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Content of the Lecture

• Deterministic Data.

• Random Data.

• Characteristics of Random Data.

• Characterization of measurement systems.

• Static and Dynamic characterization.



Deterministic versus 
Random Data
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Figure 1.1 Simple spring mass system. 

There are many physical phenomena in practice that produce data that can be 
represented with reasonable accuracy by explicit mathematical relationships. For 
example, the motion of a satellite in orbit about the earth, the potential across a 
condenser as it discharges through a resistor, the vibration response of an unbalanced 
rotating machine, and the temperature of water as heat is applied are all basically 
deterministic. However, there are many other physical phenomena that produce data 
that are not deterministic. For example, the height of waves in a confused sea, the 
acoustic pressures generated by air rushing through a pipe, and the electrical output of 
a noise generator represent data that cannot be described by explicit mathematical 
relationships. There is no way to predict an exact value at a future instant of time. 
These data are random in character and must be described in terms of probability 
statements and statistical averages rather than by explicit equations. 

The classification of various physical data as being either deterministic or random 
might be debated in many cases. For example, it might be argued that no physical data 
in practice can be truly deterministic because there is always a possibility that some 
unforeseen event in the future might influence the phenomenon producing the data in 
a manner that was not originally considered. On the other hand, it might be argued that 
no physical data are truly random, because an exact mathematical description might 
be possible if a sufficient knowledge of the basic mechanisms of the phenomenon 
producing the data were available. In practical terms, the decision of whether physical 
data are deterministic or random is usually based on the ability to reproduce the data 
by controlled experiments. If an experiment producing specific data of interest can be 
repeated many times with identical results (within the limits of experimental error), 
then the data can generally be considered deterministic. If an experiment cannot be 
designed that will produce identical results when the experiment is repeated, then the 
data must usually be considered random in nature. 

Various special classifications of deterministic and random data will now be 
discussed. Note that the classifications are selected from an analysis viewpoint and do 
not necessarily represent the most suitable classifications from other possible view-
points. Further note that physical data are usually thought of as being functions of time 
and will be discussed in such terms for convenience. Any other variable, however, can 
replace time, as required. 

Deterministic Data
• Any observed data 

representing a physical 
phenomenon can be broadly 
classified as being either 
deterministic or 
nondeterministic.

• Deterministic data are those 
that can be described by an 
explicit mathematical 
relationship.
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Classification of Deterministic Data

(Periódico
arbitrario)
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Figure 1.3 Time history and spectrum of sinusoidal data. 

The frequency and period are related by 

Note that the frequency spectrum in Figure 1.3 is composed of an amplitude 
component at a specific frequency, as opposed to a continuous plot of amplitude 
versus frequency. Such spectra are called discrete spectra or line spectra. 

There are many examples of physical phenomena that produce approximately 
sinusoidal data in practice. The voltage output of an electrical alternator is one example; 
the vibratory motion of an unbalanced rotating weight is another. Sinusoidal data 
represent one of the simplest forms of time-varying data from the analysis viewpoint. 

1.2.2 Complex Periodic Data 

Complex periodic data are those types of periodic data that can be defined math-
ematically by a time-varying function whose waveform exactly repeats itself at 
regular intervals such that 

As for sinusoidal data, the time interval required for one full fluctuation is called the 
period Tp. The number of cycles per unit time is called the fundamentalfrequency j \ . A 
special case for complex periodic data is clearly sinusoidal data, where f\ =/0. 

With few exceptions in practice, complex periodic data may be expanded into a 
Fourier series according to the following formula: 

x{t) — x(t �  nTp) �  = 1 , 2 , 3 , . . . (1.5) 

oo 
x(t) — + ^ ^ ( � �  cos 2nnf\t + bn sin2%nf\t) 

2 n=l 
(1.6) 

where 

0 , 1 , 2 , . . . 

1 , 2 , 3 , . . . 

Sinusoidal
x(t) = X sin(2⇡f0t+ �)

Discrete spectra

f0 =
1

Tp
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An alternative way to express the Fourier series for complex periodic data is 

oo 

x{t) =� 0+� � �  cos{2nnfi �-� � ) (1.7) 

n = l 

where 

X 0 = a0/2 

Xn = y/aJ+bJ n = l , 2 , 3 , . . . 

0„ = t a n - 1 (£>„/««) n = l , 2 , 3 , . . . 
In words, Equation (1.7) says that complex periodic data consist of a static component 
Xq and an infinite number of sinusoidal components called harmonics, which have 
amplitudes XN and phases � � . The frequencies of the harmonic components are all 
integral multiples o f / j . 

When analyzing periodic data in practice, the phase angles � �  are often ignored. 
For this case, Equation (1.7) can be characterized by a discrete spectrum, as illustrated 
in Figure 1.4. Sometimes, complex periodic data will include only a few components. 
In other cases, the fundamental component may be absent. For example, suppose a 
periodic time history is formed by mixing three sine waves that have frequencies of 60, 
75, and 100 Hz. The highest common divisor is 5 Hz, so the period of the resulting 
periodic data is TP = 0.2 s. Hence, when expanded into a Fourier series, all values of XN 

are zero except for �  = 12, �  = 15, and �  = 20. 
Physical phenomena that produce complex periodic data are far more common 

than those that produce simple sinusoidal data. In fact, the classification of data as 
being sinusoidal is often only an approximation for data that are actually complex. For 
example, the voltage output from an electrical alternator may actually display, under 
careful inspection, some small contributions at higher harmonic frequencies. In other 
cases, intense harmonic components may be present in periodic physical data. For 
example, the vibration response of a multicyclinder reciprocating engine will usually 
display considerable harmonic content. 

Amplitude 
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�  
Xs 
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Figure 1.4 Spectrum of complex periodic data. 

• Frequency 

Complex Periodic
(Arbitrario)

x(t) = X(t± nTp), n = 1, 2, 3, . . .

f1 =
1

Tp

Data consists of a static component 
X0 and an infinite number of 
sinusoidal components called 
harmonics. integral multiples of f1.
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1.2.3 Almost-Periodic Data 

In Section 1.2.2, it is noted that periodic data can generally be reduced to a series of 
sine waves with commensurately related frequencies. Conversely, the data formed by 
summing two or more commensurately related sine waves will be periodic. However, 
the data formed by summing two or more sine waves with arbitrary frequencies 
generally will not be periodic. Specifically, the sum of two or more sine waves will be 
periodic only when the ratios of all possible pairs of frequencies form rational 
numbers. This indicates that a fundamental period exists that will satisfy the 
requirements of Equation (1.5). Hence, 

x(t) = Xi sin(2r + 0 i ) + X 2 s i n ( 3 / + 0 2 ) + X 3 s i n ( 7 i + 03) 

is periodic because | , � , and �  are rational numbers (the fundamental period is Tp=\). 
On the other hand, 

x(t) =Xi sin(2r + 0 1 ) + X 2 S i n ( 3 r + 0 2 ) + X 3 s i n ( v / 5 O r + 0 3 ) 

is not periodic because 2/\/50 and 3 / v/50 are not rational numbers (the fundamental 
period is infinitely long). The resulting time history in this case will have an almost-
periodic character, but the requirements of Equation (1.5) will not be satisfied for any 
finite value of Tp. 

Based on these discussions, almost-periodic data are those types of nonperiodic 
data that can be defined mathematically by a time-varying function of the form 

� (� =� � � � � (2� /� � + � � ) (1.8) 
n = 1 

where fn/fm �  rational number in all cases. Physical phenomena producing almost-
periodic data frequently occur in practice when the effects of two or more unrelated 
periodic phenomena are mixed. A good example is the vibration response in a 
multiple-engine propeller airplane when the engines are out of synchronization. 

An important property of almost-periodic data is as follows. If the phase angles 0„ 
are ignored, Equation (1.8) can be characterized by a discrete frequency spectrum 
similar to that for complex periodic data. The only difference is that the frequencies of 
the components are not related by rational numbers, as illustrated in Figure 1.5. 
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rXi 

frequency 

Figure 1.5 Spectrum of almost-periodic data. 

No relation



Transient Nonperiodic Data
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Figure 1.6 Illustrations of transient data. 

1.2.4 Transient Nonperiodic Data 

Transient data are defined as all nonperiodic data other than the almost-periodic data 
discussed in Section 1.2.3. In other words, transient data include all data not 
previously discussed that can be described by some suitable time-varying function. 
Three simple examples of transient data are given in Figure 1.6. 

Physical phenomena that produce transient data are numerous and diverse. For 
example, the data in Figure 1.6(a) could represent the temperature of water in a kettle 
(relative to room temperature) after the flame is turned off. The data in Figure 1.6(b) 
might represent the free vibration of a damped mechanical system after an excitation 
force is removed. The data in Figure 1.6(c) could represent the stress in an end-loaded 
cable that breaks at time c. 

An important characteristic of transient data, as opposed to periodic and almost-
periodic data, is that a discrete spectral representation is not possible A continuous 
spectral representation for transient data can be obtained in most cases, however, from 
a Fourier transform given by 

x(f) = x(t)e-J27lftdt (1.9) 

The Fourier transform X(f) is generally a complex number that can be expressed in 
complex polar notation as 

� �/) = \m\e -J6if) 

Here, \X(f)\ is the magnitude of X(f) and #(/) is the argument. In terms of the 
magnitude \X(f)\, continuous spectra of the three transient time histories in 
Figure 1.6 are as presented in Figure 1.7. Modern procedures for the digital 
computation of Fourier series and finite Fourier transforms are detailed in 
Chapter 11. 
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Figure 1.7 Spectra of transient data. 

1.3 CLASSIFICATIONS OF RANDOM DATA 

As discussed earlier, data representing a random physical phenomenon cannot be 
described by an explicit mathematical relationship because each observation of the 
phenomenon will be unique. In other words, any given observation will represent only 
one of many possible results that might have occurred. For example, assume the 
output voltage from a thermal noise generator is recorded as a function of time. A 
specific voltage time history record will be obtained, as shown in Figure 1.8. If a 
second thermal noise generator of identical construction and assembly is operated 
simultaneously, however, a different voltage time history record would result. In fact, 
every thermal noise generator that might be constructed would produce a different 
voltage time history record, as illustrated in Figure 1.8. Hence, the voltage time 
history for any one generator is merely one example of an infinitely large number of 
time histories that might have occurred. 

A single time history representing a random phenomenon is called a sample 
function (or a sample record when observed over a finite time interval). The collection 
of all possible sample functions that the random phenomenon might have produced is 
called a random process or a stochastic process. Hence, a sample record of data for a 
random physical phenomenon may be thought of as one physical realization of a 
random process. 

Random processes may be categorized as being either stationary or nonstationary. 
Stationary random processes may be further categorized as being either ergodic or 
nonergodic. Nonstationary random processes may be further categorized in terms of 

Continuous spectral 
representation.

How do you approximate 
sampling?



Classification of Random Data
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Figure 1.8 Sample records of thermal noise generator outputs. 

specific types of nonstationary properties. These various classifications of random 
processes are schematically illustrated in Figure 1.9. The meaning and physical 
significance of these various types of random processes will now be discussed in broad 
terms. More analytical definitions and developments are presented in Chapters 5 
and 12. 

1.3.1 Stationary Random Data 

When a physical phenomenon is considered in terms of a random process, the properties 
of the phenomenon can hypothetically be described at any instant of time by computing 

Stationary 

I 
Nonstationary 

Ergodic Nonergodtc 
Special 

classifications of 
nonstationarrty 

Figure 1.9 Classifications of random data. 

Random Data
• A single time history 

representing a random 
phenomenon is called a 
sample function (or a sample 
record when observed over a 
finite time interval).

• The collection of all possible 
sample functions that the 
random phenomenon might 
have produced is called a 
random process or a 
stochastic process. 
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Figure 1.10 Ensemble of time history records defining a random process. 

average values over the collection of sample functions that describe the random process. 
For example, consider the collection of sample functions (also called the ensemble) that 
forms the random process illustrated in Figure 1.10. The mean value (first moment) of the 
random process at some ti can be computed by taking the instantaneous value of each 
sample function of the ensemble at time ri, summing the values, and dividing by the 
number of sample functions. In a similar manner, a correlation (joint moment) between 
the values of the random process at two different times (called the autocorrelation 
function) can be computed by taking the ensemble average of the product of instant-
aneous values at two times, t\ andi] -I- � . That is, for the random process {*(?)}, where 
thesymbol {} is used to denote an ensemble of sample functions, the mean value ^ f ^ a n d 
the autocorrelation function R^ (tx, t\ + � ) are given by 

1 N 

� � {*�) = A , l i m I? �  
k�  1 

(1.10a) 

1 N 

Rxx(h,h +� ) = lim - YV(fi)**(ii + T ) (1.10b) 
�  � > oo i v f—, 

k=\ 
where the final summation assumes that each sample function is equally likely. 
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• A random process can be 
described by computing 
average values over the 
collection of sample functions

• If         and                   vary 
with t1, the process is non-
stationary.
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Stationary Random Data
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Ergodic Random Data

• A sample can be taken out of 
any signal, or across a signal 
and it will be representative of 
the event.

• This example could be 
turbulence across 4 flights in 
similar conditions with similar 
aircraft.



Analysis of Random Data
• Basic statistical properties of importance for describing single 

stationary random records are:

• Mean, mean square values, and moments of order n

• Probability density functions

• Autocorrelation functions

• Autospectral density functions

• Joint probability density functions

• Cross-correlation functions
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(d) 

Figure 1.11 Four special time histories, (a) Sine wave, (b) Sine wave plus random noise, (c) Narrow 
bandwidth random noise, (d) Wide bandwidth random noise. 

The first three functions measure fundamental properties shared by the pair of 
records in the amplitude, time, or frequency domains. From knowledge of the cross-
spectral density function between the pair of records, as well as their individual 
autospectral density functions, one can compute theoretical linear frequency response 
functions (gain factors and phase factors) between the two records. Here, the two 
records are treated as a single-input/single-output problem. The coherence function is 
a measure of the accuracy of the assumed linear input/output model and can also be 
computed from the measured autospectral and cross-spectral density functions. 
Detailed discussions of these topics appear in Chapters 5, 6, and 7. 
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Figure 1.12 Probability density function plots, (a) Sine wave, (b) Sine wave plus random noise, 
(c) Narrow bandwidth random noise, (d) Wide bandwidth random noise. 

Common applications of probability density and distribution functions, beyond a 
basic probabilistic description of data values, include 

1. Evaluation of normality 

2. Detection of data acquisition errors 

3. Indication of nonlinear effects 

4. Analysis of extreme values 

Probability density functions
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Autocorrelation functions

Figure 1.13 Autocorrelation function plots, (a) Sine wave, (b) Sine wave plus random noise, (c) Narrow 
bandwidth random noise, (d) Wide bandwidth random noise. 
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Autospectral density functions
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Figure 1.14 Autospectral density function plots, (a) Sine wave, (b) Sine wave plus random noise, 
(c) Narrow bandwidth random noise, (d) Wide bandwidth random noise. 

The primary applications of correlation measurements include 

1. Detection of periodicities 

2. Prediction of signals in noise 

3. Measurement of time delays 

4. Location of disturbing sources 

5. Identification of propagation paths and velocities 



Characterization of  Measurement 
Systems

A simple instrument model

• An observable variable X is obtained from the measurand.

• X is related to the measurand in some KNOWN way (i.e., measuring mass)

• The sensor generates a signal variable that can be manipulated: 

• Processed, transmitted or displayed

• In the example above the signal is passed to a display, where a measurement 
can be taken

Intelligent Sensor Systems
Ricardo Gutierrez-Osuna
Wright State University
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Measurements
A simple instrument model

A observable variable X is obtained from the measurand
X is related to the measurand in some KNOWN way (i.e., measuring mass)

The sensor generates a signal variable that can be manipulated:
Processed, transmitted or displayed

In the example above the signal is passed to a display, where a 
measurement can be taken

Measurement
The process of comparing an unknown quantity with a standard of the 
same quantity (measuring length) or standards of two or more related 
quantities (measuring velocity)
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A simple instrument model

Measurement

• The process of comparing an unknown quantity with 
a standard of the same quantity (measuring length) 
or standards of two or more related quantities 
(measuring velocity)
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Calibration
The relationship between the physical measurement variable 
(X) and the signal variable (S)

A sensor or instrument is calibrated by applying a number of KNOWN 
physical inputs and recording the response of the system

Physical input (X)

Si
gn

al
 o

ut
pu

t (
Y)

Physical input (X)

Si
gn

al
 o

ut
pu

t (
Y)

Characterization of  Measurement 
Systems

The relationship between the 
physical measurement variable 
(X) and the signal variable (S)

• A sensor or instrument is 
calibrated by applying a 
number of KNOWN physical 
inputs and recording the 
response of the system.
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Additional inputs
Interfering inputs (Y)

Those that the sensor to respond as the linear superposition with the 
measurand variable X 

Linear superposition assumption: S(aX+bY)=aS(X)+bS(Y)

Modifying inputs (Z)
Those that change the behavior of the 
sensor and, hence, the calibration curve

Temperature is a typical modifying input

Si
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Physical input (X)

Z=Z1

Z=Z2

Sensor

Physical variable X Signal
variable 

SMeasurand Interfering input Y

Modifying 
input Z

Sensor

Physical variable X Signal
variable 

SMeasurandMeasurand Interfering input Y

Modifying 
input Z

Characterization of  Measurement 
Systems

Interfering inputs (Y)

• Those that the sensor to respond as the linear 
superposition with the measurand variable X.

• Linear superposition assumption: S(aX
+bY)=aS(X)+bS(Y)
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Systems

Modifying inputs (Z)

• Those that change the 
behavior of the sensor and, 
hence, the calibration curve

• Temperature is a typical 
modifying input.
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Characterization of  Measurement 
Systems

Static characteristics

•The properties of the system after all transient effects have settled to their 
final or steady state.

•Accuracy

•Discrimination

•Precision

•Errors

•Drift

•Sensitivity

•Linearity

•Hystheresis



Dynamic characteristics

• The properties of the system transient response 
to an input.

• Zero order systems.

• First order systems.

• Second order systems.

Characterization of  Measurement 
Systems



Characterization of  Measurement 
Systems

Static quantities can be classified as general or 
specific.

• Specific quantities are related to unique variables 
related to the measurement instrument.

• General quantities are common to all 
measurement instruments.





Confidence interval

where bSE X
! "

¼ s=
ffiffiffi
n

p
. It is known that the pivot Q follows the t-distribution with

n" 1ð Þ degrees of freedom when the observations follow the normal distribution, as
is the case here. Since the t-distribution is symmetric around zero, we can use
property (3.18) written in the form

P "tn"1ða=2Þ < Q < tn"1ða=2Þð Þ ¼ 1" a; ð3:24Þ

where tn"1ða=2Þ is the upper 100a=2ð Þth percentile of the t-distribution with n" 1ð Þ
degrees of freedom. Note that here we use upper percentiles, while in (3.18) we used
more general notation with the classic percentile. The resulting confidence interval,
called the one-sample t confidence interval, is of the form analogous to (3.22), that is,
it can be written as

X % tn"1ða=2Þ & s=
ffiffiffi
n

p
: ð3:25Þ

An implementation of this confidence interval is demonstrated in the following
example.

Example 3.1 Consider Small Image data describing an 8 by 13 pixel image of a
monochromatic, highly uniform tile in threewide spectral bands (in reflectance units).
Our goal is to estimate the “true” tile reflectances m1; m2; and m3 in the three spectral
bands, respectively. First, we are going to concentrate on the reflectances in Band 1.
Since the tile surface is highly uniform, it makes sense to assume that reflectances
in Band 1 for all pixels are independent random variables Xi; i ¼ 1; . . . ; n ¼ 104,
all having the same distribution with the mean E Xið Þ ¼ m1 (assuming that the
measurements are unbiased). We expect the data to follow the normal distribution
because the variability is largely due to the measurement error. For a ¼ 0:05,
we obtain tn"1ða=2Þ ¼ 1:98. For Band 1 data, we have x ¼ 25:0245, s ¼ 0:2586,
and the resulting half of the length of the confidence interval is equal to
h ¼ tn"1ða=2Þ & s=

ffiffiffi
n

p
¼ 0:0503. The confidence interval can now be written as

25:0245 % 0:0503 or 24:9742; 25:0748ð Þ. &

When the standard deviation s of Xi’s is known, the pivot random variable L is
normally distributed and the confidence interval written in (3.25) can be replacedwith
a z confidence interval defined as

X % zða=2Þ & s=
ffiffiffi
n

p
; ð3:26Þ

where zða=2Þ is the upper 100a=2ð Þth percentile of the normal distribution. The
parameter s can be known from prior information based on a number of observations
much larger than the current sample size n. Without prior information, the z
confidence interval (with estimate s replacing s) can also be used based on the
approximation of the t-distribution by the normal distribution. Some authors suggest
this approximation for sample sizes as small as n ¼ 40. We suggest that much larger
samples are required. Figure 3.6 shows the percent difference between the two
percentiles calculated as 100 tðaÞ " zðaÞð Þ=zðaÞ. For n ¼ 200, the percent difference
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Calibration: Simple Linear 
Regression Model

Example 4.1 The Landsat Program is a series of Earth-observing satellite 
missions jointly managed by NASA and the U.S. Geological Survey since 
1972. Due to the long-term nature of the program, there is a significant 
interest in the long-term calibration of the results, so that measurements 
taken at different times can be meaningfully compared. One approach to 
this calibration problem is discussed by Anderson (2010). As part of the 
approach, Landsat measurements of a fixed desert site were collected. 
The desert site was confirmed to be sufficiently stable over time, so that 
the changes in measurements can be attributed to a drift of the 
measuring instrument, except for some factors such as the Sun position 
in the sky. In this example, we consider the surface reflectance 
measurements of the desert site performed at 76 different times 
(different days and times of the day). The reflectance measurements 
are from one spectral band (Band 2) of the instrument. For each time 
of the measurement, we also know the solar elevation angle.



Calibration: Simple Linear 
Regression Model

In order to investigate a relationship between reflectance 
in Band 2 and the solar elevation angle, we can create a 
scatter plot of the two variables as shown in Figure 4.1. 
Based on the pattern in the scatter plot, we expect a 
linear relationship between the two variables.



Calibration: Simple Linear 
Regression Model

In the simplest scenario of a linear relationship between the 
response Y and a single predictor x, as seen in Figure 4.1, we can 
describe this relationship using a population linear regression 
model written as

In the simplest scenario of a linear relationship between the response Y and a single
predictor x, as seen in Figure 4.1, we can describe this relationship using a population
linear regression model written as

Y ¼ b0 þ b1x þ e; ð4:1Þ

where b0 and b1 are the unknown coefficients called intercept and slope, respectively.
This is called a populationmodel because it establishes a general relationship between
the two variables that governs all elements of the population. We can also say that the
model (4.1) describes a general property of the output variable (Y) reacting to changes
in an input variable (x) of a process under consideration. For instance, the observed
reflectance of a given surface (Y) depends on the solar elevation angle (x). If the
relationship were perfectly linear, we could use the model (4.1) without the e term.
In practice, there are always some imperfections, which might be due to factors other
than x or due to a measurement error. Given the lack of information about those
additional sources of variability, we assume that e is a random variable, and
consequently, Y is also a random variable (which is why we use a capital letter to
denote the response). The e term is often called an error term. For mathematical
reasons, we assume that x is nonrandom. This means that in practical applications
we need to make sure that x is known rather precisely with a small measurement
error. If themeasurement error in x is large, we need to usemore complexmodels than
those discussed here (see Section 15.2 in Montgomery et al. (2006) or Section 4.5 in
Kutner et al. (2005)).

We usually assume that E eð Þ ¼ 0, which means that E Yð Þ ¼ b0 þ b1x, that is, the
population average of Y is a linear function of x. This function is called a regression
function. The line y ¼ b0 þ b1x is a regression line. The regression function
b0 þ b1x can be regarded as the deterministic part of the model.

We often make the assumption that the error term e follows a specific distribution,
often a normal distribution with the mean zero. Under this assumption, the distribu-
tion of Y is also normal and centered at its expected value E Yð Þ ¼ b0 þ b1x.
Figure 4.2 illustrates the normal distribution of Y by drawing a normal density curve

x1 x2 x3

y 2
y 3

y 1

y = β0 + β1x

Figure 4.2 Conditional distributions of Y given x are shown here as normal distributions centered at their

expected values E Yð Þ ¼ b0 þ b1x, which depend on x in a linear fashion.
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Calibration: linear fit
• Least squares estimates

the same model. The sample model is used to fit the model to the data, that is, to
estimate the values of the coefficients b0 and b1 and to study properties of estimators.
The population model is used as a general description of the relationship and can
be used for prediction of the future values of Y at a given point x (once the coefficients
are estimated).

Throughout the whole Section 4.2 on regression models, we will make the
following assumption.

Assumption 4.1 The error terms ei; i ¼ 1; . . . ; n, are uncorrelated and identically
distributed random variables such that E eið Þ ¼ 0 and Var eið Þ ¼ s2 for i ¼ 1; . . . ; n,
where s2 is a constant that does not depend on x.

It is important to understand that even though the error terms ei all have the same
distribution, the responses Yi have generally different distributions, each having its
own mean E Yið Þ ¼ b0 þ b1xi.

When the variable Yi takes on a specific value yi that we observe, the error term
variable ei also takes on a value, call it e*i , that is not directly observed. Thismeans that
we obtain a system of n equations

yi ¼ b0 þ b1xi þ e*i ; i ¼ 1; . . . ; n; ð4:3Þ

with n þ 2ð Þ unknowns, that is, n values of the error terms and two coefficients.
Clearly, the system cannot be solved in general, but it is reasonable to require the error
termvalues to be as small inmagnitude as possible. The bestway tominimize the error

terms depends on their distribution. Minimizing the sum of absolute values
Pn

i¼1 e*i j
!!

works best for the Laplace (double-exponential) distribution of ei, and it works well
for other heavy-tailed distributions. This approach leads to robust regression (see
Chapter 12 in Montgomery et al. (2006) or Section 11.3 in Kutner et al. (2005)).

Minimizing the sum of squares
Pn

i¼1 e*i
" #2

is easier mathematically, and it leads to

the least-squares regression that we will use in this chapter. The least-squares
regression has many desirable properties that will be discussed later on, and it works

especially well when ei’s follow the normal distribution. Since e*i ¼ yi%b0%b1xi,
we define the least-squares estimates b0 and b1 of the coefficients b0 and b1 as the
values minimizing the sum of squares

S b0; b1ð Þ ¼
Xn

i¼1

yi%b0%b1xið Þ2: ð4:4Þ

Once we impose the least-squares minimization, the resulting values of e*i
are no longer their true values, and consequently, the least-squares estimates
b0 and b1 are different from the true values b0 and b1 of the parameters. Note
that the function S b0; b1ð Þ in (4.4) is a second-degree polynomial with respect to
b0 and b1, and it takes the minimum value at a point with both partial derivatives
equal to zero. This means that the least-squares estimates b0 and b1 must satisfy
the equations
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qS b0; b1ð Þ
qb0

!!!!
b0;b1

¼ $2
Xn

i¼1

yi$b0$b1xið Þ ¼ 0;

qS b0; b1ð Þ
qb1

!!!!
b0;b1

¼ $2
Xn

i¼1

yi$b0$b1xið Þxi ¼ 0;

ð4:5Þ

which can be simplified to the following system of two equations:

nb0 þ b1
Xn

i¼1

xi ¼
Xn

i¼1

yi;

b0
Xn

i¼1

xi þ b1
Xn

i¼1

x2i ¼
Xn

i¼1

yixi

ð4:6Þ

called the least-squares normal equations. The solutions to equations (4.6), called the
least-squares estimates, are given as

b1 ¼
Sxy
Sxx

; b0 ¼ !y$b1!x; ð4:7Þ

where !x and !y are the sample means of the x and y values and

Sxx ¼
Xn

i¼1

xi$!xð Þ2; Sxy ¼
Xn

i¼1

yi xi$!xð Þ: ð4:8Þ

The estimated regression line is given by the equation y ¼ b0 þ b1x. The
regression lines in Figures 4.1, 4.3 and 4.4 were estimated using the least-squares
method. The second equation in (4.7) can be written as !y ¼ b0 þ b1!x, which tells us
that the estimated regression line goes through the center point !x;!yð Þ of the data.

For an arbitrary value x, we define the fitted value as by ¼ b0 þ b1x, which
estimates the expected value E Yð Þ ¼ b0 þ b1x. For the ith observation pair
xi; yið Þ, we define afitted value asbyi ¼ b0 þ b1xi and a residual ei ¼ yi$byi. Figure 4.5
shows a fitted value and a residual for the first observation pair x1; y1ð Þ.

The residual ei approximates the true (but unobserved) realization e*i of the error
term ei. There are some important differences between properties of the error terms
and the residuals. For example, the error terms ei; i ¼ 1; . . . ; n, are uncorrelated and
the residuals are correlated. We say that there are n degrees of freedom in the
responses yi (or in the unobserved realization e*i ), which means that they can be
arbitrary numbers without any constraints. On the other hand, there are only n$2ð Þ
degrees of freedom in the residuals because they need to conform to two constraints
(thiswill becomeclearer from thegeometric interpretation discussed inSection4.2.4).
One of those constraints is that the sum of all residuals is equal to zero (

Pn
i¼1 ei ¼ 0).

Let us nowdiscuss estimation of thevariances2 of the error terms. SinceE eið Þ ¼ 0,
we have s2 ¼ Var eið Þ ¼ E e2i

" #
. If we knew the true realization e*i of the error term ei,

we would simply use
Pn

i¼1 e*i
" #2

=n to estimate s2. However, in the process of
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calculating the residuals (approximating e*i ’s), we say that we lose two degrees of
freedom for estimation of the regression coefficients, and an unbiased estimator of s2

turns out to be

bs2 ¼ 1

n"2

Xn

i¼1

e2i ¼
1

n"2

Xn

i¼1

yi"byið Þ2: ð4:9Þ

Note that the above formula is very different from the formula for the sample
variance of the y-values

Pn
i¼1 yi"!yð Þ2=ðn"1Þ, where the variability is calculated with

respect to !y, while in formula (4.9) the variability is with respect tobyi that is different
for each data point.

An overall variability in all residuals can be measured by the residual sum of

squares SSRes ¼
Pn

i¼1 e
2
i ¼

Pn
i¼1 yi"byið Þ2, which is the variability of the response

values around the regression line. The total variability of the response values (around

their mean) can be measured by the total sum of squares SSTotal ¼
Pn

i¼1 yi"!yð Þ2.
In the so-called analysis of variance (ANOVA), we can partition the total sum
of squares into SSRes and the regression sum of squares defined as

SSRegr ¼
Pn

i¼1 byi"!yð Þ2. That is,

SSTotal ¼ SSRegr þ SSRes: ð4:10Þ

The total sum of squares SSTotal measures the variability in the response Ywithout
any input from the regression model. Some of this variability is explained by the
predictor x since we know that Y changes as x changes. The variability that is not
explained by the predictors, that is, by the regression model, is measured by SSRes
because it tells us how far the actual observations yi are from what can be predicted
from the model, that is, byi. For example, if all observations were lying exactly on a
straight line, then SSRes would be equal to zero, and all variability in Y would be
explained by changes in x. Based on equation (4.10), the remaining variability, that is,
the regression sum of squares SSRegr ¼ SSTotal"SSRes, is the amount of variability
explained by the model. The fraction of the total variability explained by the model is
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Figure 4.5 The fitted value and the residual for the first observation pair x1; y1ð Þ.
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• The fraction of the total variability explained by the 

model is measured by the coefficient of 
determination defined by

measured by the coefficient of determination defined as

R2 ¼ SSRegr
SSTotal

¼ 1" SSRes
SSTotal

: ð4:11Þ

Wealways have 0 % R2 % 1. TheR2 coefficientmay serve as a general indicator by
how much a given model can be potentially improved. For example, if R2 ¼ 0:7, we
may try to find additional predictors that would explain the remaining 30% of
variability. On the other hand, when R2 ¼ 0:95, we know that almost all variability
has been explained, and not much more can be explained by finding a better model.
At the same time, explaining an additional 3% of variability might be important in
some applications.

Example 4.1 (cont.). As a continuation of the Landsat data example, we find the
estimated least-squares regression line as y ¼ 0:3412 þ 0:00061x. The intercept is
the value of y for x ¼ 0, but the solar elevation angle never gets close to zero in our
data set, and it would not be reasonable to extrapolate our model to such values.
Hence, the intercept has no particular interpretation in this case. The slope of 0.00061
means that for each degree of the solar elevation angle, the average reflectance
increases by 0.061% of reflectance. The variance s2 was estimated as
bs2 ¼ 0:0000132. It is easier to interpret the estimated standard deviation
bs ¼

ffiffiffiffiffi
bs2

p
¼ 0:00363 or 0.363% of reflectance. As an approximate calculation

assuming the normal distribution of the error term, we can use the rule of two
sigma from Section 2.6 and conclude that 95% of reflectance values in Band 2 will
be within ' 2( 0:363 ¼ ' 0:726% of reflectance from the regression line
y ¼ 0:3412 þ 0:00061x drawn in Figure 4.1. This calculation does not take into
account the uncertainty in the parameters that were estimated. More precise calcula-
tions will be performed in Section 4.2.6.

The sums of squares were calculated as SSRegr ¼ 0:000630 and SSRes ¼ 0:000977
for the total of SSTotal ¼ 0:001607. Hence, the fraction of variability explained by the
model is R2 ¼ 0:392 or 39.2%. From a statistical point of view, there is still room for
model improvement (by using other predictors), although it might be difficult or
impossible in practice. &

Example 4.2 (cont.). For the optical fiber data, we can fit the least-squares
regression line y ¼ "1:99 þ 0:91x. Based on the physical interpretation, the input
power of zero x ¼ 0ð Þ should result in the output power of zero as well y ¼ 0ð Þ.
However, such considerations are not relevant when the range of values for x is far
away from zero, which is the case here. In order to explain this point, assume for a
moment that the intercept was even more negative, let’s say, equal to "37ð Þ. The
resulting regression line y ¼ "37 þ 0:91x is shown in Figure 4.6 as a solid line. The
true relationship between y and x could in fact be a quadratic function, shown in
Figure 4.6 as a dashed line, going through the origin (to satisfy the above physical
requirement). Note that within our range ofx values between 80 and 86 (shown by two
vertical dotted lines), the two lines almost overlap. This means that a linear model can
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Figure 4.6 as a dashed line, going through the origin (to satisfy the above physical
requirement). Note that within our range ofx values between 80 and 86 (shown by two
vertical dotted lines), the two lines almost overlap. This means that a linear model can
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Calibration: residual analysis
vertical ranges, so that we can look at a pattern of responses for predictor values close
to each other. A more precise method is based on residuals ei ¼ yi"byi because each
observation yi has its own adjustment by the fitted value byi. We also know that
residuals estimate the realizations of the error terms ei. So, observing residuals will
give us hints about properties of the error terms.

In residual analysis, we create plots of residuals in order to check various
assumptions. Figure 4.7 shows residuals plotted versus Input Power (the x predictor)
for the model fitted in Figure 4.3. The horizontal line at the zero level can be regarded
as equivalent to the level of the estimated regression line. The pattern of points is
almost the same as the one shown in Figure 4.3, except that for all four levels of Input
Power, the points are shifted vertically to the same common level. Again, the pattern is
consistent with the assumption thatE eið Þ ¼ 0 andVar eið Þ ¼ s2 for all four levels of x.

Figure 4.8 shows residuals plotted versus the solar elevation angle (the x predictor)
for themodel fitted in Figure 4.4.Here each point has its ownvertical adjustment by its
fitted value, so that the zero level (the horizontal line) in Figure 4.8 represents the fitted
values or the level of the estimated regression line. We again want to observe the
distribution of residuals within each vertical section. The plot confirms the
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Figure 4.7 The residuals plotted versus Input Power (the x predictor) for the model fitted in Figure 4.3.
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Figure 4.8 The residuals plotted versus the solar elevation angle (the x predictor) for the model fitted

in Figure 4.4.
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assumption that E eið Þ ¼ 0 (there is an approximately even balance of points above
and below the line in each segment) and Var eið Þ ¼ s2 (the variability of values is
approximately the same in each section). The only concern might be one or two
exceptionally large residuals. This issuewill be further discussed in Section 4.2.7. The
vertical lines are plotted here in order to convey the idea of the vertical sections, but
they are usually not plotted in residual plots.

The residuals can also be plotted against the expected magnitude of the response,
that is, the fitted value as shown in Figure 4.9. The positions of points in Figures 4.8
and 4.9 are identical because the only difference between the two plots is a linear
transformation on the horizontal axis (the fitted value by ¼ b0 þ b1x is a linear
function of x). The two plots will no longer be identical in the presence of multiple
predictors (discussed in the next subsection). More on residual analysis can be found
in Section 4.2.7.

4.2.3 Multiple Linear Regression and Matrix Notation

In practical applications, we usually have multiple predictors that may potentially
impact the response variable Y. In the context of Example 4.1, the solar azimuth angle
is another variable that may potentially influence the reflectance Y. A population
linear regression model with two predictors can be written as

Y ¼ b0 þ b1x1 þ b2x2 þ e; ð4:12Þ

and the equivalent sample linear regression model is

Yi ¼ b0 þ b1xi;1 þ b2xi;2 þ ei; i ¼ 1; . . . ; n: ð4:13Þ

The abovemodel is called a linearmodel because the regression function is a linear
function of the b parameters. This is a broad class ofmodels that also covers nonlinear
relationships between the response and the predictors. For example, the model

Y ¼ b0 þ b1 log x1ð Þ þ b2
ffiffiffiffiffi
x2

p
þ e ð4:14Þ
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Figure 4.9 The residuals plotted versus fitted values for the model fitted in Figure 4.4.
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Calibration example

• Ejemplo. Un sistema de 
medida de altura usando 
pulsos de luz. La tabla 
muestra los valores reales y 
los medidos (con error) 
cuando se incrementa la 
distancia y cuando se 
disminuye.
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• In general when f is a function of x,y,z,

Combination of errors

3.2 ERROR PROPAGATION 21

Table 3.1 Propagation of standard uncertainties in combined
quantities or functions.

f = x + y or f = x − y σ 2
f = σ 2

x + σ 2
y

f = xy or f = x/y (σf /f )2 = (σx/x)2 + (σy/y)2

f = xyn or f = x/yn (σf /f )2 = (σx/x)2 + n2(σy/y)2

f = ln x σf = σx/x
f = ex σf = fσx

sources can be either + or − and will often partly compensate each other.
The correct way to “add up” uncertainties is to take the square root of the
sum of the squares of the individual uncertainties. More specifically, this
applies to standard deviations σ :

If f = x + y, then σ 2
f = σ 2

x + σ 2
y , (3.4)

i.e., independent uncertainties add up quadratically. Why this is so is
explained in Appendix A1 on page 135. In general, when f is a function
of x, y, z, . . .;

σ 2
f =

(
∂f
∂x

)2

σ 2
x +

(
∂f
∂y

)2

σ 2
y + · · · (3.5)

From (3.5) it follows immediately that for additions and subtractions the
absolute uncertainties add up quadratically, while for multiplications and
divisions the relative uncertainties add up quadratically. Examples of (3.5)
are given in Table 3.1, valid for independent contributions.

Example 1

Consider the example of (3.2). What is the s.d. in K = [A2]/[A]2 when the
deviations in [A] and [A2] are independent? From the x/yn rule in Table 3.1
it follows that

(σK

K

)2
=

(
σ[A2]
[A2]

)2

+ 4
(

σ[A]
[A]

)2

.

Suppose you have measured [A2] = 0.010 ± 0.001 mol/L and [A] = 0.100 ±
0.004 mol/L. Then the relative s.d. of K becomes

√
0.12 + 4.0.042 = 0.13,

resulting in K = 1.0 ± 0.1 L/mol.
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