |x̄ix̄j| represents the signed distance from x̄i to x̄j .

(iii) The definition of the cross ratio is also valid if one of the points x̄i is an ideal
point.

(iv) The value of the cross ratio is invariant under any projective transformation of
the line: if x̄′ = H2×2x̄ then

Cross(x̄′
1, x̄

′
2, x̄

′
3, x̄

′
4) = Cross(x̄1, x̄2, x̄3, x̄4). (2.18)

The proof is left as an exercise. Equivalently stated, the cross ratio is invariant
to the projective coordinate frame chosen for the line.

Figure 2.8 illustrates a number of projective transformations between lines with equiv-
alent cross ratios.

Under a projective transformation of the plane, a 1D projective transformation is
induced on any line in the plane.

Concurrent lines. A configuration of concurrent lines is dual to collinear points on
a line. This means that concurrent lines on a plane also have the geometry IP1. In
particular four concurrent lines have a cross ratio as illustrated in figure 2.9a.
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Fig. 2.9. Concurrent lines. (a) Four concurrent lines li intersect the line l in the four points x̄i. The
cross ratio of these lines is an invariant to projective transformations of the plane. Its value is given
by the cross ratio of the points, Cross(x̄1, x̄2, x̄3, x̄4). (b) Coplanar points xi are imaged onto a line l
(also in the plane) by a projection with centre c. The cross ratio of the image points x̄i is invariant to
the position of the image line l.

Note how figure 2.9b may be thought of as representing projection of points in IP2

into a 1-dimensional image. In particular, if c represents a camera centre, and the line
l represents an image line (1D analogue of the image plane), then the points x̄i are the
projections of points xi into the image. The cross ratio of the points x̄i characterizes
the projective configuration of the four image points. Note that the actual position
of the image line is irrelevant as far as the projective configuration of the four image
points is concerned – different choices of image line give rise to projectively equivalent
configurations of image points.

The projective geometry of concurrent lines is important to the understanding of the
projective geometry of epipolar lines in chapter 9.

2.6 Topology of the projective plane
We make brief mention of the topology of IP2. Understanding of this section is not
required for following the rest of the book.

We have seen that the projective plane IP2 may be thought of as the set of all ho-
mogeneous 3-vectors. A vector of this type x = (x1, x2, x3)T may be normalized by
multiplication by a non-zero factor so that x2

1 + x2
2 + x2

3 = 1. Such a point lies on the
unit sphere in IR3. However, any vector x and−x represent the same point in IP2, since
they differ by a multiplicative factor, −1. Thus, there is a two-to-one correspondence
between the unit sphere S2 in IR3 and the projective plane IP2. The projective plane
may be pictured as the unit sphere with opposite points identified. In this representa-
tion, a line in IP2 is modelled as a great circle on the unit sphere (as ever, with opposite
points identified). One may verify that any two distinct (non-antipodal) points on the
sphere lie on exactly one great circle, and any two great circles intersect in one point
(since antipodal points are identified).

In the language of topology, the sphere S2 is a 2-sheeted covering space of IP2. This
implies that IP2 is not simply-connected, which means that there are loops in IP2 which
cannot be contracted to a point inside IP2. To be technical, the fundamental group of
IP2 is the cyclic group of order 2.
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a b c d

Fig. 2.10. Topology of surfaces. Common surfaces may be constructed from a paper square (topo-
logically a disk) with edges glued together. In each case, the matching arrow edges of the square are to
be glued together in such a way that the directions of the arrows match. One obtains (a) a sphere, (b)
a torus, (c) a Klein bottle and (d) a projective plane. Only the sphere and torus are actually realizable
with a real sheet of paper. The sphere and torus are orientable but the projective plane and Klein bottle
are not.

In the model for the projective plane as a sphere with opposite points identified one
may dispense with the lower hemisphere of S2, since points in this hemisphere are
the same as the opposite points in the upper hemisphere. In this case, IP2 may be
constructed from the upper hemisphere by identifying opposite points on the equator.
Since the upper hemisphere of S2 is topologically the same as a disk, IP2 is simply
a disk with opposite points on its boundary identified, or glued together. This is not
physically possible. Constructing topological spaces by gluing the boundary of a disk
is a common method in topology, and in fact any 2-manifold may be constructed in this
way. This is illustrated in figure 2.10.

A notable feature of the projective plane IP2 is that it is non-orientable. This means
that it is impossible to define a local orientation (represented for instance by a pair of
oriented coordinate axes) that is consistent over the whole surface. This is illustrated
in figure 2.11 in which it is shown that the projective plane contains an orientation-
reversing path.

The topology of IP1. In a similar manner, the 1-dimensional projective line may be
identified as a 1-sphere S1 (that is, a circle) with opposite points identified. If we omit
the lower half of the circle, as being duplicated by the top half, then the top half of a
circle is topologically equivalent to a line segment. Thus IP1 is topologically equivalent
to a line segment with the two endpoints identified – namely a circle, S1.

2.7 Recovery of affine and metric properties from images
We return to the example of projective rectification of example 2.12(p34) where the
aim was to remove the projective distortion in the perspective image of a plane to the
extent that similarity properties (angles, ratios of lengths) could be measured on the
original plane. In that example the projective distortion was completely removed by
specifying the position of four reference points on the plane (a total of 8 degrees of
freedom), and explicitly computing the transformation mapping the reference points to
their images. In fact this overspecifies the geometry – a projective transformation has
only 4 degrees of freedom more than a similarity, so it is only necessary to specify 4
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a b

Fig. 2.11. Orientation of surfaces. A coordinate frame (represented by an L in the diagram) may
be transported along a path in the surface eventually coming back to the point where it started. (a)
represents a projective plane. In the path shown, the coordinate frame (represented by a pair of axes) is
reversed when it returns to the same point, since the identification at the boundary of the square swaps
the direction of one of the axes. Such a path is called an orientation-reversing path, and a surface that
contains such a path is called non-orientable. (b) shows the well known example of a Möbius strip
obtained by joining two opposite edges of a rectangle (M.C. Escher’s “Moebius Strip II [Red Ants]”,
1963. c⃝2000 Cordon Art B.V. – Baarn-Holland. All rights reserved). As can be verified, a path once
around the strip is orientation-reversing.

degrees of freedom (not 8) in order to determine metric properties. In projective geom-
etry these 4 degrees of freedom are given “physical substance” by being associated with
geometric objects: the line at infinity l∞ (2 dof), and the two circular points (2 dof)
on l∞. This association is often a more intuitive way of reasoning about the problem
than the equivalent description in terms of specifying matrices in the decomposition
chain (2.16).

In the following it is shown that the projective distortion may be removed once the
image of l∞ is specified, and the affine distortion removed once the image of the circu-
lar points is specified. Then the only remaining distortion is a similarity.

2.7.1 The line at infinity
Under a projective transformation ideal points may be mapped to finite points (2.15),
and consequently l∞ is mapped to a finite line. However, if the transformation is an
affinity, then l∞ is not mapped to a finite line, but remains at infinity. This is evident
directly from the line transformation (2.6–p36):

l′∞ = H−T
A l∞ =

[
A−T 0
−tTA−T 1

]⎛

⎜⎝
0
0
1

⎞

⎟⎠ =

⎛

⎜⎝
0
0
1

⎞

⎟⎠ = l∞.

The converse is also true, i.e. an affine transformation is the most general linear trans-
formation that fixes l∞, and may be seen as follows. We require that a point at infinity,
say x = (1, 0, 0)T, be mapped to a point at infinity. This requires that h31 = 0. Simi-
larly, h32 = 0, so the transformation is an affinity. To summarize,

Result 2.17. The line at infinity, l∞, is a fixed line under the projective transformation
H if and only if H is an affinity.

However, l∞ is not fixed pointwise under an affine transformation: (2.14) showed
that under an affinity a point on l∞ (an ideal point) is mapped to a point on l∞, but
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Fig. 2.12. Affine rectification. A projective transformation maps l∞ from (0, 0, 1)T on a Euclidean
plane π1 to a finite line l on the plane π2. If a projective transformation is constructed such that l is
mapped back to (0, 0, 1)T then from result 2.17 the transformation between the first and third planes
must be an affine transformation since the canonical position of l∞ is preserved. This means that affine
properties of the first plane can be measured from the third, i.e. the third plane is within an affinity of the
first.

it is not the same point unless A(x1, x2)T = k(x1, x2)T. It will now be shown that
identifying l∞ allows the recovery of affine properties (parallelism, ratio of areas).

2.7.2 Recovery of affine properties from images
Once the imaged line at infinity is identified in an image of a plane, it is then possible to
make affine measurements on the original plane. For example, lines may be identified
as parallel on the original plane if the imaged lines intersect on the imaged l∞. This
follows because parallel lines on the Euclidean plane intersect on l∞, and after a pro-
jective transformation the lines still intersect on the imaged l∞ since intersections are
preserved by projectivities. Similarly, once l∞ is identified a length ratio on a line may
be computed from the cross ratio of the three points specifying the lengths together
with the intersection of the line with l∞ (which provides the fourth point for the cross
ratio), and so forth.

However, a less tortuous path which is better suited to computational algorithms is
simply to transform the identified l∞ to its canonical position of l∞ = (0, 0, 1)T. The
(projective) matrix which achieves this transformation can be applied to every point
in the image in order to affinely rectify the image, i.e. after the transformation, affine
measurements can be made directly from the rectified image. The key idea here is
illustrated in figure 2.12.

If the imaged line at infinity is the line l = (l1, l2, l3)T, then provided l3 ̸= 0 a suitable
projective point transformation which will map l back to l∞ = (0, 0, 1)T is

H = HA

⎡

⎢⎣
1 0 0
0 1 0
l1 l2 l3

⎤

⎥⎦ (2.19)
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a b

c

Fig. 2.13. Affine rectification via the vanishing line. The vanishing line of the plane imaged in (a) is
computed (c) from the intersection of two sets of imaged parallel lines. The image is then projectively
warped to produce the affinely rectified image (b). In the affinely rectified image parallel lines are now
parallel. However, angles do not have their veridical world value since they are affinely distorted. See
also figure 2.17.

where HA is any affine transformation (the last row of H is lT). One can verify that under
the line transformation (2.6–p36) H−T(l1, l2, l3)T = (0, 0, 1)T = l∞.

Example 2.18. Affine rectification
In a perspective image of a plane, the line at infinity on the world plane is imaged as the
vanishing line of the plane. This is discussed in more detail in chapter 8. As illustrated
in figure 2.13 the vanishing line l may be computed by intersecting imaged parallel
lines. The image is then rectified by applying a projective warping (2.19) such that l is
mapped to its canonical position l∞ = (0, 0, 1)T. △

This example shows that affine properties may be recovered by simply specifying a
line (2 dof). It is equivalent to specifying only the projective component of the trans-
formation decomposition chain (2.16). Conversely if affine properties are known, these
may be used to determine points and the line at infinity. This is illustrated in the fol-
lowing example.

Example 2.19. Computing a vanishing point from a length ratio. Given two in-
tervals on a line with a known length ratio, the point at infinity on the line may be
determined. A typical case is where three points a′, b′ and c′ are identified on a line in
an image. Suppose a, b and c are the corresponding collinear points on the world line,
and the length ratio d(a,b) : d(b, c) = a : b is known (where d(x,y) is the Euclidean
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Fig. 2.14. Two examples of using equal length ratios on a line to determine the point at infinity. The
line intervals used are shown as the thin and thick white lines delineated by points. This construction
determines the vanishing line of the plane. Compare with figure 2.13c.

distance between the points x and y). It is possible to find the vanishing point using
the cross ratio. Equivalently, one may proceed as follows:

(i) Measure the distance ratio in the image, d(a′,b′) : d(b′, c′) = a′ : b′.
(ii) Points a, b and c may be represented as coordinates 0, a and a+b in a coordinate

frame on the line ⟨a,b, c⟩. For computational purposes, these points are rep-
resented by homogeneous 2-vectors (0, 1)T, (a, 1)T and (a + b, 1)T. Similarly,
a′, b′ and c′ have coordinates 0, a′ and a′ + b′, which may also be expressed as
homogeneous vectors.

(iii) Relative to these coordinate frames, compute the 1D projective transformation
H2×2 mapping a %→ a′, b %→ b′ and c %→ c′.

(iv) The image of the point at infinity (with coordinates (1, 0)T) under H2×2 is the
vanishing point on the line ⟨a′,b′, c′⟩.

An example of vanishing points computed in this manner is shown in figure 2.14. △

Example 2.20. Geometric construction of vanishing points from a length ratio.
The vanishing points shown in figure 2.14 may also be computed by a purely geometric
construction consisting of the following steps:

(i) Given: three collinear points, a′, b′ and c′, in an image corresponding to
collinear world points with interval ratio a : b.

(ii) Draw any line l through a′ (not coincident with the line a′c′), and mark off
points a = a′, b and c such that the line segments ⟨ab⟩, ⟨bc⟩ have length ratio
a : b.

(iii) Join bb′ and cc′ and intersect in o.
(iv) The line through o parallel to l meets the line a′c′ in the vanishing point v′.

This construction is illustrated in figure 2.15. △
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Fig. 2.15. A geometric construction to determine the image of the point at infinity on a line given a
known length ratio. The details are given in the text.

2.7.3 The circular points and their dual
Under any similarity transformation there are two points on l∞ which are fixed. These
are the circular points (also called the absolute points) I, J, with canonical coordinates

I =

⎛

⎜⎝
1
i
0

⎞

⎟⎠ J =

⎛

⎜⎝
1
−i
0

⎞

⎟⎠ .

The circular points are a pair of complex conjugate ideal points. To see that they are
fixed under an orientation-preserving similarity:

I′ = HSI

=

⎡

⎢⎣
s cos θ −s sin θ tx
s sin θ s cos θ ty

0 0 1

⎤

⎥⎦

⎛

⎜⎝
1
i
0

⎞

⎟⎠

= se−iθ

⎛

⎜⎝
1
i
0

⎞

⎟⎠ = I

with an analogous proof for J. A reflection swaps I and J. The converse is also true,
i.e. if the circular points are fixed then the linear transformation is a similarity. The
proof is left as an exercise. To summarize,

Result 2.21. The circular points, I, J, are fixed points under the projective transforma-
tion H if and only if H is a similarity.

The name “circular points” arises because every circle intersects l∞ at the circular
points. To see this, start from equation (2.1–p30) for a conic. In the case that the conic
is a circle: a = c and b = 0. Then

x2
1 + x2

2 + dx1x3 + ex2x3 + fx2
3 = 0
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where a has been set to unity. This conic intersects l∞ in the (ideal) points for which
x3 = 0, namely

x2
1 + x2

2 = 0

with solution I = (1, i, 0)T, J = (1,−i, 0)T, i.e. any circle intersects l∞ in the circular
points. In Euclidean geometry it is well known that a circle is specified by three points.
The circular points enable an alternative computation. A circle can be computed using
the general formula for a conic defined by five points (2.4–p31), where the five points
are the three points augmented with the two circular points.

In section 2.7.5 it will be shown that identifying the circular points (or equivalently
their dual, see below) allows the recovery of similarity properties (angles, ratios of
lengths). Algebraically, the circular points are the orthogonal directions of Euclidean
geometry, (1, 0, 0)T and (0, 1, 0)T, packaged into a single complex conjugate entity,
e.g.

I = (1, 0, 0)T + i(0, 1, 0)T.

Consequently, it is not so surprising that once the circular points are identified, orthog-
onality, and other metric properties, are then determined.

The conic dual to the circular points. The conic

C∗∞ = IJT + JIT (2.20)

is dual to the circular points. The conic C∗∞ is a degenerate (rank 2) line conic
(see section 2.2.3), which consists of the two circular points. In a Euclidean coordinate
system it is given by

C∗∞ =

⎛

⎜⎝
1
i
0

⎞

⎟⎠
(

1 −i 0
)

+

⎛

⎜⎝
1
−i
0

⎞

⎟⎠
(

1 i 0
)

=

⎡

⎢⎣
1 0 0
0 1 0
0 0 0

⎤

⎥⎦ .

The conic C∗∞ is fixed under similarity transformations in an analogous fashion to
the fixed properties of circular points. A conic is fixed if the same matrix results (up to
scale) under the transformation rule. Since C∗∞ is a dual conic it transforms according to
result 2.14(p37) (C∗′ = HC∗HT), and one can verify that under the point transformation
x′ = HSx,

C∗∞
′ = HSC

∗
∞HT

S = C∗∞.

The converse is also true, and we have

Result 2.22. The dual conic C∗∞ is fixed under the projective transformation H if and
only if H is a similarity.

Some properties of C∗∞ in any projective frame:

(i) C∗∞ has 4 degrees of freedom: a 3 × 3 homogeneous symmetric matrix has
5 degrees of freedom, but the constraint det C∗∞ = 0 reduces the degrees of
freedom by 1.
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(ii) l∞ is the null vector of C∗∞. This is clear from the definition: the circular points
lie on l∞, so that ITl∞ = JTl∞ = 0; then

C∗∞l∞ = (IJT + JIT)l∞ = I(JTl∞) + J(ITl∞) = 0.

2.7.4 Angles on the projective plane
In Euclidean geometry the angle between two lines is computed from the dot product
of their normals. For the lines l = (l1, l2, l3)T and m = (m1,m2,m3)T with normals
parallel to (l1, l2)T, (m1,m2)T respectively, the angle is

cos θ =
l1m1 + l2m2√

(l21 + l22)(m
2
1 + m2

2)
. (2.21)

The problem with this expression is that the first two components of l and m do not
have well defined transformation properties under projective transformations (they are
not tensors), and so (2.21) cannot be applied after an affine or projective transforma-
tion of the plane. However, an analogous expression to (2.21) which is invariant to
projective transformations is

cos θ =
lTC∗∞m

√
(lTC∗∞l)(mTC∗∞m)

(2.22)

where C∗∞ is the conic dual to the circular points. It is clear that in a Euclidean co-
ordinate system (2.22) reduces to (2.21). It may be verified that (2.22) is invariant
to projective transformations by using the transformation rules for lines (2.6–p36)
(l′ = H−Tl) and dual conics (result 2.14(p37)) (C∗′ = HC∗HT) under the point trans-
formation x′ = Hx. For example, the numerator transforms as

lTC∗∞m %→ lTH−1HC∗∞HTH−Tm = lTC∗∞m.

It may also be verified that the scale of the homogeneous objects cancels between the
numerator and denominator. Thus (2.22) is indeed invariant to the projective frame. To
summarize, we have shown

Result 2.23. Once the conic C∗∞ is identified on the projective plane then Euclidean
angles may be measured by (2.22).

Note, as a corollary,

Result 2.24. Lines l and m are orthogonal if lTC∗∞m = 0.

Geometrically, if l and m satisfy lTC∗∞m = 0, then the lines are conjugate
(see section 2.8.1) with respect to the conic C∗∞.

Length ratios may also be measured once C∗∞ is identified. Consider the triangle
shown in figure 2.16 with vertices a,b, c. From the standard trigonometric sine rule
the ratio of lengths d(b, c) : d(a, c) = sin α : sin β, where d(x,y) denotes the Eu-
clidean distance between the points x and y. Using (2.22), both cos α and cos β may
be computed from the lines l′ = a′ × b′, m′ = c′ × a′ and n′ = b′ × c′ for any
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Fig. 2.16. Length ratios. Once C∗∞ is identified the Euclidean length ratio d(b, c) : d(a, c) may be
measured from the projectively distorted figure. See text for details.

projective frame in which C∗∞ is specified. Consequently both sin α, sin β, and thence
the ratio d(a,b) : d(c, a), may be determined from the projectively mapped points.

2.7.5 Recovery of metric properties from images
A completely analogous approach to that of section 2.7.2 and figure 2.12, where affine
properties are recovered by specifying l∞, enables metric properties to be recovered
from an image of a plane by transforming the circular points to their canonical position.
Suppose the circular points are identified in an image, and the image is then rectified
by a projective transformation H that maps the imaged circular points to their canonical
position (at (1,±i, 0)T) on l∞. From result 2.21 the transformation between the world
plane and the rectified image is then a similarity since it is projective and the circular
points are fixed.

Metric rectification using C∗∞. The dual conic C∗∞ neatly packages all the information
required for a metric rectification. It enables both the projective and affine components
of a projective transformation to be determined, leaving only similarity distortions.
This is evident from its transformation under a projectivity. If the point transformation
is x′ = Hx, where the x-coordinate frame is Euclidean and x′ projective, C∗∞ transforms
according to result 2.14(p37) (C∗′ = HC∗HT). Using the decomposition chain (2.17–
p43) for H

C∗∞
′ = (HP HA HS) C

∗
∞ (HP HA HS)

T = (HP HA)
(
HS C

∗
∞HT

S

) (
HT

A H
T
P

)

= (HP HA) C∗∞
(
HT

A H
T
P

)

=

[
KKT KKTv

vTKKT vTKKTv

]

. (2.23)

It is clear that the projective (v) and affine (K) components are determined directly from
the image of C∗∞, but (since C∗∞ is invariant to similarity transformation by result 2.22)
the similarity component is undetermined. Consequently,

Result 2.25. Once the conic C∗∞ is identified on the projective plane then projective
distortion may be rectified up to a similarity.

Actually, a suitable rectifying homography may be obtained directly from the iden-
tified C∗∞

′ in an image using the SVD (section A4.4(p585)): writing the SVD of C∗∞′
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as

C∗∞
′ = U

⎡

⎢⎣
1 0 0
0 1 0
0 0 0

⎤

⎥⎦ UT

then by inspection from (2.23) the rectifying projectivity is H = U up to a similarity.
The following two examples show typical situations where C∗∞ may be identified in

an image, and thence a metric rectification obtained.

Example 2.26. Metric rectification I
Suppose an image has been affinely rectified (as in example 2.18 above), then we re-
quire two constraints to specify the 2 degrees of freedom of the circular points in order
to determine a metric rectification. These two constraints may be obtained from two
imaged right angles on the world plane.

Suppose the lines l′,m′ in the affinely rectified image correspond to an orthogonal
line pair l,m on the world plane. From result 2.24 l′TC∗∞

′m′ = 0, and using (2.23)
with v = 0

(
l′1 l′2 l′3

) [ KKT 0
0T 0

]⎛

⎜⎝
m′

1

m′
2

m′
3

⎞

⎟⎠ = 0

which is a linear constraint on the 2 × 2 matrix S = KKT. The matrix S = KKT is
symmetric with three independent elements, and thus 2 degrees of freedom (as the
overall scaling is unimportant). The orthogonality condition reduces to the equation
(l′1, l

′
2)S(m

′
1,m

′
2)

T = 0 which may be written as

(l′1m
′
1, l

′
1m

′
2 + l′2m

′
1, l

′
2m

′
2) s = 0,

where s = (s11, s12, s22)T is S written as a 3-vector. Two such orthogonal line pairs
provide two constraints which may be stacked to give a 2 × 3 matrix with s deter-
mined as the null vector. Thus S, and hence K, is obtained up to scale (by Cholesky
decomposition, section A4.2.1(p582)). Figure 2.17 shows an example of two orthog-
onal line pairs being used to metrically rectify the affinely rectified image computed
in figure 2.13. △

Alternatively, the two constraints required for metric rectification may be obtained from
an imaged circle or two known length ratios. In the case of a circle, the image conic
is an ellipse in the affinely rectified image, and the intersection of this ellipse with the
(known) l∞ directly determines the imaged circular points.

The conic C∗∞ can alternatively be identified directly in a perspective image, without
first identifying l∞, as is illustrated in the following example.

Example 2.27. Metric rectification II
We start here from the original perspective image of the plane (not the affinely rectified
image of example 2.26). Suppose lines l and m are images of orthogonal lines on the
world plane; then from result 2.24 lTC∗∞m = 0, and in a similar manner to constraining
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a b

Fig. 2.17. Metric rectification via orthogonal lines I. The affine transformation required to metrically
rectify an affine image may be computed from imaged orthogonal lines. (a) Two (non-parallel) line pairs
identified on the affinely rectified image (figure 2.13) correspond to orthogonal lines on the world plane.
(b) The metrically rectified image. Note that in the metrically rectified image all lines orthogonal in the
world are orthogonal, world squares have unit aspect ratio, and world circles are circular.

a b

Fig. 2.18. Metric rectification via orthogonal lines II. (a) The conic C∗∞ is determined on the per-
spectively imaged plane (the front wall of the building) using the five orthogonal line pairs shown. The
conic C∗∞ determines the circular points, and equivalently the projective transformation necessary to
metrically rectify the image (b). The image shown in (a) is the same perspective image as that of figure
2.4(p35), where the perspective distortion was removed by specifying the world position of four image
points.

a conic to contain a point (2.4–p31), this provides a linear constraint on the elements
of C∗∞, namely

(l1m1, (l1m2 + l2m1)/2, l2m2, (l1m3 + l3m1)/2, (l2m3 + l3m2)/2, l3m3) c = 0

where c = (a, b, c, d, e, f)T is the conic matrix (2.3–p30) of C∗∞ written as a 6-vector.
Five such constraints can be stacked to form a 5 × 6 matrix, and c, and hence C∗∞,
is obtained as the null vector. This shows that C∗∞ can be determined linearly from
the images of five line pairs which are orthogonal on the world plane. An example of
metric rectification using such line pair constraints is shown in figure 2.18. △

Stratification. Note, in example 2.27 the affine and projective distortions are deter-
mined in one step by specifying C∗∞. In the previous example 2.26 first the projec-
tive and subsequently the affine distortions were removed. This two-step approach is
termed stratified. Analogous approaches apply in 3D, and are employed in chapter 10
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l x
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C

Fig. 2.19. The pole–polar relationship. The line l = Cx is the polar of the point x with respect to the
conic C, and the point x = C−1l is the pole of l with respect to C. The polar of x intersects the conic at
the points of tangency of lines from x. If y is on l then yTl = yTCx = 0. Points x and y which satisfy
yTCx = 0 are conjugate.

on 3D reconstruction and chapter 19 on auto-calibration, when obtaining a metric from
a 3D projective reconstruction.

2.8 More properties of conics
We now introduce an important geometric relation between a point, line and conic,
which is termed polarity. Applications of this relation (to the representation of orthog-
onality) are given in chapter 8.

2.8.1 The pole–polar relationship
A point x and conic C define a line l = Cx. The line l is called the polar of x with
respect to C, and the point x is the pole of l with respect to C.

• The polar line l = Cx of the point x with respect to a conic C intersects the conic in
two points. The two lines tangent to C at these points intersect at x.

This relationship is illustrated in figure 2.19.

Proof. Consider a point y on C. The tangent line at y is Cy, and this line contains x
if xTCy = 0. Using the symmetry of C, the condition xTCy = (Cx)Ty = 0 is that the
point y lies on the line Cx. Thus the polar line Cx intersects the conic in the point y at
which the tangent line contains x.

As the point x approaches the conic the tangent lines become closer to collinear, and
their contact points on the conic also become closer. In the limit that x lies on C, the
polar line has two-point contact at x, and we have:

• If the point x is on C then the polar is the tangent line to the conic at x.

See result 2.7(p31).
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Example 2.28. A circle of radius r centred on the x-axis at x = a has the equation
(x− a)2 + y2 = r2, and is represented by the conic matrix

C =

⎡

⎢⎣
1 0 −a
0 1 0
−a 0 a2 − r2

⎤

⎥⎦ .

The polar line of the origin is given by l = C(0, 0, 1)T = (−a, 0, a2 − r2)T. This is a
vertical line at x = (a2 − r2)/a. If r = a the origin lies on the circle. In this case the
polar line is the y-axis and is tangent to the circle. △

It is evident that the conic induces a map between points and lines of IP2. This map is
a projective construction since it involves only intersections and tangency, both prop-
erties that are preserved under projective transformations. A projective map between
points and lines is termed a correlation (an unfortunate name, given its more common
usage).

Definition 2.29. A correlation is an invertible mapping from points of IP2 to lines of
IP2. It is represented by a 3× 3 non-singular matrix A as l = Ax.

A correlation provides a systematic way to dualize relations involving points and lines.
It need not be represented by a symmetric matrix, but we will only consider symmetric
correlations here, because of the association with conics.

• Conjugate points. If the point y is on the line l = Cx then yTl = yTCx = 0. Any
two points x,y satisfying yTCx = 0 are conjugate with respect to the conic C.

The conjugacy relation is symmetric:

• If x is on the polar of y then y is on the polar of x.

This follows simply because of the symmetry of the conic matrix – the point x is on
the polar of y if xTCy = 0, and the point y is on the polar of x if yTCx = 0. Since
xTCy = yTCx, if one form is zero, then so is the other. There is a dual conjugacy
relationship for lines: two lines l and m are conjugate if lTC∗m = 0.

2.8.2 Classification of conics
This section describes the projective and affine classification of conics.

Projective normal form for a conic. Since C is a symmetric matrix it has real eigen-
values, and may be decomposed as a product C = UTDU (see section A4.2(p580)),
where U is an orthogonal matrix, and D is diagonal. Applying the projective trans-
formation represented by U, conic C is transformed to another conic C′ = U−TCU−1 =
U−TUTDUU−1 = D. This shows that any conic is equivalent under projective transforma-
tion to one with a diagonal matrix. Let D = diag(ϵ1d1, ϵ2d2, ϵ3d3) where ϵi = ±1 or 0
and each di > 0. Thus, D may be written in the form

D = diag(s1, s2, s3)
Tdiag(ϵ1, ϵ2, ϵ3)diag(s1, s2, s3)
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Fig. 2.20. Affine classification of point conics. A conic is an (a) ellipse, (b) parabola, or (c) hyperbola;
according to whether it (a) has no real intersection, (b) is tangent to (2-point contact), or (c) has 2 real
intersections with l∞. Under an affine transformation l∞ is a fixed line, and intersections are preserved.
Thus this classification is unaltered by an affinity.

where s2
i = di. Note that diag(s1, s2, s3)T = diag(s1, s2, s3). Now, transforming once

more by the transformation diag(s1, s2, s3), the conic D is transformed to a conic with
matrix diag(ϵ1, ϵ2, ϵ3), with each ϵi = ±1 or 0. Further transformation by permutation
matrices may be carried out to ensure that values ϵi = 1 occur before values ϵi = −1
which in turn precede values ϵi = 0. Finally, by multiplying by −1 if necessary, one
may ensure that there are at least as many +1 entries as−1. The various types of conics
may now be enumerated, and are shown in table 2.2.

Diagonal Equation Conic type

(1, 1, 1) x2 + y2 + w2 = 0 Improper conic – no real points.

(1, 1,−1) x2 + y2 − w2 = 0 Circle

(1, 1, 0) x2 + y2 = 0 Single real point (0, 0, 1)T

(1,−1, 0) x2 − y2 = 0 Two lines x = ±y

(1, 0, 0) x2 = 0 Single line x = 0 counted twice.

Table 2.2. Projective classification of point conics. Any plane conic is projectively equivalent to one
of the types shown in this table. Those conics for which ϵi = 0 for some i are known as degenerate
conics, and are represented by a matrix of rank less than 3. The conic type column only describes the
real points of the conics – for example as a complex conic x2 +y2 = 0 consists of the line pair x = ±iy.

Affine classification of conics. The classification of (non-degenerate, proper) conics
in Euclidean geometry into hyperbola, ellipse and parabola is well known. As shown
above in projective geometry these three types of conic are projectively equivalent to
a circle. However, in affine geometry the Euclidean classification is still valid because
it depends only on the relation of l∞ to the conic. The relation for the three types of
conic is illustrated in figure 2.20.
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Fig. 2.21. Fixed points and lines of a plane projective transformation. There are three fixed points,
and three fixed lines through these points. The fixed lines and points may be complex. Algebraically,
the fixed points are the eigenvectors, ei, of the point transformation (x′ = Hx), and the fixed lines
eigenvectors of the line transformation ( l′ = H−Tl). Note, the fixed line is not fixed pointwise: under
the transformation, points on the line are mapped to other points on the line; only the fixed points are
mapped to themselves.

2.9 Fixed points and lines
We have seen, by the examples of l∞ and the circular points, that points and lines may
be fixed under a projective transformation. In this section the idea is investigated more
thoroughly.

Here, the source and destination planes are identified (the same) so that the trans-
formation maps points x to points x′ in the same coordinate system. The key idea
is that an eigenvector corresponds to a fixed point of the transformation, since for an
eigenvector e with eigenvalue λ,

He = λe

and e and λe represent the same point. Often the eigenvector and eigenvalue have
physical or geometric significance in computer vision applications.

A 3×3 matrix has three eigenvalues and consequently a plane projective transforma-
tion has up to three fixed points, if the eigenvalues are distinct. Since the characteristic
equation is a cubic in this case, one or three of the eigenvalues, and corresponding
eigenvectors, is real. A similar development can be given for fixed lines, which, since
lines transform as (2.6–p36) l′ = H−Tl, correspond to the eigenvectors of HT.

The relationship between the fixed points and fixed lines is shown in figure 2.21.
Note the lines are fixed as a set, not fixed pointwise, i.e. a point on the line is mapped
to another point on the line, but in general the source and destination points will differ.
There is nothing mysterious here: The projective transformation of the plane induces a
1D projective transformation on the line. A 1D projective transformation is represented
by a 2×2 homogeneous matrix (section 2.5). This 1D projectivity has two fixed points
corresponding to the two eigenvectors of the 2× 2 matrix. These fixed points are those
of the 2D projective transformation.

A further specialization concerns repeated eigenvalues. Suppose two of the eigen-
values (λ2,λ3 say) are identical, and that there are two distinct eigenvectors (e2, e3),
corresponding to λ2 = λ3. Then the line containing the eigenvectors e2, e3 will be
fixed pointwise, i.e. it is a line of fixed points. For suppose x = αe2 + βe3; then

Hx = λ2αe2 + λ2βe3 = λ2x
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i.e. a point on the line through two degenerate eigenvectors is mapped to itself (only
differing by scale). Another possibility is that λ2 = λ3, but that there is only one
corresponding eigenvector. In this case, the eigenvector has algebraic dimension equal
to two, but geometric dimension equal to one. Then there is one fewer fixed point (2
instead of 3). Various cases of repeated eigenvalues are discussed further in appendix
7(p628).

We now examine the fixed points and lines of the hierarchy of projective transforma-
tion subgroups of section 2.4. Affine transformations, and the more specialized forms,
have two eigenvectors which are ideal points (x3 = 0), and which correspond to the
eigenvectors of the upper left 2× 2 matrix. The third eigenvector is finite in general.

A Euclidean matrix. The two ideal fixed points are the complex conjugate pair of cir-
cular points I, J, with corresponding eigenvalues {eiθ, e−iθ}, where θ is the rotation an-
gle. The third eigenvector, which has unit eigenvalue, is called the pole. The Euclidean
transformation is equal to a pure rotation by θ about this point with no translation.

A special case is that of a pure translation (i.e. where θ = 0). Here the eigenvalues
are triply degenerate. The line at infinity is fixed pointwise, and there is a pencil of
fixed lines through the point (tx, ty, 0)T which corresponds to the translation direction.
Consequently lines parallel to t are fixed. This is an example of an elation (see section
A7.3(p631)).

A similarity matrix. The two ideal fixed points are again the circular points. The
eigenvalues are {1, seiθ, se−iθ}. The action can be understood as a rotation and
isotropic scaling by s about the finite fixed point. Note that the eigenvalues of the
circular points again encode the angle of rotation.

An affine matrix. The two ideal fixed points can be real or complex conjugates, but
the fixed line l∞ = (0, 0, 1)T through these points is real in either case.

2.10 Closure
2.10.1 The literature
A gentle introduction to plane projective geometry, written for computer vision re-
searchers, is given in the appendix of Mundy and Zisserman [Mundy-92]. A more
formal approach is that of Semple and Kneebone [Semple-79], but [Springer-64] is
more readable.

On the recovery of affine and metric scene properties for an imaged plane, Collins
and Beveridge [Collins-93] use the vanishing line to recover affine properties from
satellite images, and Liebowitz and Zisserman [Liebowitz-98] use metric information
on the plane, such as right angles, to recover the metric geometry.

2.10.2 Notes and exercises
(i) Affine transformations.
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(a) Show that an affine transformation can map a circle to an ellipse, but
cannot map an ellipse to a hyperbola or parabola.

(b) Prove that under an affine transformation the ratio of lengths on parallel
line segments is an invariant, but that the ratio of two lengths that are
not parallel is not.

(ii) Projective transformations. Show that there is a three-parameter family of
projective transformations which fix (as a set) a unit circle at the origin, i.e. a
unit circle at the origin is mapped to a unit circle at the origin (hint, use result
2.13(p37) to compute the transformation). What is the geometric interpretation
of this family?

(iii) Isotropies. Show that two lines have an invariant under a similarity transfor-
mation; and that two lines and two points have an invariant under a projective
transformation. In both cases the equality case of the counting argument (result
2.16(p43)) is violated. Show that for these two cases the respective transforma-
tion cannot be fully determined, although it is partially determined.

(iv) Invariants. Using the transformation rules for points, lines and conics show:

(a) Two lines, l1, l2, and two points, x1, x2, not lying on the lines have the
invariant

I =
(lT1 x1)(lT2 x2)

(lT1 x2)(lT2 x1)

(see the previous question).
(b) A conic C and two points, x1 and x2, in general position have the invari-

ant

I =
(xT

1 Cx2)2

(xT
1 Cx1)(xT

2 Cx2)
.

(c) Show that the projectively invariant expression for measuring an-
gles (2.22) is equivalent to Laguerre’s projectively invariant expression
involving a cross ratio with the circular points (see [Springer-64]).

(v) The cross ratio. Prove the invariance of the cross ratio of four collinear
points under projective transformations of the line (2.18–p45). Hint, start with
the transformation of two points on the line written as x̄′

i = λiH2×2x̄i and
x̄′

j = λjH2×2x̄j , where equality is not up to scale, then from the properties of
determinants show that |x̄′

ix̄
′
j| = λiλj det H2×2|x̄ix̄j| and continue from here.

An alternative derivation method is given in [Semple-79].
(vi) Polarity. Figure 2.19 shows the geometric construction of the polar line for a

point x outside an ellipse. Give a geometric construction for the polar when the
point is inside. Hint, start by choosing any line through x. The pole of this line
is a point on the polar of x.

(vii) Conics. If the sign of the conic matrix C is chosen such that two eigenvalues
are positive and one negative, then internal and external points may be distin-
guished according to the sign of xTCx: the point x is inside/on/outside the conic
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C if xTCx is negative/zero/positive respectively. This can seen by example from
a circle C = diag(1, 1,−1). Under projective transformations internality is in-
variant, though its interpretation requires care in the case of an ellipse being
transformed to a hyperbola (see figure 2.20).

(viii) Dual conics. Show that the matrix [l]×C[l]× represents a rank 2 dual conic
which consists of the two points at which the line l intersects the (point) conic
C (the notation [l]× is defined in (A4.5–p581)).

(ix) Special projective transformations. Suppose points on a scene plane are re-
lated by reflection in a line: for example, a plane object with bilateral symmetry.
Show that in a perspective image of the plane the points are related by a pro-
jectivity H satisfying H2 = I. Furthermore, show that under H there is a line
of fixed points corresponding to the imaged reflection line, and that H has an
eigenvector, not lying on this line, which is the vanishing point of the reflection
direction (H is a planar harmonic homology, see section A7.2(p629)).
Now suppose that the points are related by a finite rotational symmetry: for
example, points on a hexagonal bolt head. Show in this case that Hn = I,
where n is the order of rotational symmetry (6 for a hexagonal symmetry),
that the eigenvalues of H determine the rotation angle, and that the eigenvector
corresponding to the real eigenvalue is the image of the centre of the rotational
symmetry.


