Optical Metrology

Lecture 2: Random Data and Characterization of
Measurement Systems



Content of the Lecture

Deterministic Data.

Random Data.

Characteristics of Random Data.
Characterization of measurement systems.

Static and Dynamic characterization.



Deterministic versus
Random Data



Deterministic Data

* Any observed data
representing a physical
phenomenon can be broadly
classified as being either
deterministic or

nondeterministic. Position of
equilibrium
 Deterministic data are those
that can be described by an x(1)
explicit mathematical

Figure 1.1 Simple spring mass system.
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Classification of Deterministic Data
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Figore 1.4 Spectrum of complex periodic data.
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Transient Nonperiodic Data
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Figure 1.6 Illustrations of transient data.



Continuous spectral

representation.
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Figure 1.7 Spectra of transient data.
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Classification of Random Data

Random

r

Non 10

Special
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Random Data

Voltage
A

 Asingle time history J
representing a random VJ Time
phenomenon is called a
sample function (or a sample

Voltage
record when observed over a A
finite time interval).

Time

* The collection of all possible
sample functions that the oltage

random phenomenon might A
have produced is called a A4 /j\ o Time
random process or a lvl*"“w[‘\/

stochastic process.

Figure 1.8 Sample records of thermal noise generator outputs.



Stationary Random Data
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Figure 1.10 Ensemble of time history records defining a random process.



Ergodic Random Data

ENSEMBLE AVERAGING
e TEMPORAL AVERAGING

* A sample can be taken out of
any signal, or across a signal
and it will be representative of
the event.

* This example could be
turbulence across 4 flights in
similar conditions with similar
aircraft.




Analysis of Random Data

» Basic statistical properties of importance for describing single
stationary random records are:

- Mean, mean square values, and moments of order n
- Probability density functions

- Autocorrelation functions

- Autospectral density functions

- Joint probability density functions

- Cross-correlation functions



Probability density functions
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Figure 1.11 Four special time histories. (@) Sine wave. (b) Sine wave plus random noise. (c) Narrow Figure 1.12 Probability density function plots. (a) Sine wave. (b) Sine wave plus random noise.
bandwidth random noise. (d) Wide bandwidth random noise. (¢) Narrow bandwidth random noise. (d) Wide bandwidth random noise.
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Autocorrelation functions
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Figure 1.11 Four special time histories. (@) Sine wave. (b} Sine wave plus random noise. (¢) Narrow
bandwidth random noise. (d) Wide bandwidth random noise.
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Figure 1.13  Autocorrelation function plots. (a) Sine wave. (b) Sine wave plus random noise. (¢) Narrow
bandwidth random noise. (d) Wide bandwidth random noise.



Autospectral density functions

x(t)
y
¢
(a)
x(1)
1\
4
(b)
x(t)

x(t)

MVMWA N P
TN

(d)

Figure 1.11 Four special time histories. (@) Sine wave. (b} Sine wave plus random noise. (¢) Narrow
bandwidth random noise. (d) Wide bandwidth random noise.
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Figure 1.14 Autospectral density function plots. (a) Sine wave. (b} Sine wave plus random noise.
(¢} Narrow bandwidth random noise. (d) Wide bandwidth random noise.



Characterization of Measurement
Systems

A simple instrument model

Physical

measurement Signal
variable variable Measurement
» Sensor >
Measurand X S y

PHYSICAL
PROCESS

* An observable variable X is obtained from the measurand.

« Xis related to the measurand in some KNOWN way (i.e., measuring mass)
* The sensor generates a signal variable that can be manipulated:

* Processed, transmitted or displayed

* |In the example above the signal is passed to a display, where a measurement
can be taken



Characterization of Measurement
Systems

A simple instrument model

Physical

measurement Signal 4 ?
variable variable Dis P | ay Measurement
» Sensor >
Measurand o S - y
4 \,

PHYSICAL
PROCESS

Measurement

* The process of comparing an unknown quantity with
a standard of the same quantity (measuring length)
or standards of two or more related quantities
(measuring velocity)



Characterization of Measurement
Systems

The relationship between the
physical measurement variable
(X) and the signal variable (S)

~ 4
e A sensor or instrument is 3
. . 5 @
calibrated by applying a S £
number of KNOWN physical S
95

inputs and recording the
response of the system.

>
Physical input (X)



Characterization of Measurement
Systems

Interfering inputs (Y)

* Those that the sensor to respond as the linear
superposition with the measurand variable X.

* Linear superposition assumption: S(aX
+bY)=aS(X)+bS(Y)
ll_\ﬂodifying
input Z

Physical variable X Signal
< variable
NSOr >
Measurand Interfering input Y > Se SO S




Characterization of Measurement
Systems

Modifying inputs (Z)

* Those that change the
behavior of the sensor and,
hence, the calibration curve

Signal output (Y)

* Temperature is a typical
modifying input.

>
Physical input (X)



Characterization of Measurement
Systems

Static characteristics

* The properties of the system after all transient effects have settled to their
final or steady state.

e Accuracy

* Discrimination
* Precision

* Errors

* Drift

* Sensitivity

* Linearity

* Hystheresis



Characterization of Measurement
Systems

Dynamic characteristics

* The properties of the system transient response
to an input.

e Zero order systems.
* First order systems.

* Second order systems.



Characterization of Measurement
Systems

Static quantities can be classified as general or
specific.

- Specific quantities are related to unique variables
related to the measurement instrument.

- General quantities are common to all
measurement instruments.
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Figure 2.22 One-, two-, and three-sigma rules shown as areas under the normal density curve.



Confidence interval

more general notation with the classic percentile. The resulting confidence interval,
called the one-sample t confidence interval, is of the form analogous to (3.22), that is,
it can be written as

X £ t,1(/2) - 5/\/n. (3.25)

An implementation of this confidence interval is demonstrated in the following
example.

Example 3.1 Consider Small Image data describing an 8 by 13 pixel image of a
monochromatic, highly uniform tile in three wide spectral bands (in reflectance units).
Our goal 1s to estimate the “true” tile reflectances pu;, u,, and p5 in the three spectral
bands, respectively. First, we are going to concentrate on the reflectances in Band 1.
Since the tile surface is highly uniform, it makes sense to assume that reflectances
in Band 1 for all pixels are independent random variables X;, i = 1,...,n = 104,
all having the same distribution with the mean E(X;) = u; (assuming that the
measurements are unbiased). We expect the data to follow the normal distribution
because the variability 1s largely due to the measurement error. For o = 0.05,
we obtain ¢, («/2) = 1.98. For Band 1 data, we have X = 25.0245, s = 0.2586,
and the resulting half of the length of the confidence interval is equal to
h=t, 1(x/2)-s/y/n=0.0503. The confidence interval can now be written as
25.0245 4+ 0.0503 or (24.9742, 25.0748). ]
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Example 3.1 Consider Small Image data describing an 8 by 13 pixel image of a
monochromatic, highly uniform tile in three wide spectral bands (in reflectance units).
Our goal 1s to estimate the “true” tile reflectances u;, u,, and ps in the three spectral
bands, respectively. First, we are going to concentrate on the reflectances in Band 1.
Since the tile surface 1s highly uniform, it makes sense to assume that reflectances
in Band 1 for all pixels are independent random variables X;, i = 1,...,n = 104,
all having the same distribution with the mean E(X;) = u; (assuming that the
measurements are unbiased). We expect the data to follow the normal distribution
because the variability 1s largely due to the measurement error. For oo = 0.05,
we obtain ¢, 1(o/2) = 1.98. For Band 1 data, we have X = 25.0245, s = 0.2586,
and the resulting half of the length of the confidence interval i1s equal to
h=t, 1(x/2)-s/+/n=0.0503. The confidence interval can now be written as
25.0245 + 0.0503 or (24.9742, 25.0748).




Calibration: Simple Linear
Regression Model

Example 4.1 The Landsat Program is a series of Earth-observing satellite
missions jointly managed by NASA and the U.S. Geological Survey since
1972. Due to the long-term nature of the program, there is a significant
interest in the long-term calibration of the results, so that measurements
taken at different times can be meaningfully compared. One approach to
this calibration problem is discussed by Anderson (2010). As part of the
approach, Landsat measurements of a fixed desert site were collected.
The desert site was confirmed to be sufficiently stable over time, so that
the changes in measurements can be attributed to a drift of the
measuring instrument, except for some factors such as the Sun position
In the sky. In this example, we consider the surface reflectance
measurements of the desert site performed at 76 different times
(different days and times of the day). The reflectance measurements
are from one spectral band (Band 2) of the instrument. For each time
of the measurement, we also know the solar elevation angle.



Calibration: Simple Linear
Regression Model

In order to investigate a relationship between reflectance
iIn Band 2 and the solar elevation angle, we can create a
scatter plot of the two variables as shown in Figure 4.1.
Based on the pattern in the scatter plot, we expect a
linear relationship between the two variables.
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Figure 4.1 A scatter plot of reflectance in Band 2 versus the solar elevation angle for Landsat data
discussed in Example 4.1.



Calibration: Simple Linear
Regression Model

In the simplest scenario of a linear relationship between the
response Y and a single predictor x, as seen in Figure 4.1, we can
describe this relationship using a population linear regression
model written as

Y =0+ pix + ¢,
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Figure 4.1 A scatter plot of reflectance in Band 2 versus the solar elevation angle for Landsat data
discussed in Example 4.1.



Calibration: Simple Linear
Regression Model

We usually assume that E(¢) = 0, which means that E(Y) = f, + S, x, thatis, the
population average of Y is a linear function of x. This function is called a regression
function. The line y = f, + B;x is a regression line. The regression function
po + Pix can be regarded as the deterministic part of the model.

We often make the assumption that the error term ¢ follows a specific distribution,
often a normal distribution with the mean zero. Under this assumption, the distribu-
tion of Y is also normal and centered at its expected value E(Y) = f, + fx.
Figure 4.2 illustrates the normal distribution of Y by drawing a normal density curve

Vi

Figure 4.2 Conditional distributions of Y given x are shown here as normal distributions centered at their
expected values E(Y) = 5, + f;x, which depend on x in a linear fashion.



Calibration: another example

Example 4.2 An experiment was performed in order to find out how much power is
lost when sending signals through optical fiber. This was similar to the experiment
described in Example 2.1, except that only one piece of optical fiber was tested
this time. The input power of a laser light signal sent from one end of the fiber was set
at four different levels: 80, 82, 84, and 86 mW, and the corresponding output
power was measured at the other end of the fiber. The purpose was to see how the
power loss might depend on the power input. The advantages of using only one piece
of fiber are that fewer measurements need to be taken and we do not need to deal with
fiber-to-fiber variability. An important disadvantage is that we would not know if our
findings apply to other pieces of optical fiber as well.

Five repeated runs were performed at each input power level. The resulting 20 runs
were done in a random order. Figure 4.3 shows a scatter plot of the output power (Y)
versus the input power (x). The straight line in the plot shows the estimated regression
line. Forthe two cases of xequal to 84 and 86 mW, the line goes almost perfectly through
the middle of the group of five data points. The othertwo cases of x are not as perfect, but

Output Power (mW)

l T T T T T T
80 81 82 83 84 85 86

Input Power (mW)

Figure 4.3 The input and output power in a laser light experiment as described in Example 4.2.



Calibration: linear fit

* Least squares estimates

n

S(Bo, B1) = Z ()’i—ﬂo—ﬂ1xi)2-

i=1

called the least-squares normal equations. The solutions to equations (4.6), called the
least-squares estimates, are given as

S
=3 bo=y-bix (4.7)

where x and y are the sample means of the x and y values and

n

See =Y (xi—X)%, Sy = iy,-(x,-—x). (4.8)

i=1



Calibration: linear fit
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Figure 4.5 The fitted value and the residual for the first observation pair (xi, y;).



Calibration: linear fit

calculating the residuals (approximating e;’s), we say that we lose two degrees of
freedom for estimation of the regression coefficients, and an unbiased estimator of o2
turns out to be

. RN RN ~
=) a=—> iF)" (4.9)
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Figure 4.5 The fitted value and the residual for the first observation pair (xy,y;).



Calibration: linear fit

An overall variability in all residuals can be measured by the residual sum of
squares SSres = > 7, €2 = > 7, (y;—y,;)%, which is the variability of the response
values around the regression line. The total variability of the response values (around

their mean) can be measured by the total sum of squares SSto@ = > i, (y,-—y)z.
In the so-called analysis of variance (ANOVA), we can partition the total sum
of squares 1nto SSges and the regression sum of squares defined as

SSregr = > 1y (3i—)”. That is,

SSTotal = SSRegr + SSRes- (4.10)



Calibration: linear fit

* The fraction of the total variability explained by the
model is measured by the coefficient of
determination defined by

SSRes

L SSRegr L
SSTotal .

R =
SSTotal

1

(4.11)

We always have 0 < R? < 1. The R? coefficient may serve as a general indicator by
how much a given model can be potentially improved. For example, if R> = 0.7, we
may try to find additional predictors that would explain the remaining 30% of
variability. On the other hand, when R?> = 0.95, we know that almost all variability
has been explained, and not much more can be explained by finding a better model.

At the same time, explaining an additional 3% of variability might be important in
some applications.



Calibration: linear fit

Example 4.1 (cont.). As a continuation of the Landsat data example, we find the
estimated least-squares regression line as y = 0.3412 4 0.00061x. The intercept 1s
the value of y for x = 0, but the solar elevation angle never gets close to zero in our
data set, and i1t would not be reasonable to extrapolate our model to such values.
Hence, the intercept has no particular interpretation in this case. The slope of 0.00061
means that for each degree of the solar elevation angle, the average reflectance
increases by 0.061% of reflectance. The variance o> was estimated as
6> = 0.0000132. It is easier to interpret the estimated standard deviation
0= \/? = 0.00363 or 0.363% of reflectance. As an approximate calculation
assuming the normal distribution of the error term, we can use the rule of two
sigma from Section 2.6 and conclude that 95% of reflectance values in Band 2 will
be within £2 X 0.363 = £0.726% of reflectance from the regression line
y =0.3412 + 0.00061x drawn in Figure 4.1. This calculation does not take into
account the uncertainty in the parameters that were estimated. More precise calcula-
tions will be performed in Section 4.2.6.

The sums of squares were calculated as SSgeer = 0.000630 and SSres = 0.000977
for the total of SStq1 = 0.001607. Hence, the fraction of variability explained by the
model is R? = 0.392 or 39.2%. From a statistical point of view, there is still room for
model improvement (by using other predictors), although it might be difficult or
impossible in practice.




Calibration: residual analysis

The most important part of Assumption 4.1 introduced in the previous subsection was

that E(g;) =

= Qorequivalently E(Y;) = B, + ;X thatis, the relationship between the

two variables is linear. In Figure 4.3, we were checking this assumption by observing

the distribution of points around the estimated regression line for a fixed value x. T

his

was made possible by the presence of repeated observations. In Figure 4.4, we
considered a different example that did not have repeats. In that case, we identified

Residuals

Figure 4.8 The residuals plotted versus the solar elevation angle (the x predictor) for the model fitted

in Figure 4.4.
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Calibration: residual analysis

The most important part of Assumption 4.1 introduced in the previous subsection was

that E(g;) =

= Qorequivalently E(Y;) = B, + ;X thatis, the relationship between the

two variables is linear. In Figure 4.3, we were checking this assumption by observing

the distribution of points around the estimated regression line for a fixed value x. T

his

was made possible by the presence of repeated observations. In Figure 4.4, we
considered a different example that did not have repeats. In that case, we identified

Residuals
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Figure 4.9 The residuals plotted versus fitted values for the model fitted in Figure 4.4.
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Calibration. Homoscedastic
and Heteroscedastic Data.

Homoscedastic Heteroscedastic
g Variabl
Depe.?df t
e

Independiente(s)



Calibration example

* Ejemplo. Un sistema de
medida de altura usando
pulsos de luz. La tabla
muestra los valores reales y
los medidos (con error)
cuando se incrementa la
distancia y cuando se
disminuye.

X real(mm) | X medido (Inc.) | X medido (Dism.)
0 -1.12 -0.69
1 0.21 0.42
2 1.18 1.65
3 2.09 2.48
4 3.33 3.62
5 4.50 4.71
6 5.26 5.87
7 6.59 6.86
8 7.73 7.92
9 8.68 9.10

10 0.88 10.20




X medido [mm]

12

10

Calibration example

2 4 6
X real [mm]

10

12

X real(mm) | X medido (Inc.) | X medido (Dism.)
0 -1.12 -0.69
1 0.21 0.42
2 1.18 1.65
3 2.09 2.48
4 3.33 3.62
5 4.50 4.71
6 5.26 5.87
7 6.59 6.86
8 7.73 7.92
9 8.68 9.10

10 0.88 10.20




Combination of errors

* In general when fis a function of x,y,z,

af \ 2 af \ 2
2 2 2
o _<8X) UX+<8y) T

Table 3.1 Propagation of standard uncertainties in combined

quantities or functions.
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