
Computer Vision Lecture 1 2015-01-21

Lecture 1: The Pinhole Camera Model

1 Mathematical Model

The most commonly used model, which we will also use in the course, is the so called pinhole camera.
The model is inspired by the simplest cameras. The camera has the shape of a box, light from an
object enters through a small hole (the pinhole) in the front and produces an image on the back
camera wall (see Figure 1).
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Figure 1: The Pinhole camera (left), and a mathematical model (right).

To create a mathematical model we first select a coordinate system {e′x, e′y, e′z}.We will refer to this
system as the camera coordinate system. The origin C = (0, 0, 0) will represent the so called camera
center (pinhole). To generate a projection x = (x1, x2, 1) of a scene point X = (X ′

1, X
′
2, X

′
3) we form

the line between X and C and intersect it with the plane z = 1. We will refer to this plane as the
image plane and the line as the viewing ray associated with x or X. The plane z = 1 has the normal
ez and lies at the distance 1 from the camera center. We will refer to ez as the viewing direction.
Note that in contrast to a real pinhole camera we have placed the image plane in front of the camera
center. This has the effect that the image will not appear upside down as in the real model.

Since X − C is a direction vector of the viewing ray (see Figure 2) we can parametrize it by the
expression

C + s(X − C) = sX, s ∈ R. (1)

To find the intersection between this line and the image plane z = 1 we need to find an s such that
the third coordinate sX ′

3 of sX fulfills sX ′
3 = 1. Therefore, assuming X ′

3 6= 0, we get s = 1/X ′
3 and

the projection

x =




X ′
1/X

′
3

X ′
2/X

′
3

1


 (2)

Exercise 1. Compute the image of the cube with corners in (±1,±1, 2) and (±1,±1, 4) (see Figure 3).
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Figure 2: The model viewed from the side. (The vector e′x points out of the figure.)
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Figure 3: The Cube in the camera coordinate system.

2 Moving Cameras

In our applications we will frequently have cameras that have been capturing images from different
viewpoints. Therefore we need to have a way of modeling camera movements. A camera can undergo
translation and rotation. We will represent the translation with a vector t ∈ R3 and the rotation with
a 3× 3 matrix R. Since R is a rotation matrix it has to fulfill RTR = I and det(R) = 1.

To encode camera movements we introduce a new reference coordinate system {ex, ey, ez}, see Figure
4. We will refer to this coordinate system as the global coordinate system, since all the camera
movements will be related to this system. Typically all the scene point coordinates are also specified
in this coordinate system. Let’s assume that a scene point X has coordinates (X ′

1, X
′
2, X

′
3) in the

camera coordinate system and (X1, X2, X3) in the global coordinate system. Since the camera can
be rotated and translated there is a rotation matrix R and translation vector t that relates the two
coordinate systems via 


X ′

1

X ′
2

X ′
3


 = R




X1

X2

X3


+ t. (3)

Exercise 2. What is the position of the camera (the coordinates of the camera center) in the global
coordinate system? What is the viewing direction in the global coordinate system?
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Figure 4: New global coordinate system.

If we add an extra 1 to the scene point X we can write (3) in matrix form

X ′
3




X ′
1/X

′
3

X ′
2/X

′
3

1


 =




X ′
1

X ′
2

X ′
3


 = [R t]




X1

X2

X3

1


 . (4)

Here [R t] is the 3 × 4 matrix where the first 3 × 3 block is R and the last column is t. As we saw
previously, the projection of X is given by (2). Therefore we conclude from (4) that the projection x
of a scene point X (with coordinates given in the global coordinate system) is obtained by computing

the vector v = [R t]

[
X
1

]
and dividing the elements of v by the third coordinate of v. From here

on we will always assume that scene point coordinates are given in the global coordinate system, if
nothing else is stated.
Exercise 3. Compute the projection of X = (0, 0, 1) in the cameras




1√
2

0 − 1√
2

0

0 1 0 0
1√
2

0 1√
2

1


 and




1 0 −1 0

0
√
2 0 0

1 0 1
√
2


 . (5)

3 Depth of a Point

We say that a scene point is in front of the camera (or has positive depth) if its third coordinate is
positive in the camera coordinate system. According to (4) the third coordinate is given by

X ′
3 = [R3 t3]

[
X
1

]
, (6)

where R3 is the third row R and t3 is the third coordinate of t. To determine whether a point is

in front of the camera we therefore compute v = [R t]

[
X
1

]
and check if the third coordinate is

positive.

4 The Inner Parameters

In the pinhole camera model the image plane is embedded in R3. That is, image projections are given
in the length unit of R3 (e.g. meters). Furthermore, the center of the image will be located in (0, 0, 1),
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and will therefore have image coordinate (0, 0). For real cameras we typically obtain images where the
coordinates are measured in pixels with (0, 0) in the upper left corner. To be able to do geometrically
meaningful computations we need to translate pixel coordinates into the length unit of R3. We do
this by adding a mapping from the image plane embedded in R3 to the real image, see Figure 5.

K 0

0

640

480

Figure 5: The mapping K from the image plane to the real image.

The mapping is represented by an invertible triangular 3 × 3 matrix K. This matrix contains what
is usually referred to as the inner parameters of the camera, that is, focal length, principal point etc.
(We will discuss this more in Lecture 3.) The projection (reference coordinate system to real image)
is now given by

λ




x1
x2
1




︸ ︷︷ ︸
=x

= K [R t]︸ ︷︷ ︸
=P




X1

X2

X3

1




︸ ︷︷ ︸
=X

, (7)

or in matrix form
λx = PX (8)

Equation (8) is usually called the camera equations and the matrix P is called the camera matrix.

Exercise 4. What is the position (camera center) and viewing direction of the camera P = K [R t]?
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Lecture 2: Homogeneous Coordinates, Lines and Conics

1 Homogeneous Coordinates

In Lecture 1 we derived the camera equations

λx = PX, (1)

where x = (x1, x2, 1), X = (X1, X2, X3, 1) and P is a 3×4 matrix. The vector X represents a 3D-point
and x is its projection in the image. The 3× 4 matrix P contains the parameters of the camera that
captured the image. It can be decomposed into P = K [R t] where R and t encodes position and
orientation of the camera and K contains the inner parameters.

The interpretation of these equation is that the projection (x1, x2) of the scene point with coordinates
(X1, X2, X3) can be found by first computing v = PX and then dividing v by its third coordinate.
There are several vectors v that give the same projection. For example, v = (3, 2, 1) gives the projection
(3, 2) and v = (6, 4, 2) gives

(
6
2 ,

4
2

)
= (3, 2).

Formally, we will say that two vectors x,y ∈ R3 are equivalent if there is a number λ 6= 0 such that
x = λy, and write

x ∼ y. (2)

The two vectors are said to represent the same element of the so called two dimensional projective
space P2. The space consists of all the elements that can be represented by vectors in R3 (with the
exception of the zero vector). For example, the two vectors (6, 9, 3) and (4, 6, 2) are equivalent and
therefore both represent the same element of P2. Furthermore, by dividing with the third coordinate
we can interpret this element as a point in R2, namely (2, 3). The vectors (6, 9, 3) and (4, 6, 2) are
called homogeneous coordinates of (2, 3).

There are elements in P2 that can not be interpreted as points in R2. Specifically, if the third
coordinate is zero we can not divide by it. We will soon see that these points also have a simple
geometric interpretation.

The projective space of n dimensions Pn is defined similarly as P2. In general the homogeneous
coordinates for representing Pn are the vectors of Rn+1 (with the exception of the vector with all
coordinates equal to zero), and if coordinate n+1 is not zero then we can interpret them as points of
Rn by dividing with this coordinate.

2 Lines and Points in P2

From linear algebra we know that a line (in R2) can be represented by the equation

ax+ by + c = 0, (3)

where (a, b, c) 6= (0, 0, 0). If we think of x ∼ (x, y, 1) as a point in P2 then x belongs to the line
l = (a, b, c) if (3) holds. Note that (3) can be seen as the scalar product of the vectors (x, y, 1) and
(a, b, c). If we use (λx, λy, λ) to represent x instead of (x, y, 1) we get the scalar product

aλx+ bλy + cλ = λ(ax+ by + c) = 0. (4)
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Therefore we see that it does not matter which representative we use for x. They all fulfill (4).
Similarly if c 6= 0 we can represent l with

(
a
c ,

b
c , 1
)
instead of (a, b, c).

Note that lines and points behave in the same way here. They are both represented with 3-vectors. As
a consequence of this we say that points are dual to lines in P2. That is, whenever we have a theorem
involving lines and points in P2 we can always exchange points for lines and get a dual statement. For
example, the statement "Two lines intersect each other in one point" is dual to "For any two points
there is one line going through them both". (Note that the first statement is not true in R2 if the
lines are parallel.)

In three dimensions the equation
ax+ by + cz + d = 0 (5)

represents a plane. Therefore, for the space P3 (the space consisting of all elements that can be
represented by vectors in R4) we have duality between points and planes instead.
Exercise 1. Compute the point of intersection x ∈ P2 (x ∼ (x, y, z)) of the two lines l1 ∼ (−1, 0, 1)
and l2 ∼ (0,−1, 1).
Exercise 2. Compute the line l ∼ (a, b, c) passing through the points x1 ∼ (−1, 0, 1) and x2 ∼
(0,−1, 1). (Hint: look at the previous exercise.)

3 Vanishing Points

In the space P2 every pair of lines have a common intersection point, even parallel ones. Consider for
example the two lines l1 = (−1, 0, 1) and l2 = (1, 0, 1), see Figure 1.

−1 1 x

y

Figure 1: The two lines (−1, 0, 1) and (1, 0, 1).

Since x lies on both the lines we have to solve the system of equations
{

lT1 x = 0
lT2 x = 0

⇔
{

x+ z = 0
−x+ z = 0

. (6)

Since we have no constraints for y we get




x+ z = 0
2z = 0
y = t

⇔





x = 0
y = t
z = 0

. (7)

Hence, for example (0, 1, 0) is a representative of our intersection point. In this case we cannot
interpret the result by dividing with the third coordinate since this one is zero, which makes sense
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since the lines are parallel and therefore do not intersect in R2. To interpret (0, 1, 0) geometrically
we look at (0, 1, ε), where ε is a small positive number. This point has non-zero third coordinate and
is equivalent to

(
0, 1ε , 1

)
, that is, it is a point with x-coordinate zero and a very large y-coordinate.

Making ε smaller we see that (0, 1, 0) can be interpreted as a point infinitely far away in the direction
(0, 1). We call this type of point a vanishing point or a point at infinity.

Note that if we instead assume that ε is a small negative number we get a point far away in the direction
(0,−1). We therefore do not differ between these points, and in addition (0, 1, 0) ∼ (0,−1, 0).
The line z = 0 is called the vanishing line or the line at infinity since it only contains points that has
third coordinate 0.

4 Conics

The conics are all second order curves of the form

xTCx = 0 (8)

where C is a symmetric matrix. For example the circle of radius 1 can be written

(
x y 1

)



1 0 0
0 1 0
0 0 −1






x
y
1


 = x2 + y2 − 1 = 0. (9)

The line l = Cx is a tangent line to to the conic at the point x. The dual conic is the set of all lines
that tangent to the conic. If the matrix C is invertible then the expression for the dual conic can be
computed by noting that

0 = xTCx = xTCC−1Cx = (Cx)TC−1Cx = lTC−1l. (10)

Therefore any line that is tangent to the conic has to fulfill lTC−1l = 0 which is a conic in the space
of all lines. If C is not invertible one can use the pseudo inverse instead.

5 Projective Transformations

A projective transformation is an invertible mapping Pn 7→ Pn defined by

x ∼ Hy (11)

where x ∈ Rn+1 and y ∈ Rn+1 are homogeneous coordinates representing elements of Pn and H is an
invertible (n+ 1)× (n+ 1) matrix. Projective transformations are also often called homographies.

Exercise 3. Show that it does not matter what representative we choose, the result will be the same.
(Hint: y and λy are two representatives of the same point.)

Projective mappings occur often when working with images. In Lecture 1 we saw one example of such
a mapping, namely the K-matrix. In the camera equation

x ∼ K [R t]X (12)

the matrix K transforms the point [R t]X in the image plane to the real image coordinate system
(with the unit pixels).

Another example is point transfer via a plane. Figure 2 shows two images of a desk with a roughly
planar surface. With this setup the there is a homography that transforms the points of one image to
the other given by (11), where H is a 3× 3 matrix. To find the transformation we need to determine
the elements of H. There are 9 elements but since thee scale does not matter (H and λH represents
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Figure 2: Two images of a roughly planar surface with 4 detected point correspondences.

the same transformation) there are only 8 degrees of freedom. Now suppose that we have n points
yi, i = 1, ..., n that we know are transformed to n corresponding points xi, i = 1, ..., n in the second
image. Each point pair gives us 3 equations

λixi = Hyi (13)

(recall that yi and Hxi are vectors of size 3) but one new unknown λi is introduced. We now have
3n equations and 8 + n degrees of freedom. To be able to find H we therefore need

3n ≥ 8 + n⇔ 2n ≥ 8⇔ n ≥ 4 (14)

point correspondences. Figure 2 shows 4 point correspondences that can be used to compute H. (An
approach for doing this, the so called DLT method, will be presented in Lecture 4.)

Figure 3: Left: the result of appying H to the left image in Figure 2. Right: The transformed image
overlaid on the right image of Figure 2.

When H has been computed we can transform the other points in the image. Figure 3 shows the
transformation of the left image and the transformed image overlaid on the right image. It can be
ween that the images agree well where the scene is roughly planar.

When looking carefully at the checkerboard pattern it is evident that this transformation preserves
lines, that is, points on a line in the original image is mapped to another line in the new figure. This
is always the case when we have projective transformations.
Exercise 4. Assume that y lies on the line l, that is, lTy = 0, and that x ∼ Hy. Show that x lies on
the line l̂ = (H−1)T l.
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5.1 Special Cases of Transformations

A special case of projective transformation Pn 7→ Pn is the affine transformation. For this type of
mapping the matrix H has the special shape

H =

[
A t
0 1

]
, (15)

where A is an invertible n× n matrix, t is an n× 1 vector and 0 is a 1× n vector of all zeros. Besides
being projective, the affine transformation has the special property that parallel lines are mapped to
parallel lines. Furthermore, it preserves the line at infinity, that is, vanishing points are mapped to
vanishing points and regular points to regular points. If we only consider points in R2 (with regular
Cartesian coordinates) then the transformation can be written x = Ay + t. An example of an affine
transformation is shown in Figure 4.

Figure 4: The affine transformation preserves parallel lines.

The similarity transformation has the form

H =

[
sR t
0 1

]
, (16)

where R is an n× n rotation and s is a positive number. This mapping also preserves angles between
lines. An example of a similarity transformation is shown in Figure 5.

Figure 5: The similarity transformation preserves angles between lines.

If s = 1 in (16) then the transformation is called Euclidean. This mapping also preserves distances
between points. An example of an affine transformation is shown in Figure 6.
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Figure 6: The Euclidean transformation preserves distances between points.
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Lecture 3: Camera Calibration, DLT, SVD

1 The Inner Parameters

In this section we will introduce the inner parameters of the cameras. Recall from the camera equations

λx = PX, (1)

where P = K [R t], K is a 3 × 3 matrix R is a 3 × 3 rotation matrix and t is a 3 × 1 vector. The
3 × 4 matrix [R t] encodes the orientation and position of the camera with respect to a reference
coordinate system. Given a 3D point in homogeneous coordinates X the product [R t]X can be
interpreted as the 3D coordinates of the scene point in the camera coordinate system. Note that
alternatively we can interpret the result as the homogeneous coordinates of the projection of X into
the image plane embedded in R3, since the projection in the camera coordinate system is computed
by division with the third coordinate.

The 3× 3 matrix K transforms the image plane in R3 to the real image coordinate system (with unit
pixels), see Figure 1.

ex
ey

ez

X

e′x
e′y

e′z

X

xx

[R t]

K

0
0 640

480

Figure 1: The different coordinate systems and mappings.

The matrix K is an upper triangular matrix with the following shape:

K =




γf sf x0
0 f y0
0 0 1


 . (2)

The parameter f is called the focal length. This parameter re-scales the image coordinates into pixels.
The point (x0, y0) is called the principal point. For many cameras it is enough to use the focal length
and principal point. In this case the K matrix transforms the image points according to




fx+ x0
fy + y0

1


 =




f 0 x0
0 f y0
0 0 1






x
y
1


 , (3)
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that is, the coordinates are scaled by the focal length and translated by the principal point. Note that
the center point (0, 0, 1) of the image in R3 is transformed to the principal point (x0, y0).

The parameter γ is called the aspect ratio. For cameras where the pixels are not square the re-scaling
needs to be done differently in the x-direction and the y-direction. In such cases the aspect ratio γ
will take a value different from 1.

The final parameter s is called the skew. This parameter corrects for tilted pixels, see Figure 2, and
is typically zero.

Figure 2: The skew parameter s corrects for non-rectangular pixels.

A camera P = K [R t] is called calibrated if the inner parameters K are known. For such cameras
we can eliminate the K matrix from the camera equations by multiplying both sides of (1) with K−1
from the left. If we let x̃ = K−1x we get

λx̃ = K−1K [R t]X = [R t]X. (4)

The new camera matrix [R t] is called the normalized (calibrated) camera and the new image points
x̃ are called the normalized image points. (Note that later in this lecture there is a different concept
of normalization that is used for improving stability of computations. However in the context of
calibrated cameras, normalization always means multiplication with K−1.)

The calibration model presented in this section is limited in the sense that the normalization is
carried out by applying the homography K−1 to the image coordinates. For some cameras this is not
sufficient. For example, in the image displayed in Figure 3, lines that are straight in 3D do not appear
as straight lines in the image. Such distortion is common in cameras with wide field of view and can
not be removed with a homograpy.

Figure 3: Radial distortion can not be handled with the K matrix. This requires a more complicated
model.

2 Projective vs. Euclidean Reconstruction

The main problem of interest in this course is the Structure from Motion problem, that is, given
image projections xij (of scene point j in image i) determine both 3D point coordinates Xj and
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camera matrices Pi such that
λijxij = PiXj , ∀i, j. (5)

Note that the depths λij are also unknown and need to be determined. However, primarily we are
interested in the scene points and cameras, the depths are bi-products of this formulation.

If the calibration is unknown, that is Pi can be any non-zero 3 × 4 matrix then the solution to this
problem is called a projective reconstruction. Such a solution can only be uniquely determined up to
a projective transformation. To see this suppose that we have found cameras Pi and 3D-points Xj

such that
λijxij = PiXj . (6)

To construct a different solution we can take an unknown projective transformation H (P3 7→ P3) and
let P̃i = PiH and X̃j = H−1Xj . The new cameras and scene points also solve the problem since

λijxij = PiXj = PiHH
−1Xj = P̃iX̃j . (7)

This means that given a solution we can apply any projective transformation to the 3D points and
obtain a new solution. Since projective transformations do not necessarily preserve angles or parallel
lines projective reconstructions can look distorted even though the projections they give match the
measured image points. To the left in Figure 4 a projective reconstruction of the Arch of Triumph in
Paris is displayed.

Figure 4: Reconstructions of the Arch of Triumph in Paris. Left: Projective reconstruction. Right:
Euclidean reconstruction (known camera calibration). Both reconstructions provide the same projec-
tions.

One way to remove the projective ambiguity is to use calibrated cameras. If we normalize the im-
age coordinates using x̃ = K−1x then the structure form motion problem becomes that of finding
normalized (calibrated) cameras [Ri ti] and scene points Xj such that

λijx̃ij = [Ri ti]Xj , (8)

where the first 3× 3 block Ri is a rotation matrix. The solution of this problem is called a Euclidean
Reconstruction. Given a solution [Ri ti] and Xj we can try to do the same trick as in the projective
case. However when multiplying [Ri ti] with H the result does not necessarily have a rotation matrix
in the first 3× 3 block. To achieve a valid solution we need H to be a similarity transformation,

H =

[
sQ v
0 1

]
, (9)

where Q is a rotation. We then get

λij
s
xij = [Ri ti]

[
Q 1

sv
0 1

s

]
H−1Xj =

[
RiQ

1

s
(Riv + ti)

]
X̃j , (10)
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which is a valid solution since RiQ is a rotation. Hence, in the case of Euclidean reconstruction we
do not have the same distortion since similarity transformations preserve angles and parallel lines.
Note that there is still an ambiguity here. The entire reconstruction can be re-scaled, rotated and
translated without changing the image projections.

(Strictly speaking, Equation (10) only shows that we can apply a similarity transformation without
violating the rotational constraints. It does not show that if H is not a similarity the constraints are
violated. This can however be seen by considering the effects of adding H to all camera equations.)

3 Finding the Inner Parameters

In this section we will present a simple method for finding the camera parameters. We will do it in
two steps:

1. First, we will compute a camera matrix P . To make sure that there is not projective ambiguity
present (as in Section 2) we will assume that the scene point coordinates are known. This can
for example be achieved by using an image of a known object where we have measured all the
points by hand.

2. Secondly, once the camera matrix P is known we can factorize it into K[R t], where K is
triangular and R is a rotation. This can be done using the so called RQ-factorization.

3.1 Finding P : The Resection Problem

In this section we will outline a method for finding the camera matrix P . We are assuming that the
scene points Xi and their projections xi are known. The goal is to solve the equations

λixi = PXi, i = 1, .., N, (11)

where the λi and P are the unknowns. This problem, determining the camera matrix from know scene
points and projections is called the resection problem. The 3× 4 matrix P has 12 elements, but the
scale is arbitrary and therefore it only has 11 degrees of freedom. There are 3N equations (3 for each
point projection), but each new projection introduces one additional unknown λi. Therefore we need

3N ≥ 11 +N ⇒ N ≥ 6 (12)

points in order for the problem to be well defined. To solve the problem we will use a simple approach
called Direct Linear Transformation (DLT). This method formulates a homogeneous linear system of
equations and solves this by finding an approximate null space of the system matrix. If we let pi,
i = 1, 2, 3 be 4× 1 vectors containing the rows of P , that is,

P =



pT1
pT2
pT3


 (13)

then we can write (11) as

XT
i p1 − λixi = 0 (14)

XT
i p2 − λiyi = 0 (15)
XT

i p3 − λi = 0, (16)

where xi = (xi, yi, 1). In matrix form this can be written




XT
i 0 0 −xi

0 XT
i 0 −yi

0 0 XT
i −1







p1
p2
p3
λi


 =




0
0
0


 . (17)
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Note that since Xi is a 4× 1 vector each 0 on the left hand side actually represents a 1× 4 block of
zeros. Thus the left hand side is a 3× 13 matrix multiplied with a 13× 1 vector. If we include all the
projection equations in one matrix we get a system of the form




XT
1 0 0 −x1 0 0 . . .

0 XT
1 0 −y1 0 0 . . .

0 0 XT
1 −1 0 0 . . .

XT
2 0 0 0 −x2 0 . . .

0 XT
2 0 0 −y2 0 . . .

0 0 XT
2 0 −1 0 . . .

XT
3 0 0 0 0 −x3 . . .

0 XT
3 0 0 0 −y3 . . .

0 0 XT
3 0 0 −1 . . .

...
...

...
...

...
...

. . .




︸ ︷︷ ︸
=M




p1
p2
p3
λ1
λ2
λ3
...




︸ ︷︷ ︸
=v

=




0
0
0
0
0
0
0
0
0
...




. (18)

Here we are interested in finding a non-zero vector in the nullspace of M . Since the scale is arbitrary
we can add the constraint ‖v‖2 = 1. In most cases the systemMv = 0 will not have any exact solution
due to noise in the measurements. Therefore we will search for a solution to

min
‖v‖2=1

‖Mv‖2. (19)

We refer to this type of problem as a homogeneous least squares problem. Note that there are always
at least two solutions to (19) since ‖Mv‖ = ‖M(−v)‖ and ‖v‖ = ‖ − v‖. These solutions give the
same projections, however for one of them the camera faces away from the scene points thereby
giving negative depths. If the homogeneous representative for the scene points have positive fourth
coordinate then we should select the solution where the λi are all positive.

An alternative formulation with only the p-variables can be found by noting that (11) means that the
vectors xi and PXi are be parallel. This can be expressed using the vector product

xi × PXi = 0, i = 1, ..., N. (20)

These equations are also linear in p1, p2, p3 and we can therefore set up a similar homogeneous least
squares system but without the λi.

3.1.1 Solving the Homogeneous System

The solution to (19) can be found by eigenvalue computations. If we let f(v) = vTMTMv and
g(v) = vT v we can write the problem as

min
g(v)=1

f(v). (21)

From basic courses in Calculus (e.g. Person-Böiers Fler-dim.) we know that the solution must fulfill

∇f(v) = γ∇g(v) ⇔ 2MTMv = γ2v ⇔ MTMv = γv. (22)

Therefore the solution of (19) has to be an eigenvector of the matrix MTM . Suppose v∗ is an
eigenvector with eigenvalue γ∗. If we insert into the objective function we get

f(v∗) = vT∗M
TMv∗ = γ∗v

T
∗ v∗. (23)

Since ‖v∗‖ = 1 we see that in order to minimize f we should select the eigenvector with the smallest
eigenvalue.

Because of the special shape of MTM we compute the eigenvectors efficiently using the so called
Singular Value Decomposition (SVD).
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Theorem 1. Each m× n matrix M (with real coefficients) can be factorized into

M = USV T , (24)

where U and V are orthogonal (m×m and n× n respectively),

S =

[
diag(σ1, σ2, ..., σr) 0

0 0

]
, (25)

σ1 ≥ σ2 ≥ ... ≥ σr > 0 and r is the rank of the matrix.

If M has the SVD (24) then

MTM = (USV T )TUSV T = V STUTUSV T = V STSV T . (26)

Since STS is a diagonal matrix this means that V diagonalizes MTM and therefore STS contains the
eigenvalues and V the eigenvectors of MTM . The diagonal elements of STS are ordered decreasingly
σ2
1 , σ

2
2 , ..., σ

2
r , 0, ..., 0. Thus, to find an eigenvector corresponding to the smallest eigenvalue we should

select the last column of V . Note that if r < n, that is, the matrix M does not have full rank, then
the eigenvalue we select will be zero which means that there is an exact nonzero solution to Mv = 0.
In most cases however r = n due to noise.

We summarize the steps of the algorithm here:

• Set up the linear homogeneous system
Mv = 0. (27)

• Compute the singular value decomposition.

M = USV T . (28)

• Extract the solution v∗ from the last column of V .

3.1.2 Normalization.

The matrix M will contain entries xi, yj and ones. Since the xi and yi are measured in pixels the
values can be in the thousands. In contrast the third homogeneous coordinate is 1 and therefore the
matrix M contains coefficient of highly varying magnitude. This can make the matrix MTM poorly
conditioned resulting buildup of numerical errors.

The numerics can often be greatly improved by translating the coordinates such that their “center of
mass” is zero and then rescaling the coordinates to be roughly 1.

Suppose that we want to solve
λix = PXi, i = 1, ..., N (29)

as outlined in the previous sections.

We can change the coordinates of the image points by applying the normalization mapping

N =



s 0 −sx̄
0 s −sȳ
0 0 1


 . (30)

This mapping will first translate the coordinates by (−x̄,−ȳ) and then re-scale the result with the
factor s. If for example (x̄, ȳ) is the mean point then the transformation

x̃ = Nx (31)

gives re-scaled coordinates with "center of mass" in the origin.

6
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We can now solve the modified problem
γix̃ = P̃Xi, (32)

by forming the system matrix M and computing its singular value decomposition. A solution to the
original "un-normalized" problem (29) can now easily be found from

γiNx = P̃Xi. (33)

3.2 Computing the Inner Parameters from P

When the camera matrix has been computed we want to find the inner parameters K by factorizing
P into

P = K [R t] , (34)
where K is a right triangular and R is a rotation matrix. We this can be done using the RQ-
factorization.

Theorem 2. If A is an n×n matrix then there is an orthogonal matrix Q and a right triangular matrix
R such that

A = RQ. (35)
(If A is invertible and the diagonal elements are chosen positive then the factorization is unique.)

In order to be consistent with the notation in the rest of the lecture we will use K for the right
triangular matrix and R for the orthogonal matrix. Given a camera matrix P = [A a] we want to
use RQ-factorization to find K and R such that A = KR. If

K =




a b c
0 d e
0 0 f


 , A =



AT

1

AT
2

AT
3


 and R =



RT

1

RT
2

RT
3


 , (36)

that is, R1, R2, R3 and A1, A2, A3 are 3× 1 vectors containing the rows of R and A respectively, then
we get 


AT

1

AT
2

AT
3


 =




a b c
0 d e
0 0 f





RT

1

RT
2

RT
3


 =



aRT

1 + bRT
2 + cRT

3

dRT
2 + eRT

3

fRT
3


 (37)

From the third row of (37) we see that A3 = fR3. Since the matrix R is orthogonal R3 has to have
the length 1. We therefore see that need to select

f = ‖A3‖ and R3 =
1

‖A3‖
A3. (38)

to get a positive coefficient f . When R3 is known we can proceed to the second row of (37). The
equation A2 = dR2 + eR3 tells us that A2 is a linear combination of two orthogonal vectors (both of
length one). Hence, the coefficient e can be computed from the scalar product

e = AT
2 R3. (39)

When e is known we can compute R2 and d from

dR2 = A2 − eR3, (40)

similar to what we did for f and R3 in (38). When R2 and R3 is known we use the first row of (37)

A1 = aR1 + bR2 + cR3 (41)

to compute b and c. Finally we can compute a and R1 from

A1 − bR2 − cR3 = aR1. (42)

The resulting matrix K is not necessarily of the form (2) since element (3, 3) might not be one. To
determine the individual parameters, focal length, principal point etc. we therefore need to divide the
matrix with element (3, 3). Note however, that this does not modify the camera in any way since the
scale is arbitrary.
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Lecture 4: Autocorrelation, Triangulation and Homography
Estimation

1 The Autocorrelation function

If we want to investigate how the structure of an image I varies we can look at the following energy
function

EAC(ũ, t) =

∫∫

u∈R2

w(u− ũ)(I(u+ t)− I(u))2du, (1)

where w(u) are weights that are typically zero outside some small window. It is usually chosen as a
Gaussian function with some width σ. This function describes how much the image changes at the
points ũ = (x, y) by translating the image by a vector t, taking the difference, and intergrate over some
neighbourhood around ũ. We can further investigate this function by linearizing the image around
the point ũ,

I(u+ t) ≈ I(u) +∇I(u)T t⇔ I(u+ t)− I(u) ≈ ∇I(u)T t, (2)

so that
EAC(ũ, t) ≈

∫∫

u∈R2

w(u− ũ)(∇I(u)T t)2du =

∫∫

u∈R2

w(u− ũ)tT∇I(u)∇I(u)T tdu. (3)

Here

∇I(u)∇I(u)T =

[
∂I
∂x

2 ∂I
∂x

∂I
∂y

∂I
∂x

∂I
∂y

∂I
∂y

2

]
. (4)

The integration doesn’t depend on t so we can write our energy as

EAC(ũ, t) ≈ tT



∫∫
u∈R2

w(u− ũ) ∂I∂x
2
du

∫∫
u∈R2

w(u− ũ) ∂I∂x ∂I∂ydu
∫∫

u∈R2

w(u− ũ) ∂I∂x ∂I∂ydu
∫∫

u∈R2

w(u− ũ) ∂I∂y
2
du


 t. (5)

We call

A(ũ) =




∫∫
u∈R2

w(u− ũ) ∂I∂x
2
du

∫∫
u∈R2

w(u− ũ) ∂I∂x ∂I∂ydu
∫∫

u∈R2

w(u− ũ) ∂I∂x ∂I∂ydu
∫∫

u∈R2

w(u− ũ) ∂I∂y
2
du


 , (6)

The autocorrelation function. It is also known as the structure tensor or the orientation tensor. It is
a symmetric positive semidefinite matrix, and hence its Eigenvalues are real and non-negative. The
Eigenvalues and Eigenvectors of this matrix tells a lot about the local intensity structure around the
point ũ. At smooth areas A will have two small Eigenvalues, at edgelike structures it will have one
large and one small Eigenvalue, and at cornerlike structures it will have two large Eigenvalues. The
Eigenvectors of A will be directed along the dominant directions of the local structure. Many feature
detectors are based on the functions on A for instance the classic Harris corner detector. The Harris
corners are chosen finding the local maxima of

det(A(ũ))− αtrace(A(ũ))2 = λ0λ1 − α(λ0 + λ1)
2, (7)

where λj are the Eigenvalues of A(ũ). In Figure 1 the result of applying the Harris corner on an image
is shown.

1
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Figure 1: The result of the Harris corner detector. To the right only the strongest local maxima within
some fixed radius.

Figure 2: Geometrically triangulation is finding the 3D point closest to the image rays of the corre-
sponding image points.

2 Triangulation

We will in this section describe a method for finding the position of a 3D point given that the
projections of this point in a number of images is known, as well as the camera matrices. This
problem is known as triangulation. If the camera matrix is known, then a 3D point projected in the
corresponding image must lie on the 3D line that intersects the image point and the focal point of the
camera. Hence triangulation can be seen geometrically as finding the intersection of a number of 3D
lines, see Figure 2. It is clear that we at least need two lines, and so at least projections of the 3D
point in two images. We can decribe our problem as

λixi = PiX, i = 1 . . . n. (8)

For n image points we have 3n equations and n + 3 unknowns, so 3n ≥ n + 3 or n ≥ 3
2 . So this is

consistent with our geometric argument. The problem is linear in the unknown λi and X, so we can
find the least squares solution to this problem by formulating it as

Mv = 0, (9)

2
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with

M =




P1 −x1 0 · · · 0
P2 0 −x2 · · · 0
...

...
...

...
Pn 0 0 · · · −xn


 , (10)

and
vT =

[
XT λ1 λ2 · · · λn

]
. (11)

As before we can find the solution using the singular value decomposition of M .

3 Homography Estimation

In homography estimation we want to find a projective transformation from Pk to Pk, i.e. a homog-
raphy. Usually k = 2 or k = 3. We will describe the problem for k = 2 but the procedure is exactly
the same for any dimension. So given two sets of points ui and vi that are related by a homography
H we want to solve

λiui = Hvi, i = 1 . . . n. (12)

We write

H =



h1
h2
h3


 , (13)

and
uTi = [xi yi 1]. (14)

Here H is a 3× 3 matrix so h1, h2 and h3 are 1× 3 matrices. We can now write our problem as

Mv = 0, (15)

with

M =




vT1 0 0 −x1 0 · · · 0
0 vT1 0 −y1 0 · · · 0
0 0 vT1 −1 0 · · · 0
vT2 0 0 0 −x2 · · · 0
0 vT2 0 0 −y2 · · · 0
0 0 vT2 0 −1 · · · 0
...

...
...

...
...

...
vTn 0 0 0 0 · · · −xn
0 vTn 0 0 0 · · · −yn
0 0 vTn 0 0 · · · −1




, (16)

and
vT =

[
h1 h2 h3 λ1 λ2 · · · λn

]
. (17)

And this can again be solved in a least squares sense using the singular value decomposition ofM . For
n points we have 3n equations and 8+n unknown (remember that H is only determined up to scale),
so we need at least 4 point correspondences to estimate a two-dimensional projective transformation.
For higher dimensions we need a larger number of correspondences, but the procedure to estimate the
homography will be the same.

3.1 Panoramic stitching

As an example of homography estimation we will show how we can stitch together a number of images
taken from the same position. So we assume that we have taken a number of images from the same
location, and only rotated the camera between the images. For ease of notation we will assume that

3
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we have calibrated cameras and that the image coordinates are normalized using the inverse of the
calibration matrices. Since we have taken the images from the same point and we are free to choose
a global coordinate system, we will assume that the camera center is at the origin. This means that
for two cameras and two corresponding image points we have the following system

λ1x1 = [R1 0]

[
X
1

]
, (18)

λ2x2 = [R2 0]

[
X
1

]
. (19)

This gives us {
λ1x1 = R1X
λ2x2 = R2X

⇔
{
X = λ1R

T
1 x1

λ2x2 = R2X
⇔
{

X = λ1R
T
1 x1

λ2x2 = λ1R2R
T
1 x1

. (20)

This means that we can write the last equation as

λx2 = Hx1, (21)

with λ = λ2

λ1
and H = R2R

T
1 . We know see that we can transfer points from the first image plane to

the second by the use of a homography. We know from the previous discussion that we can estimate
this homgraphy from at least four point correspondences. Once we have estimated the homgraphy,
all points in an image can be transferred using this homography. If we have uncalibrated cameras the
only difference is that the homography will be of the following form

H = K2R2R
T
1K
−1
1 . (22)
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Lecture 5: Epipolar Geometry and the Fundamental Matrix

1 Two-View Structure from Motion

In this lecture we will consider the two-view structure from motion problem. That is, given two images
we want to compute both the camera matrices and the scene points such that the camera equations

λixi = P1Xi (1)
λ̄ix̄i = P2Xi, (2)

i = 1, ..., n, are fulfilled. In previous lectures we have considered sub-problems where either the camera
matrices are known (the triangulation problem) or the scene points are known (the resection problem).
Since the camera equations become linear in these two cases we could solve these directly by applying
DLT . The situation becomes more complicated when both the scene points and camera matrices are
unknown. The approach we will take in this lecture formulates a set of algebraic constraints that
involve only the image points and the cameras, thereby eliminating the scene points. The resulting
equations are linear and can be solved using SV D. Once the cameras are known the 3D points can
be computed using triangulation.

1.1 Problem Formulation

Given two sets of corresponding points xi and x̄i, i = 1, .., n our goal is to find camera matrices P1

and P2 such that (1)-(2) are solved. As we observed in lecture 3, if the cameras are uncalibrated the
reconstruction can only be determined uniquely up to an unknown projective transformation. If the
cameras are P1 = [A1 t1] and P2 = [A2 t2] then we can apply the transformation

H =

[
A−11 −A−11 t1

0 1

]
(3)

to the camera equations (1)-(2). The camera matrix P1 is then transformed to

P1H =
[
A1 t1

] [ A−11 −A−11 t1
0 1

]
=
[
I 0

]
. (4)

Therefore, we can always assume that there is a solution where P1 = [I 0] and P2 = [A t].

2 Epipolar Geometry

In this section we will derive the so called epipolar constraints. In the following sections we will use
these constraints to find camera matrices that solve (1)-(2).

We first consider a point x in the first image. The scene points that can project to this image point

all lie on a line (the viewing ray of x) in 3D space, see Figure 1. If we assume that the X =

[
X
1

]
,

where X ∈ R3, are the homogeneous coordinates of a scene point projecting to x, then

λx =
[
I 0

] [ X
1

]
= X. (5)

1
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C
1

C
2

Figure 1: All scene points on the line project to the same point in the left camera.

Therefore the viewing ray of x can be parametrized by

X(λ) =

[
λx
1

]
. (6)

The projection of this line into the second camera is

P2X(λ) =
[
A t

] [ λx
1

]
= λAx + t. (7)

This is a line in the second image, see Figure 2. We refer to this line as the epipolar line of x. Since
all scene points that can project to x are on the viewing ray, all points in the second image that can
correspond x have to be on the epipolar line. This condition is called the epipolar constraint. For
different points x in the first image we get different viewing rays that project to different epipolar
lines. Since the viewing rays all pass through the camera center C1 of the first camera the epipolar
lines will all intersect each other in the projection e2 of the camera center C1, see Figure 2. The
projections of the camera centers e1 and e2 are called the epipoles.

C
1

e
1

e
2

C
2

Figure 2: The projection of the viewing line into the second camera gives an epipolar line.

Exercise 1. Consider the two cameras P = [I 0] and P2 = [A t], where A is invertible. Compute
the epipoles e1 ∼ P1C2, e2 ∼ P2C1 and show that the line λAx + t contains the e2.

The expression λAx + t is a parametrization of the epipolar line of x. We know that a line in P2 can
also be represented by a line equation lTx = 0. To find the vector l we pick two points on the line,
e.g. t and Ax + t and insert into the line equation

{
lT t = 0

lT (Ax + t) = 0
. (8)

2
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These equations tells us that l has to be perpendicular to both t and Ax + t. We can find such an l
using the vector product

l = t× (Ax + t) = t× (Ax). (9)

Since t ∼ e2 we can also write this as e2 × (Ax).

Exercise 2. If P1 = [I 0] and

P2 =




1 1 0 0
1 0 1 0
0 1 0 1


 , (10)

which of the two points x̄1 = (0, 1, 2) and x̄2 = (1, 2, 3) in image 2 could correspond to x = (0, 1, 1) in
image 1?

A cross pruduct y × x is a linear operation on x and can therefore be represented by a matrix [y]×.
If x = (x1, x2, x3) and y = (y1, y2, y3) then their cross product is

y × x = (y2x3 − y3x2, y3x1 − y1x3, y1x2 − y2x1). (11)

In matrix form we can write this



0 −y3 y2
y3 0 −y1
−y2 y1 0




︸ ︷︷ ︸
=[y]×




x1
x2
x3


 =




y2x3 − y3x2
y3x1 − y1x3
y1x2 − y2x1


 (12)

The matrix [y]× is skew symmetric, that is, [y]× = −[y]T×. It is easy to see that for any 3 × 3 skew
symmetric matrix S there is a vector y such that S = [y]×.

With this notation the epipolar line can be written

l = e2 × (Ax) = [e2]×Ax. (13)

The matrix F = [e2]×A is called the fundamental matrix. It maps points in image 1 to lines in image
2. If x̄ corresponds to x then the epipolar constraint can be written

x̄T l = x̄TFx = 0. (14)

Note that F only depends on the cameras and therefore the epipolar constraints only involves the
image points and the camera P2. We will use these constraints to compute F from a number of image
correspondences. Once F has been determined the camera P2 can be extracted.

Exercise 3. Show that if F is a fundamental matrix then FTe2 = 0 and det(F ) = 0.

3 Finding F: The Eight Point Algorithm

Recall that the objective of the two-view structure from motion problem is to find the scene points
and the camera P2. We will see in the next lecture that if the Fundamental matrix is known then P2

can be extracted from it. We now present a simple algorithm for estimating F .

As we saw in the previous section, for each point correspondence xi,x̄i we get one epipolar constraint.

x̄T
i Fxi = 0. (15)

If xi ∼ (xi, yi, zi) and x̄ ∼ (x̄i, ȳi, z̄i) then we can write this as

0 = x̄T
i Fxi = F11x̄ixi + F12x̄iyi + F13x̄izi

+F21ȳixi + F22ȳiyi + F23ȳizi
+F31z̄ixi + F32z̄iyi + F33z̄izi.

(16)

3



Computer Vision Lecture 5 2015-02-04

Therefore each correspondence gives one linear constraint on the entries of F . In matrix form we can
write the resulting system as




x̄1x1 x̄1y1 x̄1z1 . . . z̄1z1
x̄2x2 x̄2y2 x̄2z2 . . . z̄2z2
...

...
...

. . .
...

x̄nxn x̄nyn x̄nzn . . . z̄nzn




︸ ︷︷ ︸
M




F11

F12

F13

...
F33




=




0
0
0
...
0




(17)

This is a linear homogeneous system which we can solve using SVD as in Lecture 3. The matrix
F has 9 entries but the scale is arbitrary and the system therefore has 8 degrees of freedom. Each
correspondence gives one new constraint on F and we therefore need 8 correspondences to solve this
problem.

Note that it is in fact possible to solve the problem with only 7 point correspondences since we also
have the constraint det(F ) = 0. However, this constraint is a polynomial of third order and we cannot
use SVD to solve the resulting system. Therefore we use at least 8 correspondences.

Because of noise the resulting estimation F̃ of the fundamental matrix is not likely to have zero
determinant. Therefore given this estimation we chose the matrix F that solves

min
det(F )=0

‖F̃ − F‖ (18)

(where the norm is the Frobenious/sum-of-squares norm). The solution to this problem is given by
the SVD of F̃ . If

USV T = F̃ , (19)

where S = diag(σ1, σ2, σ3). Then F can be found by setting the smallest singular value σ3 = 0, that
is,

F = Udiag(σ1, σ2, 0)V T . (20)

As was the case with the resection problem, normalization is important for numerical stability. If
for example x1 and x̄1 are both in the order of a 1000 pixels then x1x̄1 ≈ 106 while z1z̄1 = 1. This
makes the matrix MTM very poorly conditioned. To improve the numerics we can use the same
normalization as in Lecture 3 (for both the cameras).

We summarize the different steps of the algorithm here:

• Extract at least 8 point correspondences.

• Normalize the coordinates (see Lecture 3).

• Form M and solve
min
||v||2=1

||Mv||2,

using svd.

• Form the matrix F (and ensure that det(F ) = 0).

• Transform back to the original (un-normalized) coordinates.

• Compute P2 from F (next lecture).

• Compute the scene points using triangulation (see Lecture 4).
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Lecture 6: Camera Computation and the Essential Matrix

1 Computing Cameras From the Fundamental Matrix

In Lecture 5 we considered the two-view structure from motion problem, that is, given a number of
measured points in two images we want to compute both camera matrices and 3D points such that
they project to the measurements. We showed that the 3D points can be eliminated from the problem
by considering the fundamental matrix F . If x is an image point belonging to the fist image and x̄
belongs to the second then there is a 3D point that projects to to these if and only if the epipolar
constraint

x̄TFx = 0 (1)

is fulfilled. Using the projections of 8-scene points we can compute the fundamental matrix by solving
a homogeneous least squares problem (the 8-point algorithm). What remains in order to find a solution
to the two-view structure from motion camera is to compute cameras from F and finally compute the
3D-points.

In general we may assume (see Lecture 5) that the cameras are of the form P1 = [I 0] and P2 =
[A e2] where e2 is the epipole in the second image. Since we know that FTe2 = 0 we can find e2 by
computing the null space of FT . A solution for the second camera is then given by

P2 = [[e2]×F e2] . (2)

To see that these cameras have the fundamental matrix F we verify that their projections fulfill the

epipolar constraint. If X =

[
X
ρ

]
, where X ∈ R3 and ρ ∈ R then the projections in the two cameras

are given by

x ∼
[
I 0

] [X
ρ

]
= X, (3)

x̄ ∼
[
[e2]×F e2

] [X
ρ

]
= [e2]×FX + e2ρ = e2 × (FX) + e2ρ. (4)

Therefore
x̄TFx ∼ (e2 × (FX) + e2ρ)

T
FX = (e2 × (FX))

T
FX + ρeT2 FX. (5)

Since e2×(FX) is a vector that is perpendicular to FX the term (e2 × (FX))
T
FX = 0. Furthermore,

since e2 is in the null space of FT the term ρeT2 FX = ρ(FTe2)TX = 0. Therefore the projections of
these camera matrices will fulfill the epipolar constraints.

Exercise 1. What is the camera center of P2 = [[e2]×F e2]? (Hint: Recall that Fe1 = 0.)

Since there is a projective ambiguity there are many choices for P2. Given that P1 = [I 0] the general
formula for P2 is

P2 =
[
[e2]×F + e2v

T λe2
]
, (6)

where v is some vector in R3 and λ is a non-zero scalar.

Exercise 2. Verify that the projections in P1 = [I 0] and P2 given by (6) fulfill the epipolar constraints
for any v ∈ R3 and λ 6= 0.

1
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Figure 1: Two images of a chair with 14 known point correspondences. Blue ∗ are the image mea-
surements and red o are the reprojections. The 3D points (to the right) look strange because of the
projective ambiguity (note the difference in scale on the axes).

2 Relative Orientation: The Calibrated Case

When solving the relative orientation problem without camera calibration there is, as we saw in Lecture
3, an ambiguity. Basically any projective transformation can be applied to the 3D-points to give a new
solution. Therefore the resulting constructions can often look strange even though the reprojections
are correct (see Figure 1). To remove this ambiguity one has to add additional knowledge about the
solution to the problem. For example, if we have some knowledge about the 3D scene, such as the
distance between a few of the points, then we can apply a transform to the solution that make these
distances correct.

Alternatively we can add knowledge about the cameras. If the inner parameters K1 and K2 are known
we consider the calibrated two-view structure from motion problem. Given two sets of corresponding
points xi and x̄i, i = 1, ..., n and inner parameters K1 and K2 our goal is to find [R1 t1], [R2 t2]
and Xi such that

xi ∼ K1[R1 t1]Xi (7)
x̄i ∼ K2[R2 t2]Xi, (8)

and R1,R2 are rotation matrices.

We can make two simplifications to the problem. First we normalize the cameras by multiplying
equations (7) and (8) with K−11 and K−12 respectively. Furthermore, we apply the euclidean transfor-
mation

H =

[
RT

1 −RT
1 t1

0 1

]
(9)

to the cameras (and H−1 to the 3D points). This gives us the new cameras

P1H =
[
R1 t1

] [RT
1 −RT

1 t1
0 1

]
=
[
I 0

]
(10)

P2H =
[
R2 t2

] [RT
1 −RT

1 t1
0 1

]
=

[
R2R

T
1︸ ︷︷ ︸

=R

−R2R
T
1 t1 − t2︸ ︷︷ ︸
=t

]
. (11)

2
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Therefore we search for a solution to the equations

yi ∼ [I 0]Xi (12)
ȳi ∼ [R t]Xi, (13)

where yi = K−11 xi and ȳi = K−11 x̄i are the normalized image coordinates.

2.1 The Essential Matrix

The fundamental matrix for a pair of cameras of the form [I 0] and [R t] is given by

E = [t]×R, (14)

and is called the Essential matrix. A rotation has 3 degrees of freedom and a translation 3. Since
the scale of the essential matrix does not matter it has 5 degrees of freedom. The reduction in
freedom compared to F , results in extra constraints on the singular values of E. In addition to having
det(E) = 0 the two non-zero singular values have to be equal. Furthermore, since the scale is arbitrary
we can assume that these singular values are both 1. Therefore E has the SVD

E = Udiag([1 1 0])V T . (15)

The decomposition is not unique. We will assume that we have a singular value decomposition where
det(UV T ) = 1. It is easy to ensure this; If we have an SVD as in (15) with det(UV T ) = −1 then we
can simply switch the sign of the last column of V . Alternatively we can switch to −E which then
has the SVD

− E = Udiag([1 1 0])(−V )T . (16)

with det(U(−V )T ) = (−1)3 det(UV T ) = 1. Note however that if we recompute the SVD for −E we
might get another decomposition since it is not unique.

To find the essential matrix we can use a slightly modified 8-point algorithm. From 8 points corre-
spondences we form the M matrix (see Lecture 6) and solve the homogeneous least squares system

min
‖v‖2=1

‖Mv‖2 (17)

using SVD. The resulting vector v can be used to form a matrix Ẽ that does not necessarily have the
right singular values 1, 1, 0. We therefore compute the decomposition Ẽ = USV T and construct an
essential matrix using E = Udiag([1 1 0])V T .1

Since the essential matrix has only 5 degrees of freedom it is possible to find it using only 5 corre-
spondences. However as in the case of the fundamental matrix the extra constraints are non-linear
which makes estimation more difficult. (We will consider this problem in Lecture 7.)

We summarize the steps of the modified 8-point algorithm here:

• Extract at least 8 point correspondences.

• Normalize the coordinates using K−11 and K−12 where K1 and K2 are the inner parameters of
the cameras.

• Form M and solve
min
||v||2=1

||Mv||2,

using SVD.

• Form the matrix E (and ensure that E has the singular values 1, 1, 0).

• Compute P2 from E (next section).

• Compute the scene points using triangulation (see Lecture 4).
1Alternatively E = Udiag([1 1 0])(−V )T if det(UV T ) = −1.
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3 Computing Cameras from E

Once we have determined the essential matrix E we need extract cameras from it. Basically we want
to decompose it into E = SR where S is a skew symmetric matrix and R is a rotation. We will use
the two matrices

W =




0 −1 0
1 0 0
0 0 1


 and Z =




0 1 0
−1 0 0
0 0 0


 . (18)

The matrix W is a rotation and Z is skew symmetric. Furthermore, for these matrices we have that

ZW = diag([1 1 0]) (19)
ZWT = −diag([1 1 0]). (20)

If E has the SVD from (15) we can now find two solutions; E = S1R1, where

S1 = −UZUT , R1 = UWTV T (21)

and E = S2R1, where
S2 = UZUT , R2 = UWV T . (22)

To see that these are valid solutions we first verify that R1 and R2 are rotations. Since

RT
1 R1 = (UWTV T )TUWTV T = VWUTUWTV T = I (23)

R1 is orthogonal. Furthermore,

det(R1) = det(UWTV T ) = det(U) det(WT ) det(V T ) = det(W ) det(UV T ) = 1, (24)

and therefore R1 is a rotation. (Note that if det(UV T ) = −1 then the R1 that we obtain is not a
rotation but a rotation composed with a reflexion and therefore not a valid solution.) That S1 is skew
symmetric is easy to see since

− ST
1 = (UZUT )T = UZTUT = −UZUT = S1. (25)

Finally we see that

S1R1 = −UZUTUWV T = −UZWTV T = −U(−diag([1 1 0]))V T = E, (26)

and therefore S1R1 is a valid decomposition. E = S2R2 can be verified similarly. Furthermore, it can
be shown that these are the only two possibilities for each given E (see Hartley, Zisserman 2004).

When we have determined a decomposition E = SR we need to compute a translation vector t from
S such that [t]× = S. For such a t we have

St = [t]×t = t× t = 0. (27)

Therefore the vector t is in the null space of S. The null space of the two matrices S1 and S2 are the
same and we can find it by looking in the third column of U .

Note that if t is in the null space of S then so is λt. In fact any non-zero λ gives a valid solution since
[λt]×R = λ[t]×R = λE which is also a valid essential matrix for the problem. Different λ corresponds
to rescaling the solution and since there is a scale ambiguity we cannot determine a "true" value of
λ. However the sign of λ is important since it determines whether points are in front of the cameras
or not in the final reconstruction. To make sure that we can find a solution where the points are in
front of both the cameras we therefore test λ = ±1.

If u3 is the third column of U we get the four solutions

P2 = [UWV T u3] or [UWTV T u3] (from λ = 1) (28)
or [UWV T − u3] or [UWTV T − u3] (from λ = −1) (29)

When we have computed these four solutions we compute the 3D points using triangulation for all
the choices of P2 and select the one with where points are in front of both P1 and P2. Figure 2 shows
the four calibrated reconstructions obtained using the images in Figure 1. Only one of them have all
the points in front of both the cameras.

4



Computer Vision Lecture 6 2015-02-05

Figure 2: The 4 solutions when solving calibrated structure from motion for the chair image images
in Figure 1. Only the second one have positive depths.
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Lecture 7: RANSAC and Minimal Solvers

1 The Outlier Problem

In previous lectures we have studied the algebraic equations that govern projective camera systems.
Under the assumption that the data given to us in the form of point correspondences is correct, we have
derived algorithms for approximately solving these in the presence of moderate noise. However, since
correspondences are determined automatically this will not be true in practice. A typical situation
is shown in Figure 1 where correspondences between two images have been determined using SIFT
descriptors. In practice we have to expect that the data contains (at least) a small portion of incorrect
matches. We refer to these as outliers and the rest as inliers.

Figure 1: The Outlier Problem. When automatically detecting correspondences using descriptors such
as SIFT there will always be a portion of incorrect matches. Green lines in the figure correspond to
correct matches and red lines correspond to outliers.

Since the outliers typically do not fulfill the algebraic equations for the particular problem that we are
trying to solve, they can severely degrade the quality of the estimation. Therefore we need a method
for removing these before solving the equations.

2 RANSAC

Random sample consensus (RANSAC) is a method for removing outliers. The idea is simple; If the
number of outliers is small, then if we pick a small subset of the measurements at random, we are
likely to pick an outlier free set.

The outline of the algorithm is as follows:

1. Randomly select a small subset of measurements and solve the problem using only these.

1
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2. Evaluate the error residuals for the rest of the measurements under the solution from 1. The
Consensus Set for this solution is the set of measurements with error residuals less than some
predefined threshold.

3. Repeat a number of times and select the solution that gives the largest consensus set.

The probability of randomly selecting a set of inliers depends on the size of the set and the proportion
of inliers.

Exercise 1. Assume that we want to fit a line to a set of points. We randomly select 2 points and fit
a line to these in each RANSAC iteration. Suppose that 10% of the points are outliers. How many
iterations are required to find at least one set of only inliers with probability p = 95%? You may
assume that the set of points is large such that the portion of outliers do not change when removing
a point. (Hint: First compute the probability of failure.)

Exercise 2. Same question as before but now we select 8 point correspondences to estimate a Funda-
mental matrix.

In practice it is a good idea to run more iterations than what is needed since, because of noise, not all
inlier sets work equally well for estimating the solution. For example in the case of line estimation; if
the two inlier points used to estimate the line are very close to each other then the line estimate can
be very poor due to noise. Therefore the estimation may still generate a small consensus set.

3 Minimal Solvers and Solution of Polynomial Equation Systems

The more measurements we use in each RANSAC iteration the more iterations we need to run for
finding good inlier sets. Therefore it is essential to use as few measurements as possible. Minimal
solvers are a class of algebraic solvers that compute solutions from a minimal amount of data. In
Lecture 6 we computed the Essential matrices from 8 or more point correspondences. However the
essential matrix has only 5 degrees of freedom and a minimal solver for this problem therefore only uses
5 points. The 8-point algorithm is more general in that it works for any number of correspondences
above 8 whereas the minimal solver only works for precisely 5. Still, in the context of a RANSAC
algorithm the minimal solver is preferable.

Minimal solvers often need to find solutions to systems of non-linear equations. Next we will present
a method for solving polynomial systems of equations. The idea is to transform the problem into an
eigenvalue problem.

For simplicity we will first consider a system of two equations in two variables.
{
x2 − y − 3 = 0
xy − x = 0.

(1)

By factoring out x from the second equation it can be seen that the system has three roots, namely
(0,−3), (2, 1) and (−2, 1).

In the following sections we will present a method for automatically finding these roots, that work
under fairly general conditions. A polynomial p of degree n can represented using a monomial vector
m(x, y) containing all monomials of degree at most n and a coefficient vector cp. For example, the
polynomial p(x, y) = 1 + 2x+ 3y + 4x2 + 5xy + 6y2 can be represented by cTpm(x, y), where

cp =




1
2
3
4
5
6




and m(x, y) =




1
x
y
x2

xy
y2



. (2)

2
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Using the monomials inm(x, y) and a coefficient vector we can represent any second degree polynomial.
The collection of monomials in m(x, y) is called a monomial basis. The approach we will present is
based on the observation that if we insert a root (x0, y0) in the monomial vector m(x, y) then the
resulting vector can be found by computing eigenvectors of a particular matrix.

3.1 The Action Matrix

We define Tx to be an operator that takes a polynomial p(x, y) and multiplies it with x. If we apply
Tx to the three monomials 1, x, y we get

1 7→ x (3)
x 7→ x2 (4)
y 7→ xy. (5)

Now let us assume that (x0, y0) is a solution to (1). The result of applying Tx to the above monomials
can then be simplified if we insert (x0, y0),

1 7→ x0 (6)
x0 7→ x20 = y0 + 3 (7)
y0 7→ x0y0 = x0. (8)

Now suppose that a first order polynomial p is given by the coefficient vector cp = (c1p, c
2
p, c

3
p) and

monomial vector m(x, y) = (1, x, y). By q(x, y) we denote the result of applying Tx to p(x, y). Because
of the reductions (6)-(8) we get

q(x0, y0) = c1px0 + c2p(y0 + 3) + c3px0 = 3c2p1 + (c1p + c3p)x0 + c2py0. (9)

We see that if (x0, y0) solves (1) then because of the reductions we can represent q(x0, y0) using the
vector m(x0, y0) and a coefficient vector cq. The coefficient vector can be found by identifying the
monomials in (9), 


c1q
c2q
c3q


 =




3c2p
c1p + c3p
c3q


 =




0 3 0
1 0 1
0 1 0




︸ ︷︷ ︸
=Mx




c1p
c2p
c3p


 . (10)

The matrix Mx is called the action matrix for the mapping Tx. Given the coefficients of p(x, y) it
computes the coefficients of x0p(x0, y0) provided that (x0, y0) solves the system (1). Under certain
conditions it is possible to compute the roots of the system from this matrix.

3.2 Finding the Roots.

Next we will show that the roots of the system (1) are eigenvalues to the action matrix Mx. For any
polynomial p we have

x0p(x0, y0) = x0c
T
pm(x0, y0). (11)

Furthermore,

x0p(x0, y0) = q(x0, y0) = cTq m(x0, y0) = (Mxcp)
Tm(x0, y0) = cTpM

T
x m(x0, y0). (12)

Since this is true for any degree one polynomial (and therefore any coefficient matrix cq of size 3× 1)
we must have that

x0m(x0, y0) = MT
x m(x0, y0). (13)

Therefore we can conclude that if (x0, y0) is a root of (1) then m(x0, y0) is an eigenvector of MT
x with

eigenvalue x0.

3
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Exercise 3. Verify that m(x0, y0) is an eigenvector of

MT
x =




0 1 0
3 0 1
0 1 0


 (14)

for all the three roots (0,−3), (2, 1) and (−2, 1) of the system (1).

3.3 Algorithm

Based on the above derivations we now give an algorithm for finding the roots of a system of polyno-
mials.

1. Select a basis of monomials.

2. Apply the mapping Tx to the monomial basis and reduce the result until the resulting expressions
consists only of monomials from the basis.

3. Construct the action matrix Mx.

4. Compute eigenvalues and eigenvectors of MT
x .

5. Extract solutions from the eigenvectors.

The theory from Section 3.2 says that the solutions will be among the eigenvectors. It does however
not guarantee that there are no other eigenvectors. Therefore we might have to check the extracted
solutions by inserting into the system of equations.

Furthermore, if the eigenvalues are not distinct there might be infinitely many eigenvectors to search.
For example, if the x-coordinate of two of the roots are the same thenMT

x will have a double eigenvalue.
If we cannot find the correct eigenvector then the eigenvalue will still give us some information, since
it is not possible to have a root with x-coordinate that is not an eigenvalue MT

x .

3.3.1 What degree of polynomials do we need?

In the above example we only considered monomials of degree 1 in (6)-(8). This worked since all the
equations resulting from multiplication with x could be reduced to monomials of degree 1. Therefore
we could represent both p(x0, y0) and x0p(x0, y0) with the monomial basis 1, x0, y0. If this is possible
or not depends on the system of equations. In general the basis has to be selected large enough so
that all the reductions result in terms that are present in the basis.

The theory still holds even if we should not select the smallest possible monomial basis. For the
system (1) we can consider all second degree polynomials. For example we can use the reductions:

1 7→ x0 (15)
x0 7→ x20 (16)
y0 7→ x0y0 (17)
x20 7→ x30 = x0(y0 + 3) = x0y0 + 3x0 (18)

x0y0 7→ x20y0 = x20 (19)
y20 7→ x0y

2
0 = x0y0. (20)

Here we made reductions so that all the terms on the right hand side have degree 2 or less. Since
all the monomials on the right hand side are also present on the left hand side we can construct an
action matrix from these reductions. Note that some of these terms can be reduced further. However,
the theory from Section 3.2 holds regardless if we do this or not. Further reduction would result in a
different action matrix.
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The resulting action matrix is in this case the 6× 6 matrix

Mx =




0 0 0 0 0 0
1 0 0 3 0 0
0 0 0 0 0 0
0 1 0 0 1 0
0 0 1 1 0 1
0 0 0 0 0 0



. (21)

The transpose of this matrix has eigenvalues λ = −2, 0, 2 which agrees with our roots. The eigenvalue
0 does however have multiplicity four and therefore there is no unique eigenvector to this value. Hence
we might not be able to find the solution (0,−3) using the eigenvectors of Mx.

3.3.2 Using other mappings than Tx.

In section 3.1 we chose to construct the action matrix for multiplication with x. However, in principle
any mapping Tq(x,y) could be used. The choice of q does however affect the reductions (6)-(8). For
example suppose that we use Ty instead. We get

1 7→ y0 (22)
x0 7→ x0y0 (23)
y0 7→ y20 (24)
x20 7→ x20y0 = x20 (25)

x0y0 7→ x0y
2
0 = x0y0 (26)

y20 7→ y30 = y20(x20 − 3) = x20 − 3y20 . (27)

Here it does not seem possible to use only 1st order monomials since the degree of y20 can not be
reduced further using the equations in (1). (It is however possible to generate new equations from (1)
that can be used for further reduction. However this is more complicated and we do not pursue this
further.)

The resulting action matrix is in this case the 6× 6 matrix

My =




0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 1 0 1
0 1 0 0 1 0
0 0 1 0 0 −3



. (28)

The transpose of this matrix has eigenvalues −3, 1, 0. Since there are two roots with y coordinate
1 the eigenvalue 1 will have at least multiplicity two. Therefore we can only extract the solution to
(0,−3) from this eigenspace.

A simple heuristic for generating action matrices with more distinct eigenvalues is to use a mapping
Tq(x,y) where q(x, y) is a random combination of x and y. For example 0.5MT

x + 0.5MT
y (with Mx and

My from (21) and (28) respectively) has five distinct eigenvalues.

Another trick that modifies the eigenspace is to drop some of the monomials. In (28) rows 1 and 2
are all zeros. This means that 1 and x0 do not occur in any of the expressions after the reductions.
Therefore we can remove these from the system. The new action matrix is

My =




0 0 0 0
0 1 0 1
0 0 1 0
1 0 0 −3


 . (29)

Note however, that the monomial vector is now m(x, y) = (y, x2, xy, y2) and therefore the eigenvector
will not contain the value of x0.

5



Computer Vision Lecture 7 2015-02-11

4 The 5-point solver

In this section we will construct a minimal solver for the problem of finding an Essential matrix. Given
5 point correspondences we will use the following equations:

x̄Ti Exi = 0, i = 1, ..., 5. (30)
det(E) = 0, (31)

2EETE − trace(EET )E = 0. (32)

The third constraint (32) actually consists of 9 polynomial equations since it is a matrix expression.
Any matrix E that has a singular value decomposition of the form

E = U




σ 0 0
0 σ 0
0 0 0




︸ ︷︷ ︸
=S

V T (33)

will fulfill this constraint. This can be seen by inserting (33) into (32). Furthermore, it can be shown
that any matrix that fulfills (32) must have a singular value decomposition as in (33).

To find the solutions of (30)-(32) we will first use (30) to reduce the number of variables. We construct
an M matrix of size 5 × 9 from the 5 epipolar constraints, similar to what we did in Lecture 6. In
contrast to the eight point algorithm, the M matrix is in itself not enough to determine all the 8
parameters of the essential matrix since it only represents 5 equations. Since the dimension of the
nullspace of M is 4 we can find 4 linearly independent vectors vi, i = 1, ..., 4 such that

M(α1v1 + α2v2 + α3v3 + α4v4) = 0, (34)

for any choice of coefficients α1, ..., α4. Reshaping these vectors into matrices we get

x̄Ti (α1E1 + α2E2 + α3E3 + α4E4)xi = 0, i = 1, ..., 5. (35)

What remains is to find the coefficients α1, ..., α4 such that (31) and (32) are fulfilled. Note that since
the scale of the essential matrix is arbitrary, we can assume that (for example) α1 = 1.

To determine the coefficients α2, ..., α4 we will use the method presented in the previous section.
Equation (32) consists of 9 third order polynomials in α2, α3, α4. In addition we have (31) which
consists of 1 third degree polynomial. To construct the action matrix we first need to compute the
coefficients of these polynomials. These can easily be determined by rewriting (32)

2EETE − trace(EET )E =
4∑

i=1

4∑

j=1

4∑

k=1

αiαjαk
(
2EiE

T
j Ek − trace(EiETj )Ek

)
. (36)

For each of the 9 constraints in (32) we can extract coefficients for the monomial αiαjαk using this
expression. Note that the monomials occur several times in this sum. For example, (i, j, k) = (1, 1, 2)
and (i, j, k) = (1, 2, 1) both yield αiαjαk = α2

1α2 = α2. There are 64 terms in the sum but only 20
distinct monomials. The determinant constraint can be handled in the same way using the expression

det(E) =

4∑

i=1

4∑

j=1

4∑

k=1

αiαjαk
(
ei11e

j
22e

k
33 + ei12e

j
23e

k
31 + ei13e

j
21e

k
32

−ei11ej23ek32 − ei12ej21ek33 − ei13ej22ek31
)
, (37)

where eiab is element (a, b) in matrix Ei. In summary we construct a 10× 20 matrix that contains the
coefficients of all the 10 polynomials. The columns of this matrix correspond to the coefficients of the
monomials:

{α3
4, α3α

2
4, α

2
3α4, α

3
3, α2α

2
4, α2α3α4, α2α

2
3, α

2
2α4, α

2
2α3, α

3
2, α

2
4, α3α4, α

2
3, α2α4, α2α3, α

2
2, α4, α3, α2, 1}.

(38)
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Figure 2: Shape of the 10 × 20 coefficient matrix before (left) and after elimination (right). A ’*’
means the element is non-zero.

The 10 first monomials are of degree 3 and the rest are of lower degree. If we modify the coefficient
matrix by performing Gaussian elimination we can determine reductions for each of these terms,
see Figure 2. For example, after elimination, the first row of the matrix only contains α3

4 from the
third order monomials and can therefore be used to replace this term with lower order terms. To
create an action matrix we use the 10 equations represented by the new coefficient matrix to compute
reductions of all the third order monomials. In this case it does not matter if we use Tα2

, Tα3
or Tα4

,
since reductions to second order or less for all third order monomials are availible in the modified
coefficient matrix.

In summary the 5-point solver consists of the following steps:

1. Construct the 5 × 9 matrix M from the 5 point correspondences. (Note that the image points
should be normalized as in Lecture 6.)

2. Compute the 4 vectors that span the nullspace ofM and reshape them to the matrices E1, E2, E3, E4.

3. Using the expressions (36) and (37) compute coefficients for all monomials and construct the
10× 20 coefficient matrix. (The monomial order does not have to be the same as (38), however
the first 10 terms needs to be the 3rd order monomials.)

4. Perform Gaussian elimination on the coefficient matrix.

5. Construct the action matrix for either Tα2 , Tα3 or Tα4 using the reductions available in the
modified coefficient matrix.

Figure 3 shows a comparison between the 5-point solver and the 8-point solver. For the pair of images
depicted in the first row of the figure we apply a 1000 iterations of RANSAC. In the histograms on
the second row we plot the size of the consensus set in each iteration. It can be seen that the 5-point
solver generally finds consensus sets with a larger number of inliers.

7
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(a) (b) (c)

Figure 3: First row: The best solution obtained from the 5-point solver. Yellow ’*’ is an image
point, green ’o’ is the reprojection of an inlier and red ’o’ is a reprojection of an outlier. Second row:
Histogram over the size of the consensus set in each iteration of a 1000-iteration-RANSAC, using (a)
- 5 points, (b) - 8 points and (c) - 10 points.
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Lecture 8: Model Fitting

1 Noise Models

In Lecture 7 we studied the RANSAC approach for removing incorrect point correspondences. Once
these outliers have been removed we still have to deal with noise in the measurements. Since the
appearance of a patch changes when the viewpoint changes, exact positioning of corresponding points
is not possible, see Figure 1,. Therefore, our point measurements will always be corrupted by noise of
various forms and levels.

Figure 1: Two patches extracted from images with slightly different viewpoint. Exact localization
of corresponding points is made difficult because of slight appearance differences and limited image
resolution.

In Lectures 3,4,5 and 6 we solved various problems using linear formulations for approximately solving
the governing algebraic equations. While this is an easy approach it does in general not give the "best"
possible fit to the data. In this lecture we will derive formulations that gives the "best" fit under the
assumption of Gaussian noise. The resulting problems are in general more difficult to solve than
the formulations that we have used previously. In many cases they can only be locally optimized.
Therefore the linear approaches are still very useful since they provide an easy way of creating a
starting solution.

2 Line Fitting

What is meant by the "best" fit depends on the particular noise model. In this section we will consider
two different noise models and show that they lead to different optimization criteria. For simplicity
we will consider the problem of line fitting since this leads to closed form solutions.

1
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2.1 Linear Least Squares

Suppose that (xi, yi) are measurements of 2D-points belonging to a line y = ax+ b. Furthermore, we
assume that yi is corrupted by Gaussian noise, that is,

yi = ỹi + εi (1)

where εi ∈ N (0, 1) (Gaussian noise with mean 0 and standard deviation 1) and ỹi is the true y-
coordinate. Our goal is to estimate the line parameters a and b for which the measurements yi are
most likely. Since εi ∈ N (0, 1), its probability density function is

p(εi) =
1√
2π
e−ε

2
i /2. (2)

Furthermore, if we assume that the εi, i = 1, ..., n are independent of each other then their joint
distribution is

p(ε) =

n∏

i=1

p(εi), (3)

where ε = (ε1, ε2, ..., εn). Since εi = yi − ỹi we can compute the likelihood of the measurements by

p(ε) =

n∏

i=1

p(εi) =

n∏

i=1

p(yi − ỹi) =

n∏

i=1

p(yi − (axi + b)) =

n∏

i=1

1√
2π
e−(yi−(axi+b))

2/2. (4)

We now want to find the the line parameters a and b that make these measurements most likely. To
simplify the maximization we maximize the logarithm of the likelihood

log

(
n∏

i=1

p(εi)

)
= −

n∑

i=1

(yi − (axi + b))2

2
+

n∑

i=1

log

(
1√
2π

)
. (5)

Since the second term does not depend on a of b this is the same as minimizing
n∑

i=1

(yi − (axi + b))2. (6)

In matrix form we can write this as
∥∥∥∥∥∥∥∥∥∥∥∥∥∥




x1 1
x2 1
...

...
xn 1




︸ ︷︷ ︸
=A

(
a
b

)
−




y1
y2
...
yn




︸ ︷︷ ︸
=B

∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

. (7)

The minimum of this expression can be computed using the normal equations
(
a
b

)
= (ATA)−1ATB, (8)

which we will derive in Lecture 9. The geometric interpretation of (6) is that under this noise model
the vertical distance between the line and the measurement should be minimized, see Figure 2.

2.2 Total Linear Least Squares

Next we will assume that we have noise in both coordinates, that is,
(
xi
yi

)
=

(
x̃i
ỹi

)
+ δi, (9)

2
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Figure 2: Left: The vertical distances between the line and the measured points are minimized in (6).
In contrast, the minimal distances between the line and the measured points are minimized in (12).

where δi ∈ N (0, I) and ax̃i + bỹi = c. The δi now belong to a two dimensional normal distribution
with probability density function

p(δi) =
1

2π
e−‖δi‖

2/2. (10)

The log likelihood function is

n∑

i=1

log(p(δi)) = −
n∑

i=1

(xi − x̃i)2 + (yi − ỹi)2
2

+
n∑

i=1

log(
1

2π
). (11)

Therefore, to maximize the likelihood we need to minimize

n∑

i=1

((xi − x̃i)2 + (yi − ỹi)2), (12)

where ax̃i + bỹi = c. The point (x̃i, ỹi) can be any point on the line, however since we are minimizing
(12) we can restrict it to be the closest point on the line. The expression (12) then becomes the
distance between (xi, yi) and the line. This distance can be expressed using the distance formula as

|axi + byi + c|
a2 + b2

. (13)

Without loss of generality we ca assume that a2 + b2 = 1, and therefore we need to solve

min
n∑

i=1

(axi + byi + c)2 (14)

s.t. a2 + b2 = 1. (15)

This problem is often referred to as the total linear least squares problem.

2.2.1 Solving the Total Least Squares Problem

To solve (14),(15) we first take derivatives with respect to c. This shows that the the optimal solution
must fulfill

c = −(ax̄+ bȳ), (16)

3
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where x̄ and ȳ are the mean values

(x̄, ȳ) =
1

n

n∑

i=1

(xi, yi). (17)

Substituting into (14) we get

min

m∑

i=1

(a(xi − x̄) + b(yi − ȳ))2 (18)

such that 1− (a2 + b2) = 0. (19)

By forming the matrix

M =
m∑

i=1

(
(xi − x̄)2 (xi − x̄)(yi − ȳ)

(xi − x̄)(yi − ȳ) (yi − ȳ)2

)
, (20)

we can write this problem as

min tTMt (21)
such that 1− tT t = 0, (22)

where t is a 2× 1 vector containing a and b. This is a constrained optimization problem of the type

min f(t) (23)
such that g(t) = 0. (24)

According to Persson-Böiers, "Analys i flera variabler" and the method of Lagrange multipliers the
solution of such a system has to fulfill

∇f(t) + λ∇g(t) = 0. (25)

Therefore the solution of (21)-(22) must fulfill

2Mt+ λ(−2t) = 0⇔Mt = λt. (26)

That is, the solution t has to be an eigenvector of the matrixM . Furthermore, inserting into (21), and
using that tT t = 1 we see that it has to be the eigenvector corresponding to the smallest eigenvalue.

3 The Maximum Likelihood Solution for Camera Systems

In this section we derive the maximum likelihood estimator for our class projection problems. Suppose
the 2D-point xij = (x1ij , x

2
ij) is a projection in regular Cartesian coordinates of the 3D-point Xj in

camera Pi. The projection in regular coordinates can be written
(
P 1
i Xj

P 3
i Xj

,
P 2
i Xj

P 3
i Xj

)
, (27)

where P 1
i , P

2
i , P

3
i are the rows of the camera matrix Pi. Also we assume that the observations are

corrupted by Gaussian noise, that is,

(x1ij , x
2
ij) =

(
P 1
i Xj

P 3
i Xj

,
P 2
i Xj

P 3
i Xj

)
+ δij , (28)

and δij is normally distributed with covariance I. The probability density function is then

p(δij) =
1

2π
e−

1
2 ||δij ||2 . (29)

4
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Similarly to Section 2.2 we now see that the model configuration that maximizes the likelihood of the
obtaining the observations xij = (x1ij , x

2
ij) is obtained by solving

min

n∑

i=1

m∑

j=1

∥∥∥∥
(
x1ij −

P 1
i Xj

P 3
i Xj

, x2ij −
P 2
i Xj

P 3
i Xj

)∥∥∥∥
2

. (30)

where n is the number of cameras and m is the number of scene points. The geometric interpretation
of the above expression is that the distance between the projection and the measured point in the
image should be minimized, see Figure 3. Note that it does not matter which of the variables Pi and
Xi we consider as unknowns, it is always the reprojection error that should be minimized.

C

x

PX

X

Figure 3: Geometric interpretation of the maximum likelihood estimate for projection problems. The
dashed distance should be minimized.

3.1 Affine Cameras

In general the maximum likelihood estimator (30) can only be solved using local iterative methods.
However in the special case of affine cameras there is a closed form solution. An affine camera is a
camera where the third row of P , P 3 = [0 0 0 t3]. Since the scale of the camera matrix is arbitrary
we may assume that t3 = 1, and therefore the camera matrix has the form

P =

[
A t
0 1

]
, (31)

where A is a 2 × 3 matrix and t is a 2 × 1 vector. If we use regular Cartesian coordinates for both
image points and scene points the camera equations can be simplified. If xij is the projection of the
scene point Xj in the affine cameras Pi then the projection can be written

xij = AiXj + ti. (32)

To find he maximum likelihood estimate we therefore need to solve

min
n∑

i=1

m∑

j=1

‖xij −AiXj + ti‖2. (33)

Dy differentiating with respect to ti it can be seen that the optimal ti is given by

ti = x̄i −AiX̄,

where X̄ = 1
m

∑
j Xj and x̄i = 1

m

∑
j xij . To simplify the problem we therefore change coordinates so

that all these mean values are zero by translating all image points and scene points. Using x̃ij = xij−x̄i
and X̃i = Xi − X̄, gives the simplified problem

min
∑

ij

||x̃ij −AiX̃j ||2. (34)
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In matrix form we can write this as

min

∥∥∥∥∥∥∥∥∥∥∥∥∥∥




x̃11 x̃12 . . . x̃1m
x̃21 x̃22 . . . x̃2m
...

...
. . .

...
x̃n1 x̃n2 . . . x̃nm




︸ ︷︷ ︸
M

−




A1

A2

...
An



[
X̃1 X̃2 . . . X̃m

]

︸ ︷︷ ︸
rank 3 matrix

∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

. (35)

Since the Ai has only 3 columns the second term will be rank 3 matrix. Thus our problem is to find
the matrix of rank 3 that best approximates M . The best approximating matrix can be found by
computing the SVD of M and setting all but the first 3 singular values to zero.

We summarize the algorithm for affine cameras here:

1. Re-center all images so that the center of mass of the image points is zero in each image.

2. Form the measurement matrix M .

3. Compute the SVD:
M = USV T . (36)

4. A solution can be found by extracting the cameras from U(:, 1 : 3) and the structure from
S(1 : 3, 1 : 3) ∗ V (:, 1 : 3)′.

5. Transform back the solution to the original image coordinates.

Note that the approach only works when all points are visible in all images. Furthermore, the camera
model is affine, which is a simplification. This is often a good approximation when the scene point
have roughly the same depth.
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