Optical Metrology

Lecture 6: Interferometry

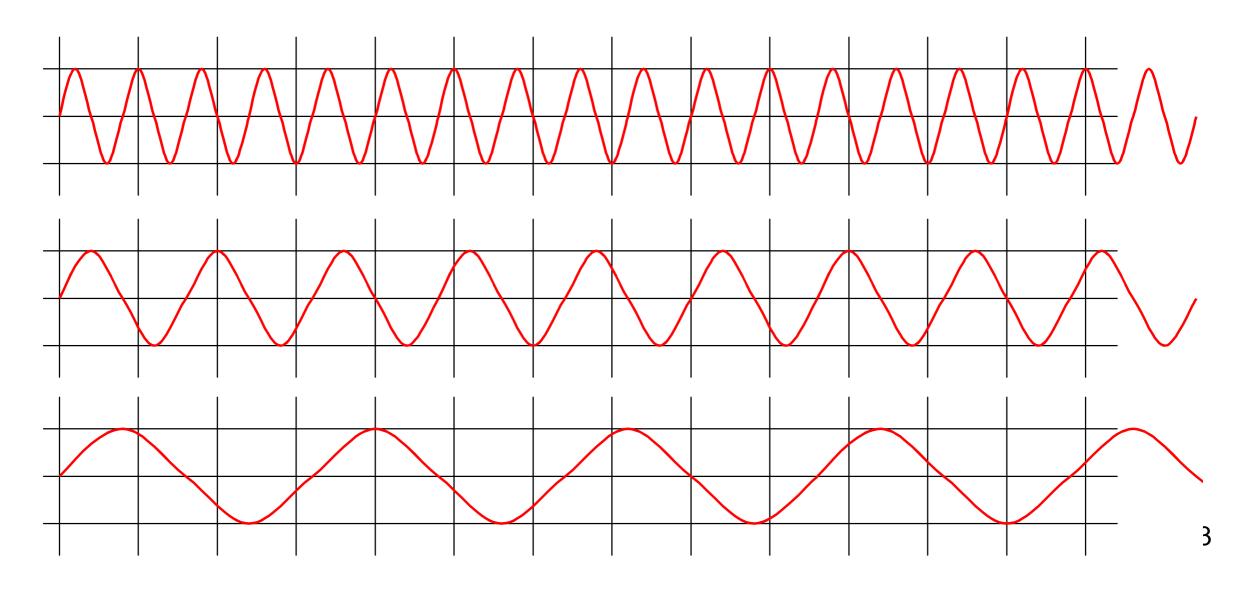
Outline

- Introduction
- General Description
- Coherence
- Interference between 2 plane waves
 - Laser Doppler velocimetry
- Interference between spherical waves
- Interferometry
 - Wavefront Division
 - Amplitude Division
- Heterodyne Interferometry

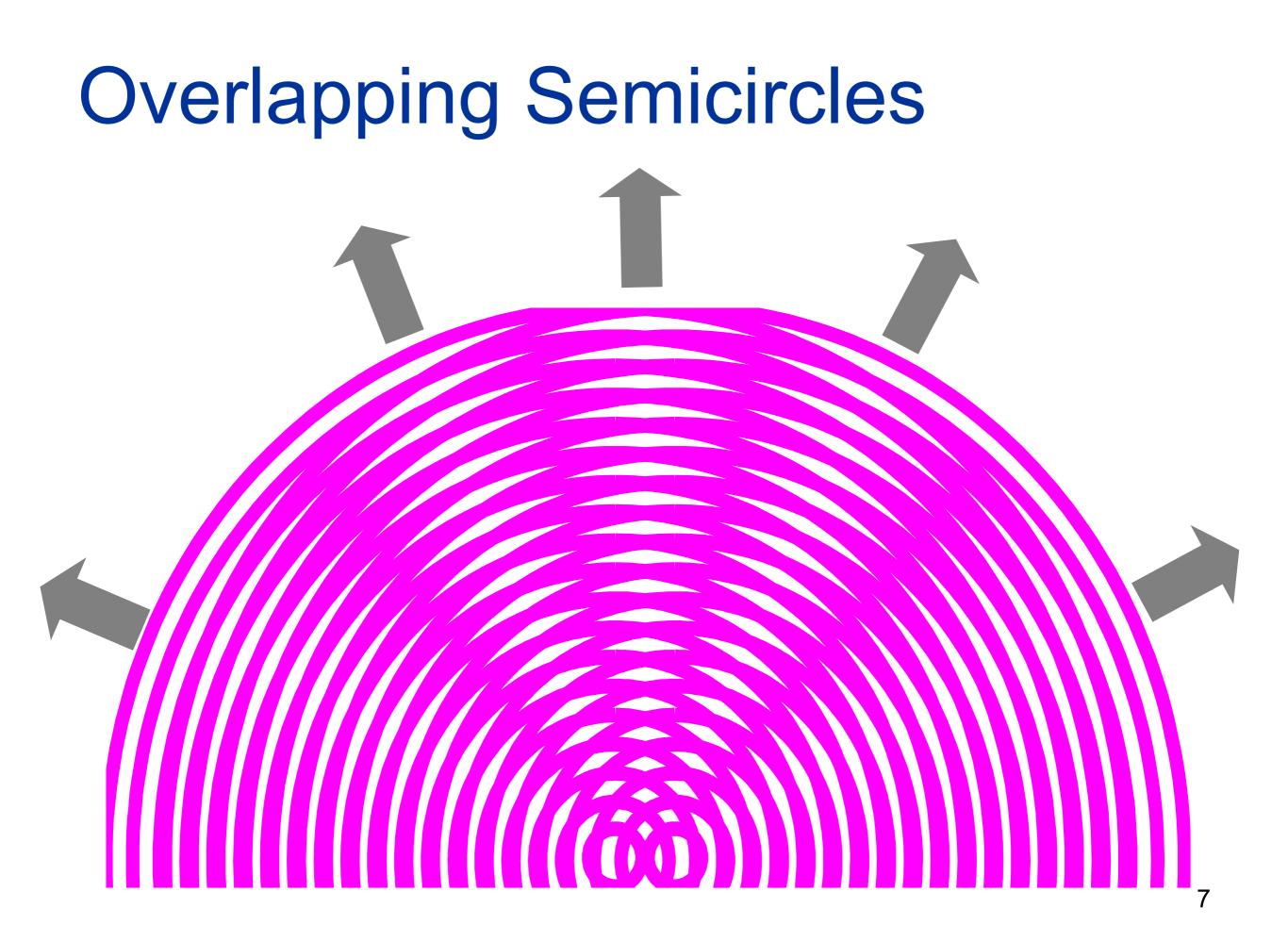
Light as Waves

Waves have a wavelength

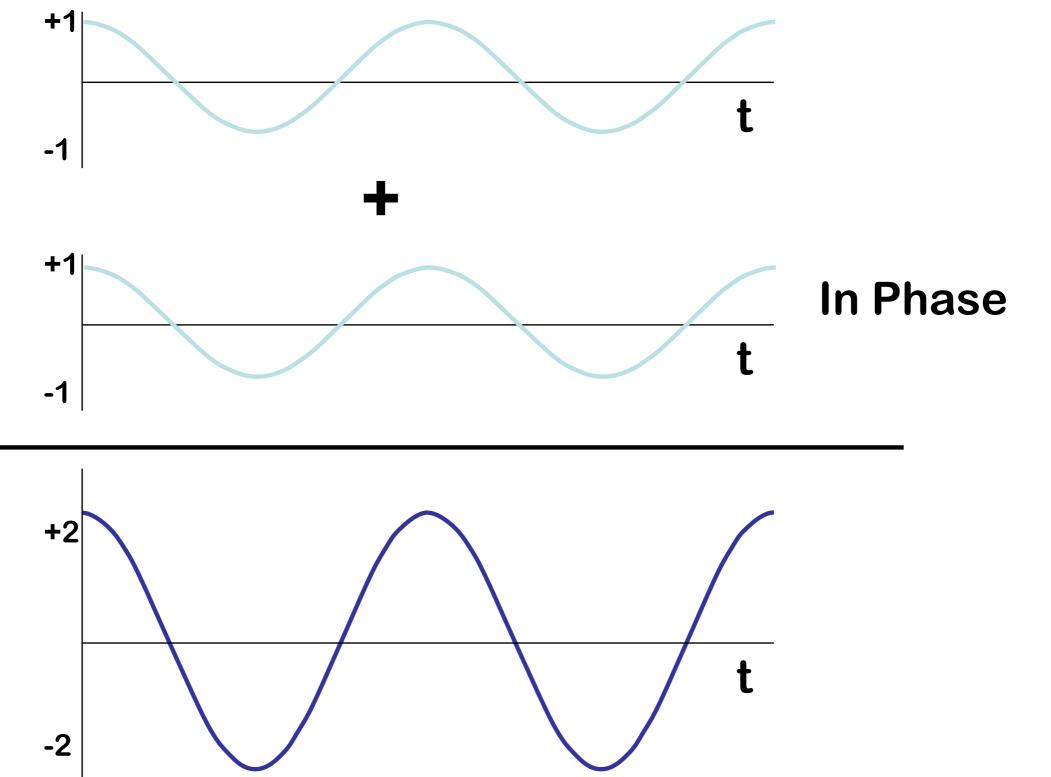
Waves have a frequency



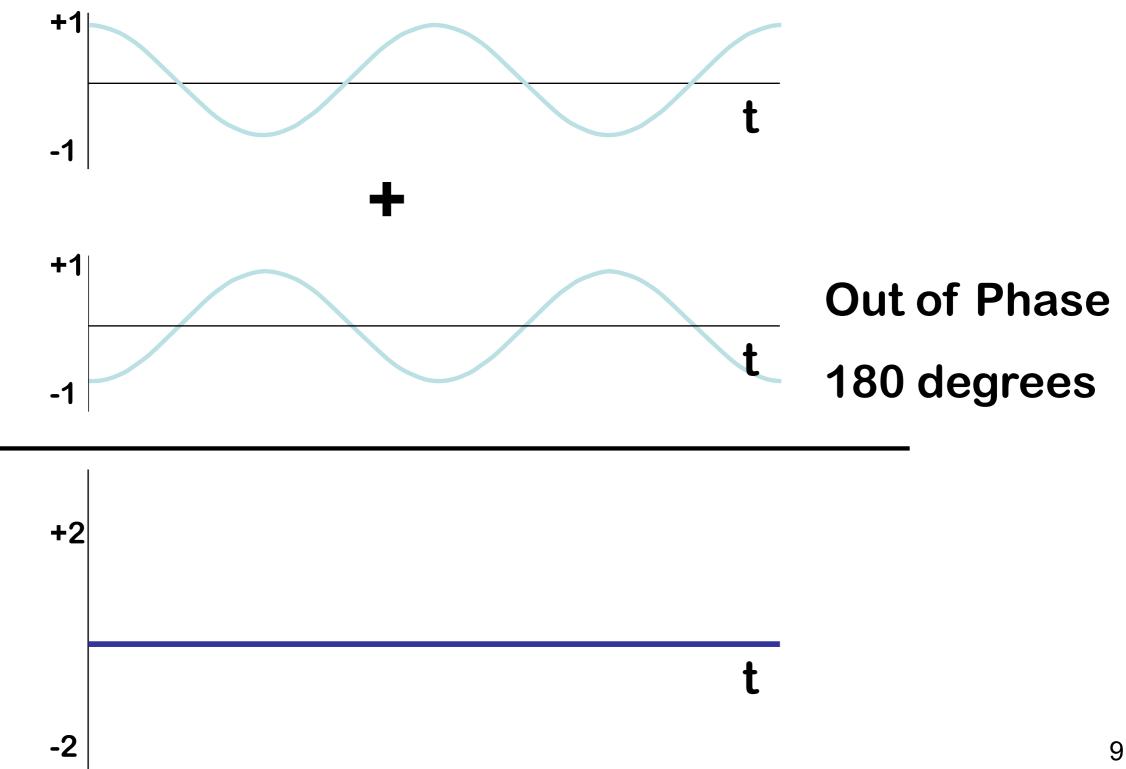
Interference in water waves...

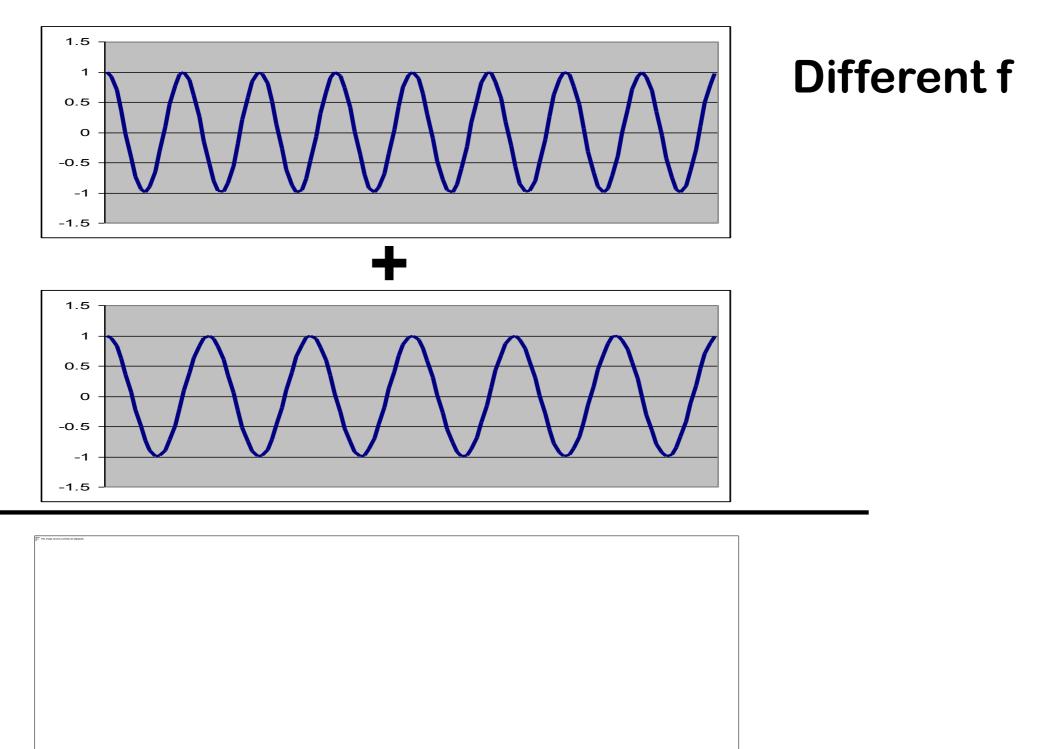


Constructive Interference



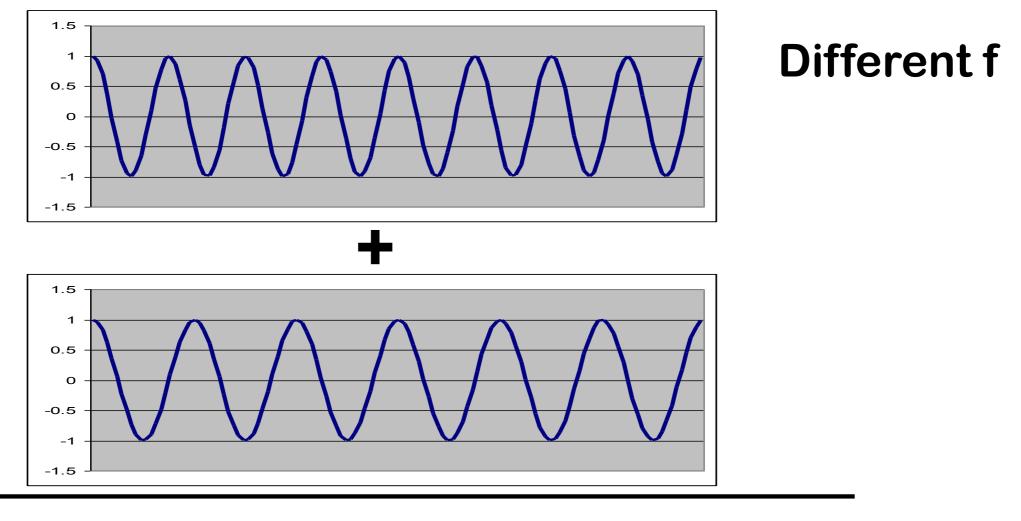
Destructive Interference





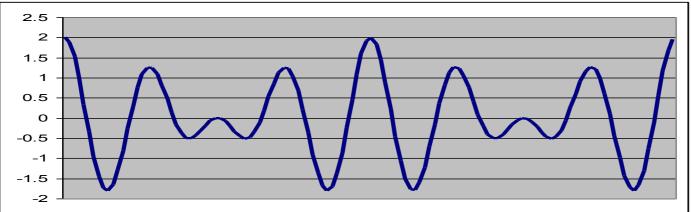
1) Constructive 2) Destructive

3) Neither 10



3) Neither

11



1) Constructive 2) Destructive

Interference Requirements

- Need two (or more) waves
- Must have same frequency
- Must be coherent (i.e. waves must have definite
 - phase relation)

General Description

- Interference can occur when two or more waves overlap each other in space. Assume that two waves described by $u_1 = U_1 e^{i\phi_1}$ and $u_2 = U_2 e^{i\phi_2}$ overlap
- The electromagnetic wave theory tells us that the resulting field simply becomes the sum $u = u_1 + u_2$
- The observable quantity is intensity (irradiance) I which is $I = |u|^2 = |u_1 + u_2|^2 = U_1^2 + U_2^2 + 2U_1U_2\cos(\phi_1 - \phi_2)$ $= I_1 + I_2 + 2\sqrt{I_1I_2}\cos\Delta\phi$
- Where $e^{i\phi} = (\cos\phi + i\sin\phi)$ and $\Delta\phi = \phi_1 \phi_2$

General Description

- Resulting intensity is not just $(I_1 + I_2)$.
- When 2 waves interfere $2\sqrt{I_1I_2} \cos \Delta \phi$ is called the interference term
- We also see that when $\Delta \phi = (2n+1)\pi$, for n = 0, 1, 2, ... then $\cos \Delta \phi = -1$ and I reaches minima (cos 180°) which means destructive interference
- Similarly when $\Delta \phi = 2n\pi$, for n = 0, 1, 2, ... then $\cos \Delta \phi = 1$ and I

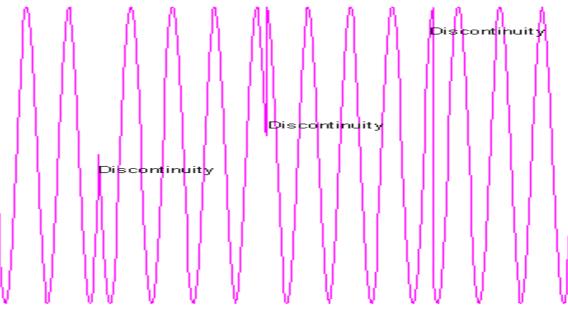
reaches maxima (cos 0°) constructive interference

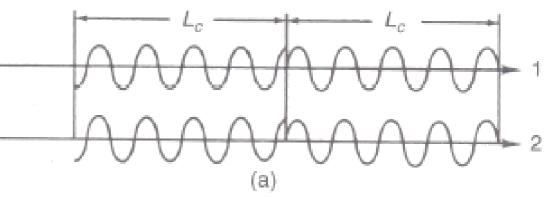
• When 2 waves have equal intensity $I_1 = I_2 = I_0$

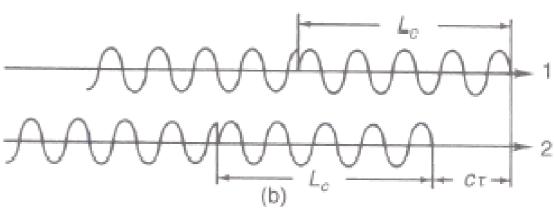
$$I = 2I_0[1 + \cos \Delta \phi] = 4I_0 \cos^2\left(\frac{\Delta \phi}{2}\right)$$

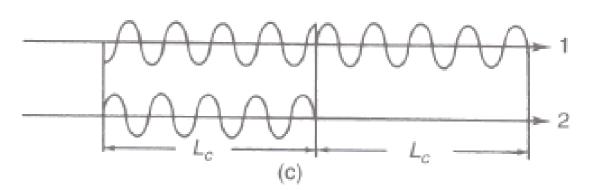
- Detection of light is an averaging process in space and time
- We assume that ul and u2 to have the same single frequency
- Light wave with a single frequency must have an infinite length
- However sources emitting light of a single frequency do not exist

- Here we see two successive wave trains of the partial waves
- The two wave trains have equal amplitude and length Lc, with an abrupt, arbitrary phase difference
- a) shows the situation when the two waves have traveled equal paths. We see that although the phase of the original wave fluctuates randomly, the phase difference remains constant in time $= I_1 + I_2 + 2\sqrt{I_1I_2} \cos \Delta \phi$

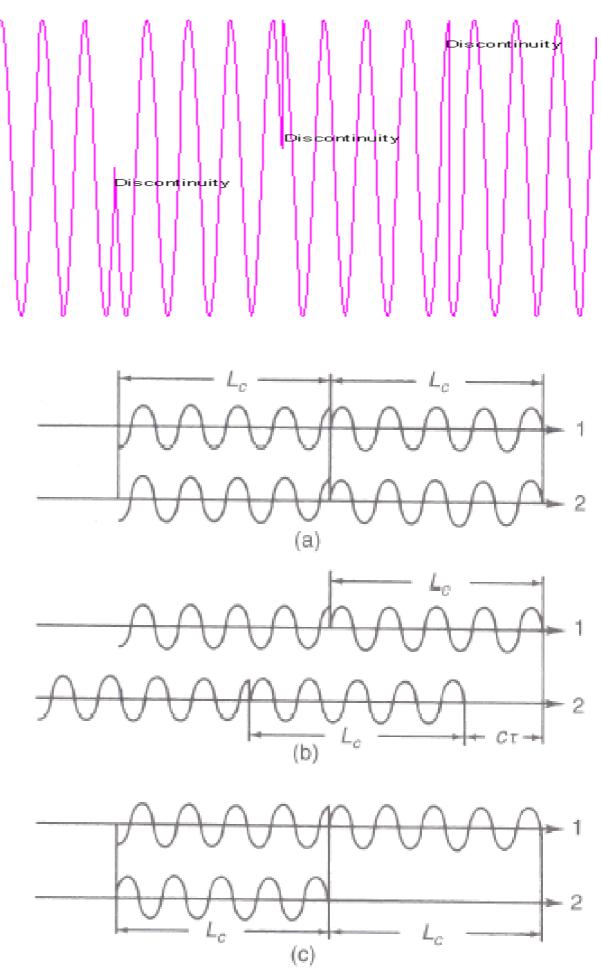








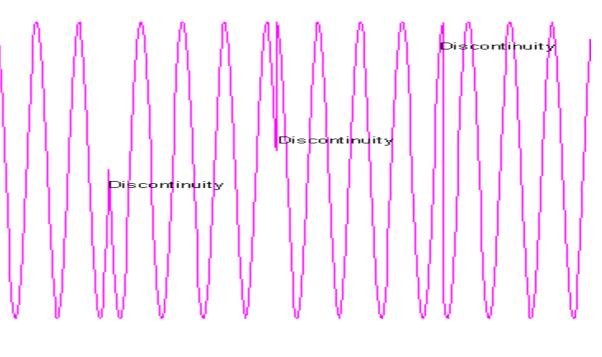
- In c) wave 2 has traveled Lc longer than wave 1. The head of the wave trains in wave 2 coincide with tail of the corresponding wave trains in partial wave 1.
- Now the phase difference fluctuates
 randomly as the successive wave
 trains pass by
- Here cos \$\Delta\oplus\$ varies randomly between
 +1 and -1 and for multiple trains it
 becomes 0 (no interference) I = I₁ + I₂

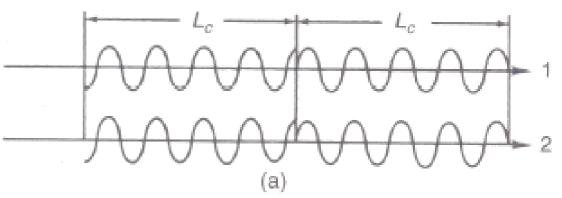


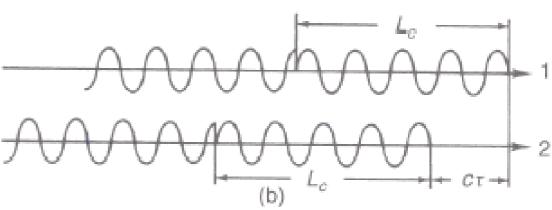
- In b) wave 2 has traveled l longer than wave 1 where 0<l<L_c.
- For many wavetrains the phase
 difference varies in time proportional

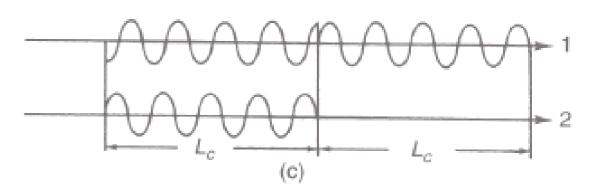
o
$$\tau_c - \tau$$
 where $\tau_c = L_c/c$.

- we still can observe an interference pattern but with a reduced contrast
- L_c is the coherence length and is the coherence time τ_c
- For white light, the coherence length is
 1 micron



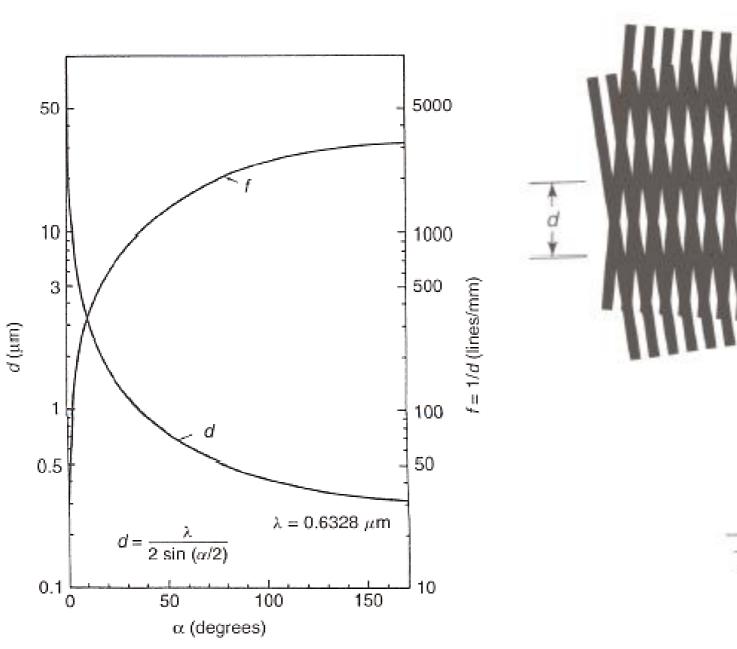


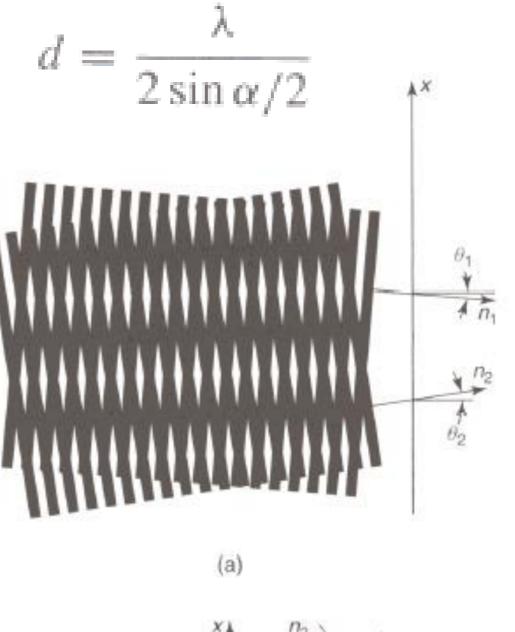


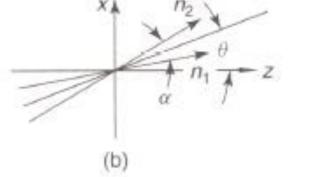


Plane Wave Interference

When two plane wave interfere the resultant fringe spacing is given by

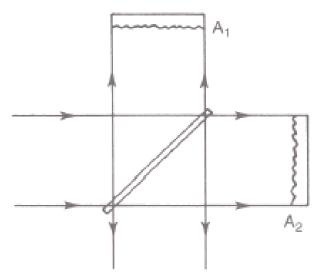






Interference between other Waves

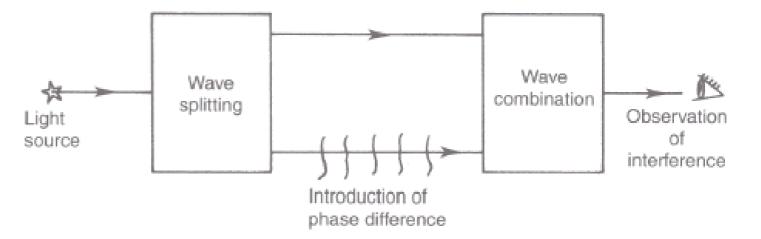
By measuring the distance between interference
 fringes over selected planes in space, quantities
 such as the angle and distance can be found.



- One further step would be to apply for a wave reflected from a rough surface
- By observing the interference can determine the surface topography
- For smoother surfaces, however, such as optical components (lenses, mirrors, etc.) where tolerances of the order of fractions of a wavelength are to be measured, that kind of interferometry is quite common.

Interferometry

Light waves interfere only
 if they are from the same
 source (why???)



- Most interferometers have the following elements
 - light source
 - element for splitting the light into two (or more) partial waves
 - different propagation paths where the partial waves undergo different phase contributions
 - element for superposing the partial waves
 - detector for observation of the interference

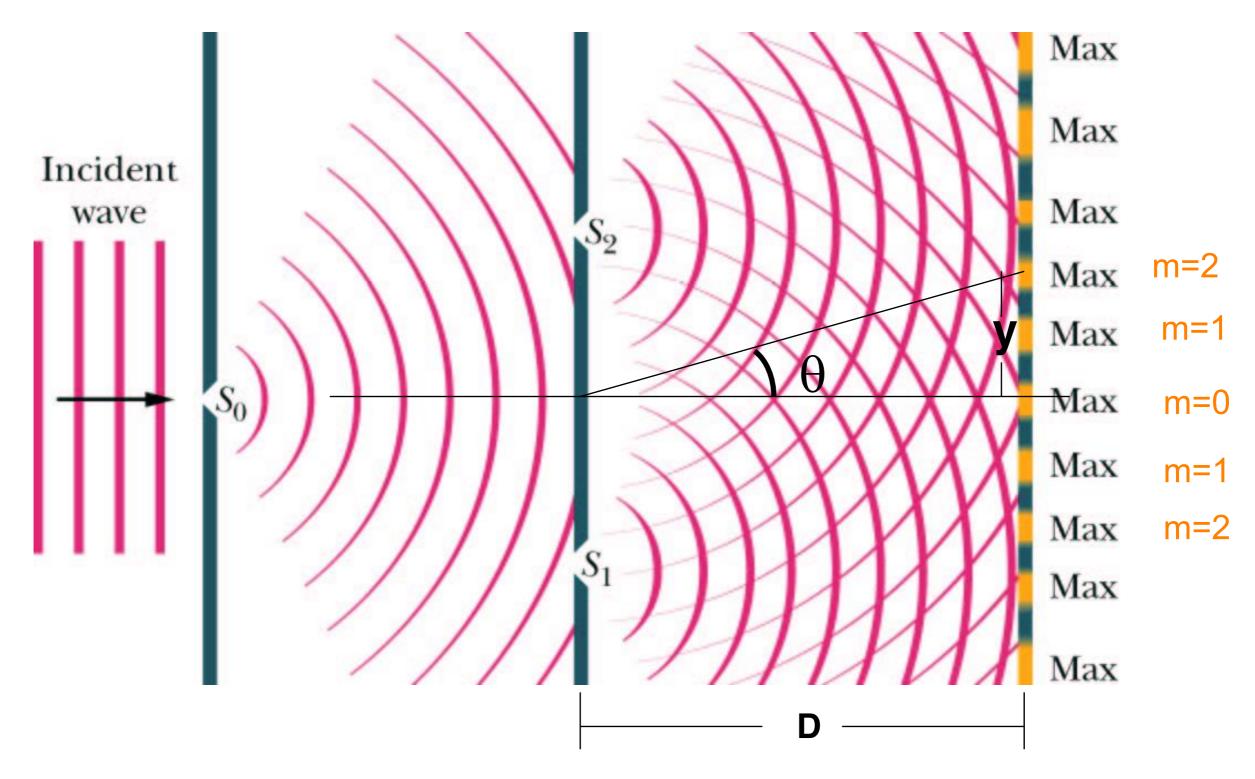
Interferometry

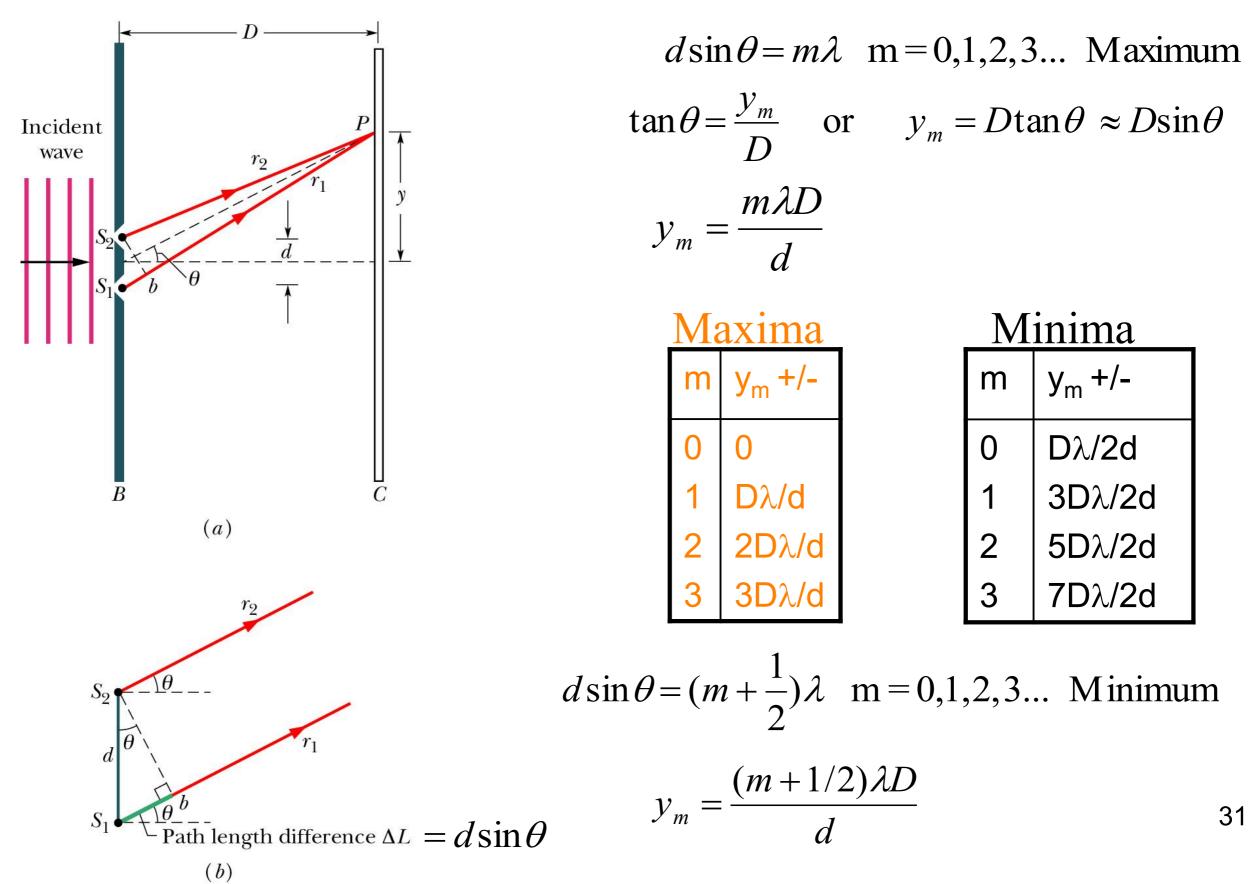
Depending on how the light is split,

interferometers are commonly classified

- Wavefront division interferometers
- Amplitude division interferometers

- Example of a wavefront dividing interferometer, (Thomas Young)
- The incident wavefront is divided by passing through two small holes at S₁ and S₂ in a screen 1.
- The emerging spherical wavefronts from S₁ and S₂ will interfere, and the pattern is observed on screen 2.
- The path length differences of the light reaching an arbitrary point x on S₂ is found from Figure
- When the distance D between screens is much greater than the distance d between S_1 and S_2 , we have a good approximation



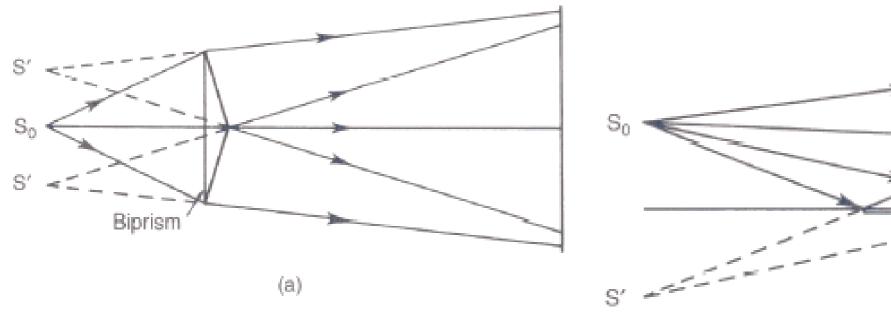


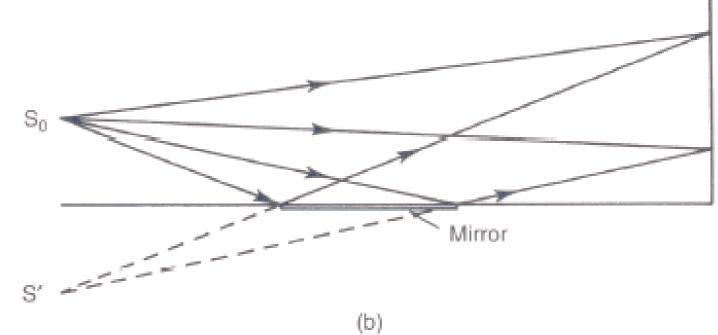
13E Suppose that Young's experiment is performed with blue-green light of 500 nm. The slits are 1.2mm apart, and the viewing screen is 5.4 m from the slits. How far apart the bright fringes?

From the table on the previous slide we see that the separation between bright fringes is $D\lambda/d$

 $D\lambda/d = (5.4m)(500 \times 10^{-9}m)/0.0012m$

= 0.00225m = 2.25mm

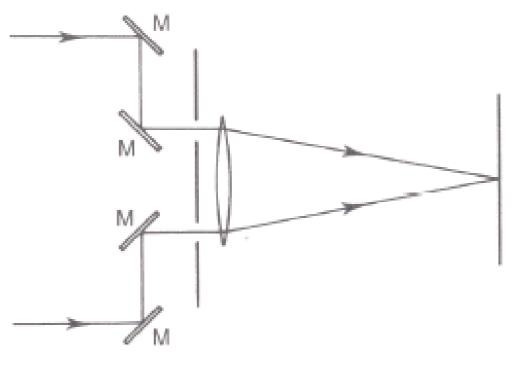




A) Fresnel Biprism

B) Lloyds Mirror

C) Michelsons Stellar Interferometer

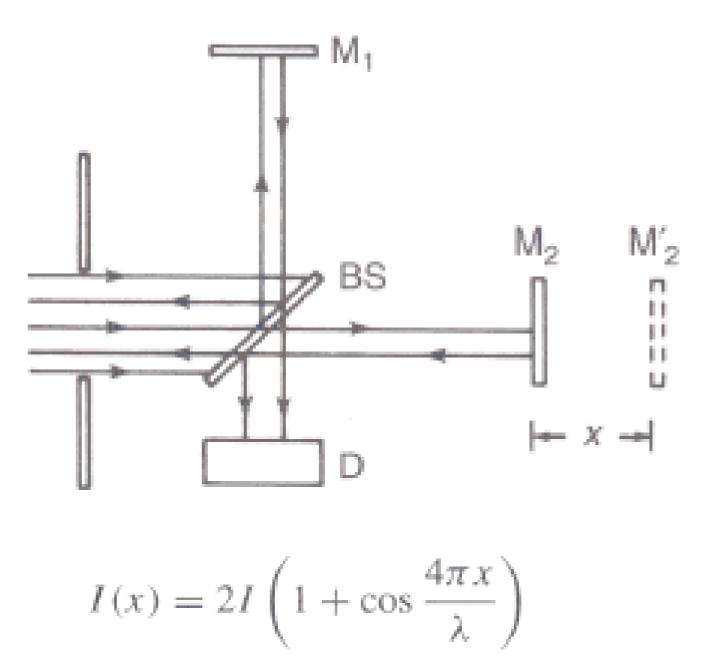


Amplitude Division

- Example of a amplitude dividing interferometer, (Michelson)
- Amplitude is divided by beamsplitter BS which partly reflects and partly transmits
- These divided light go to two mirrors M₁ and M₂ where they are reflected back.
- The reflected lights recombine to form interference on the detector D
- The path length can be varied by moving one of the mirrors or by mounting that on movable object (movement of x give path difference of 2x) and phase difference $\Delta \phi = (2\pi/\lambda)2x$.

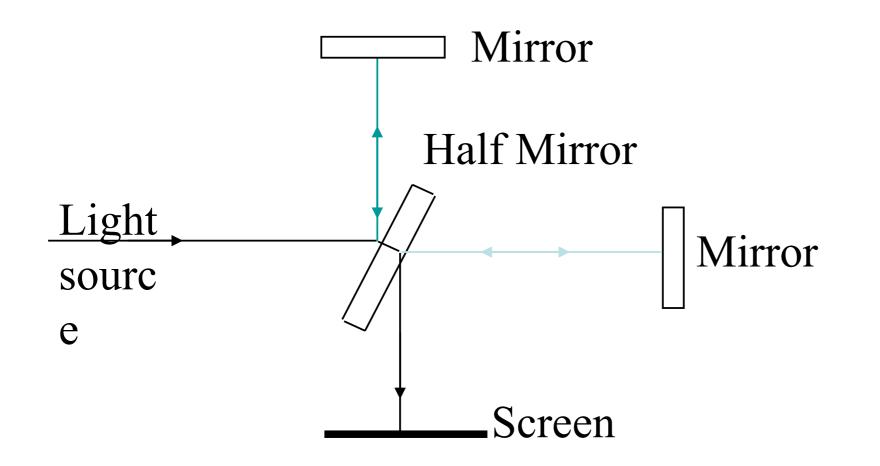
Amplitude Division

- As M₂ moves the
 displacement is measured by
 counting the number of light
 maxima registered by D
- By counting the number of maxima per unit time will give the velocity of the object.
- The intensity distribution is given by

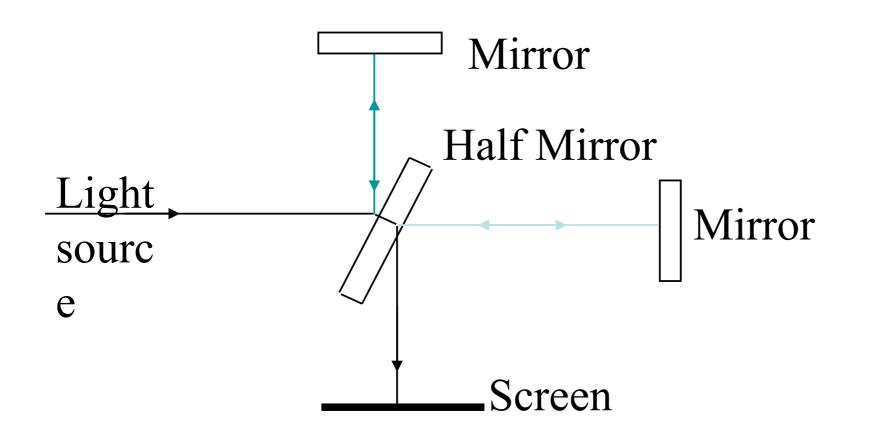


Ezekiel, Shaoul. *RES.6-006 Video Demonstrations in Lasers and Optics, Spring 2008.* (Massachusetts Institute of Technology: MIT OpenCourseWare), <u>http://ocw.mit.edu</u> (Accessed 15 May, 2012). License: Creative Commons BY-NC-SA

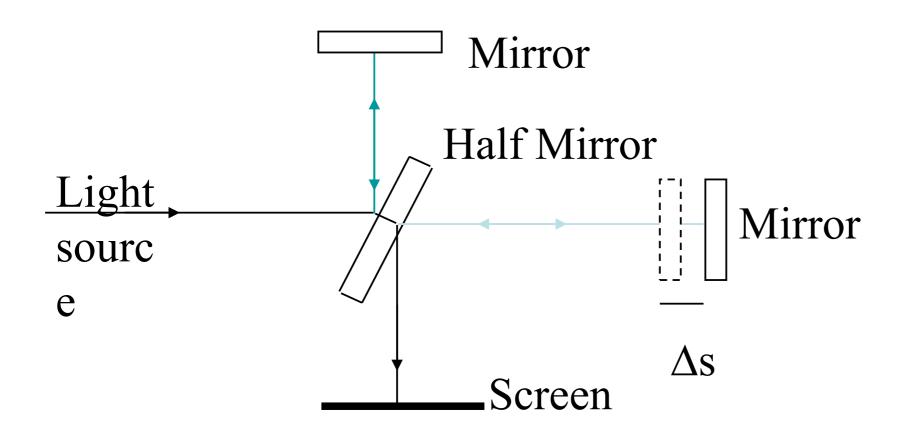
Split a beam with a Half Mirror, the use mirrors to recombine the two beams.



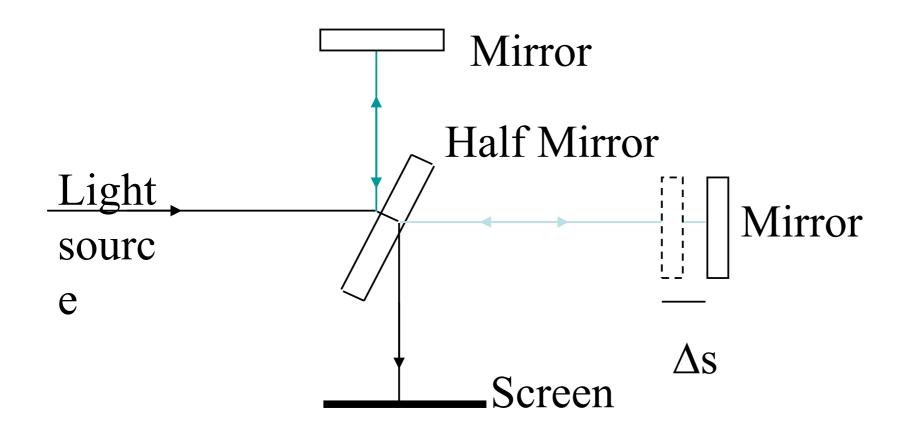
If the red beam goes the same length as the blue beam, then the two beams will constructively interfere and a bright spot will appear on screen.



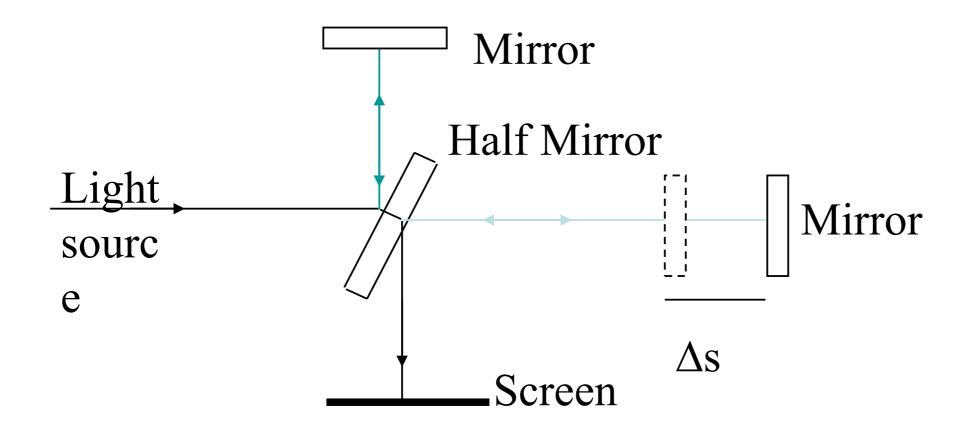
If the blue beam goes a little extra distance, Δ s, the the screen will show a different interference pattern.



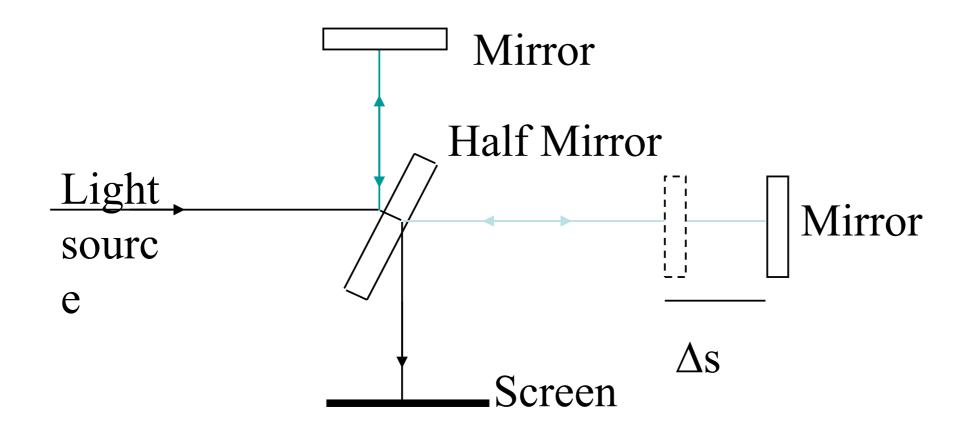
If $\Delta s = \lambda/4$, then the interference pattern changes from bright to dark.



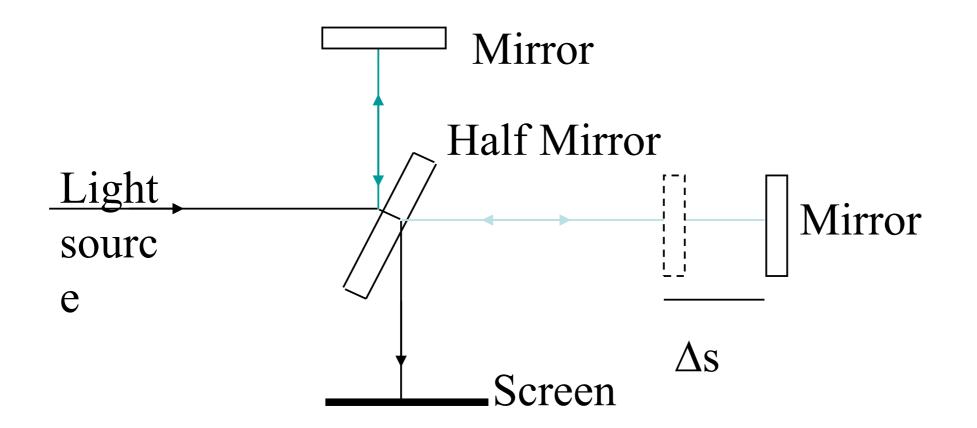
If $\Delta s = \lambda/2$, then the interference pattern changes from bright to dark back to bright (a fringe shift).



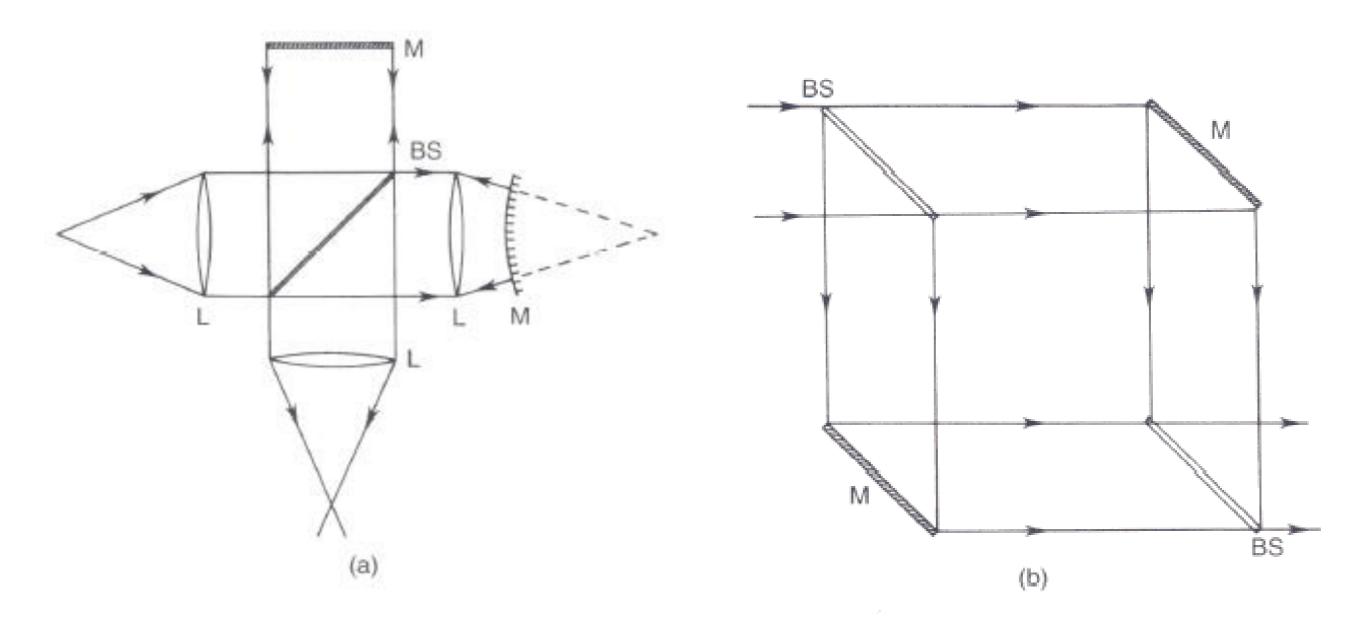
By counting the number of fringe shifts, we can determine how far Δs is!



If we use the red laser (λ =632 nm), then each fringe shift corresponds to a distance the mirror moves of 316 nm (about 1/3 of a micron)!



Amplitude Division



- Twyman Green Interferometer
- Mach Zehnder Interferometer

Dual Frequency Interferometer

- We stated that two waves of different frequencies do not produce observable interference. $\psi_1 = e^{i2\pi [(z/\lambda_1) - \nu_1 t]}$
- By combining two plane waves
- The resultant intensity becomes

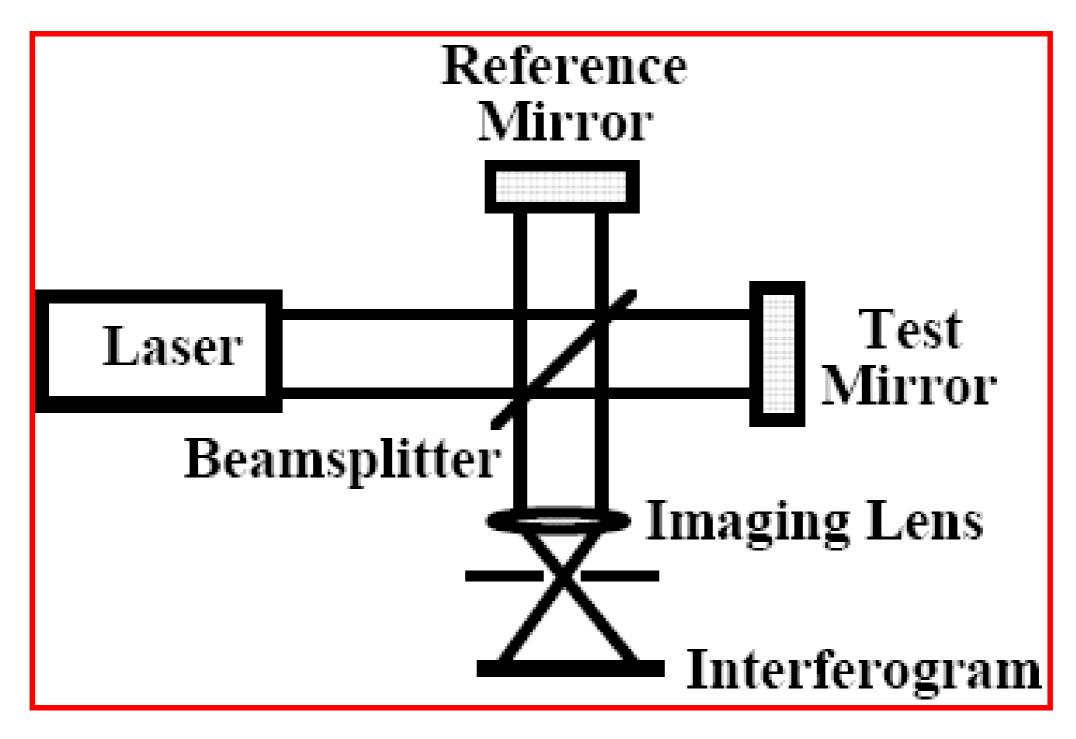
 $\psi_2 = \mathrm{e}^{\mathrm{i} 2\pi \left[(z/\lambda_2) - \nu_2 t \right]}$

- $I = 2\left[1 + \cos 2\pi \left(\left(\frac{1}{\lambda_1} \frac{1}{\lambda_2}\right)z (\nu_1 \nu_2)t\right)\right]$
- If the frequency difference V₁ V₂ is very small and constant, this variation in I with time can be detected
- This is utilized in the dual-frequency Michelson interferometer for length measurement
- Also called as Heterodyne interferometer

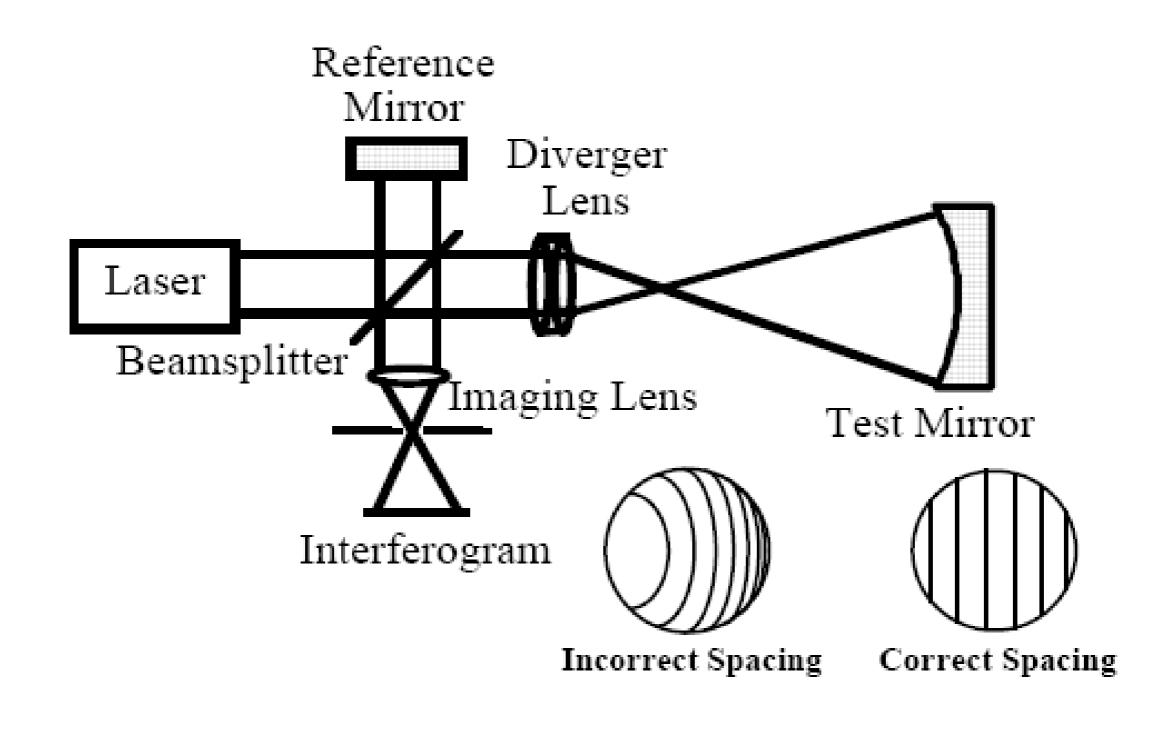
Outline

- Interferometry Examples
- Moire and Phase Shifting Interferometry
- Theory
- Types of measurement
- Applications (form and stress measurement)
- Theory of phase shifting
- Types of phase shifting methods available,
- Errors associated with phase shifting

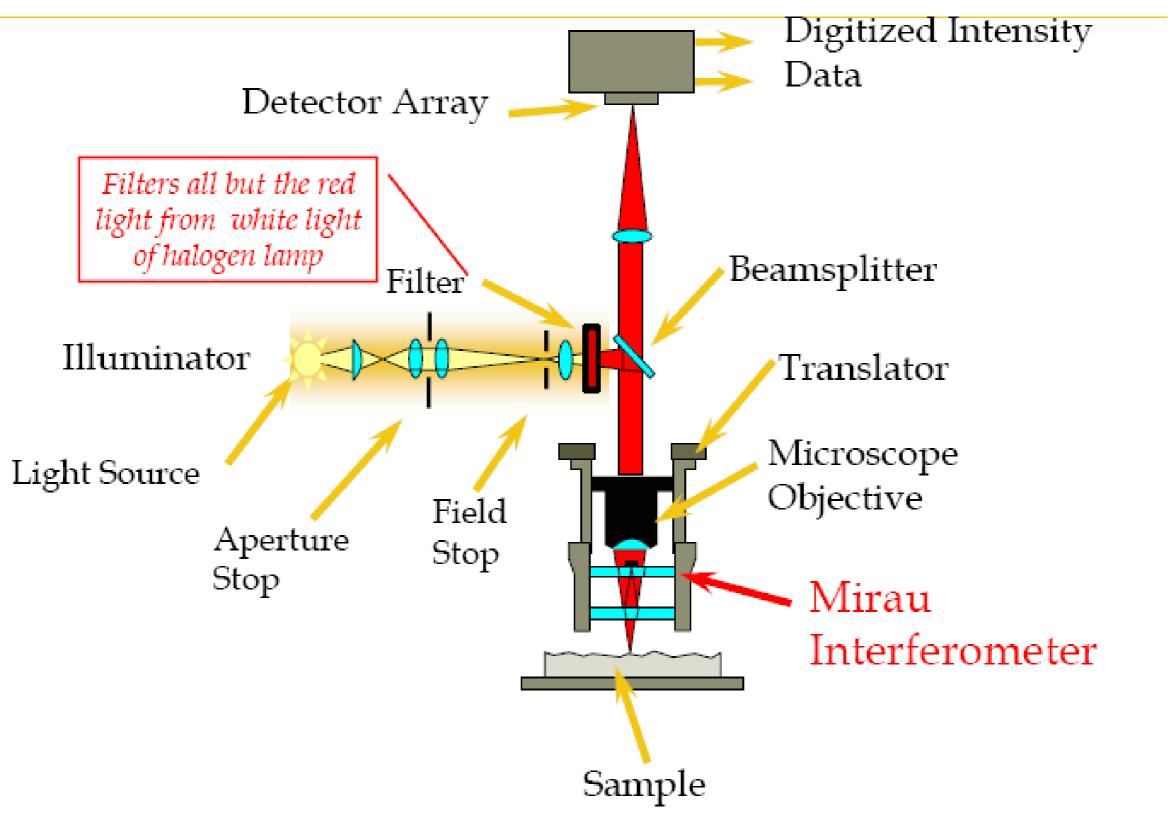
Twyman Green Interferometer Flat Surfaces



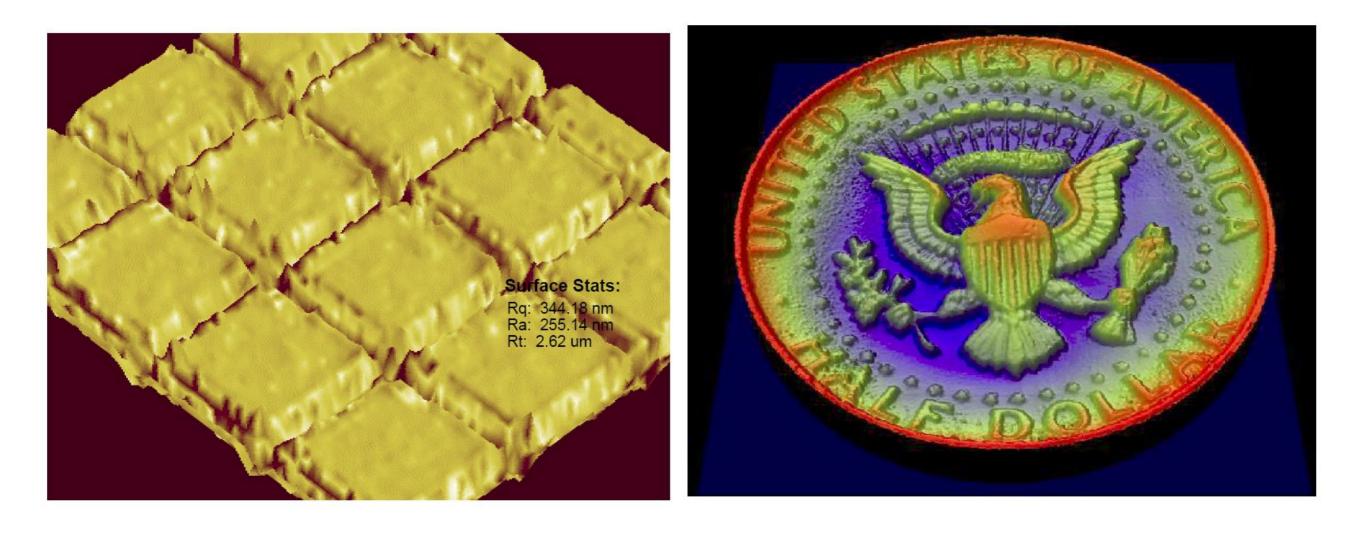
Twyman Green Interferometer Spherical Surfaces



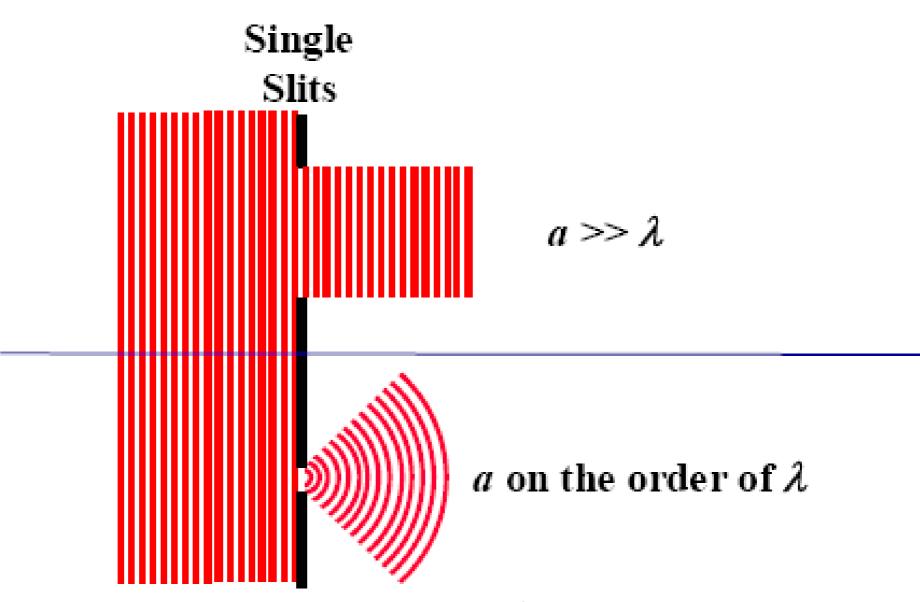
Mirau Interferometer



Mirau Interferometer



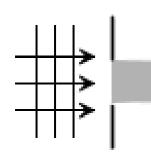
When slit size, a, is much greater than λ , the slit casts a shadow.

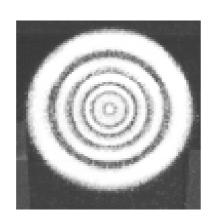


When slit size, a, is on the order of λ , the light passing through the slit diffracts.

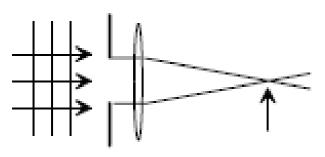
Types of diffraction

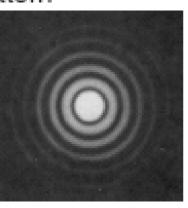
Fresnel diffraction



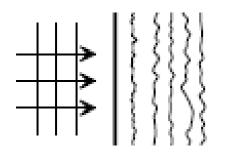


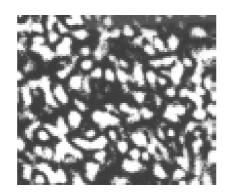
Fraunhofer diffraction - Airyn pattern



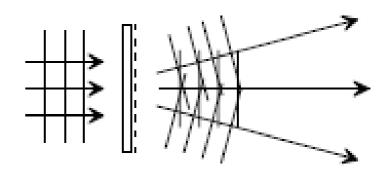


Diffraction from rough surface - speckle





Grating: periodic structure - diffraction orders

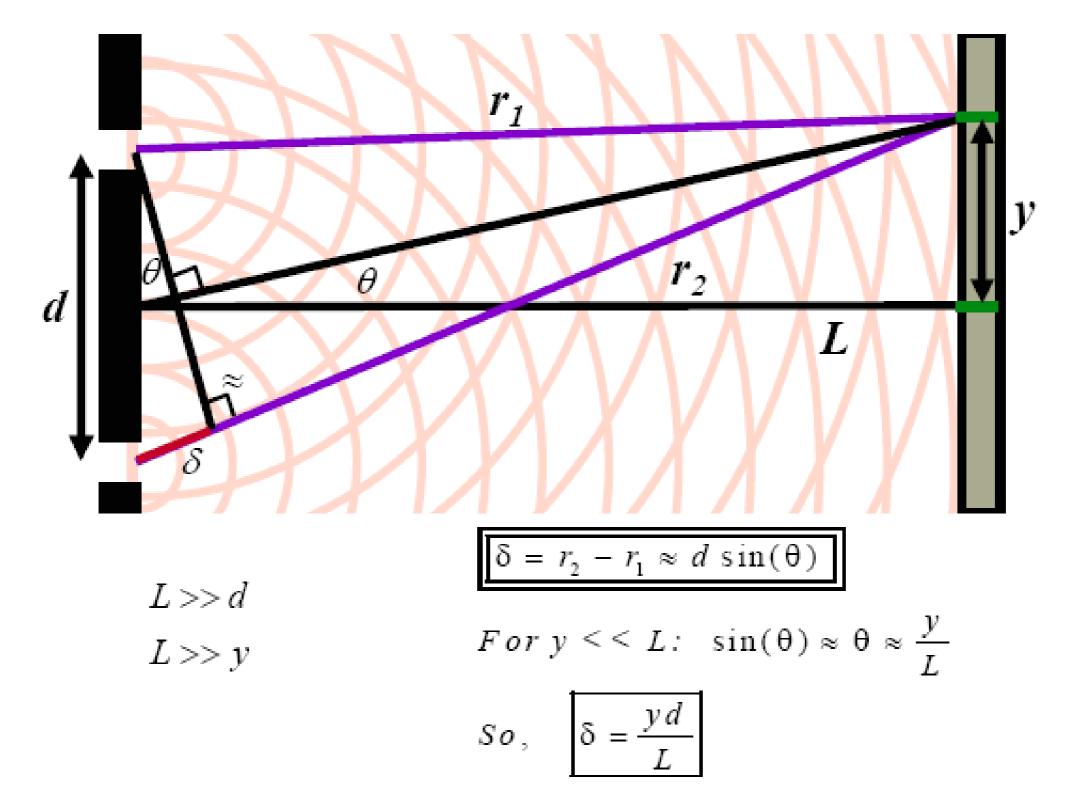


History:

Grimaldi, 1665
Huygens, 1678
Fresnel, 1818
Kirchhoff, 1882

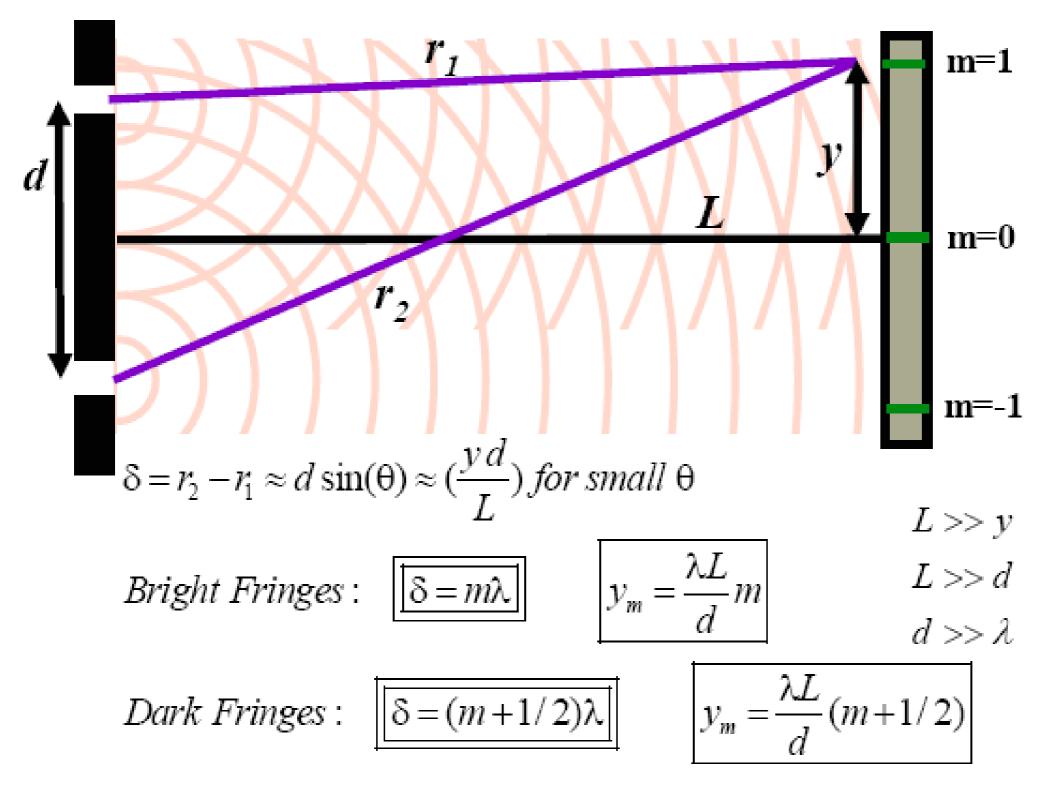
described the phenomenon wave theory of light intuitive explanation mathematical formulation

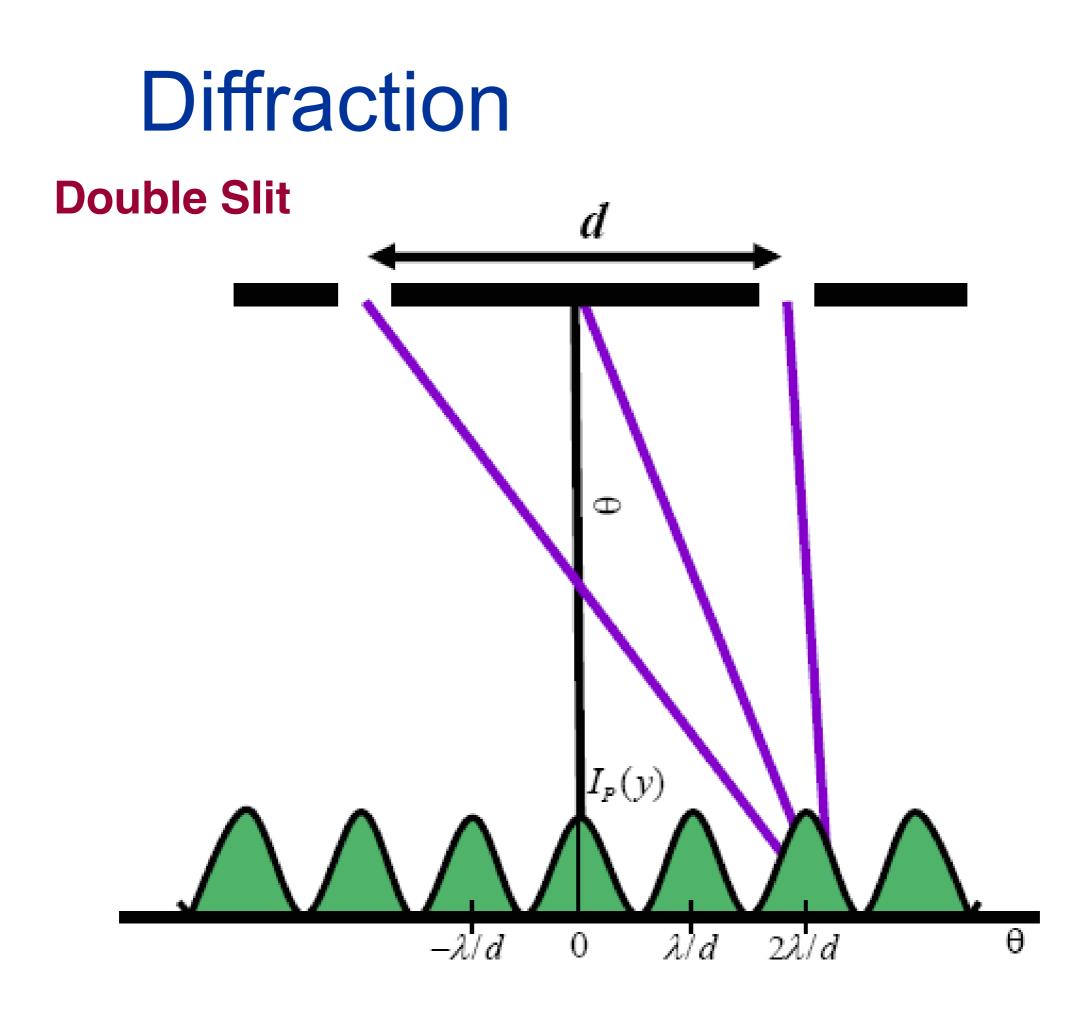
Double Slit



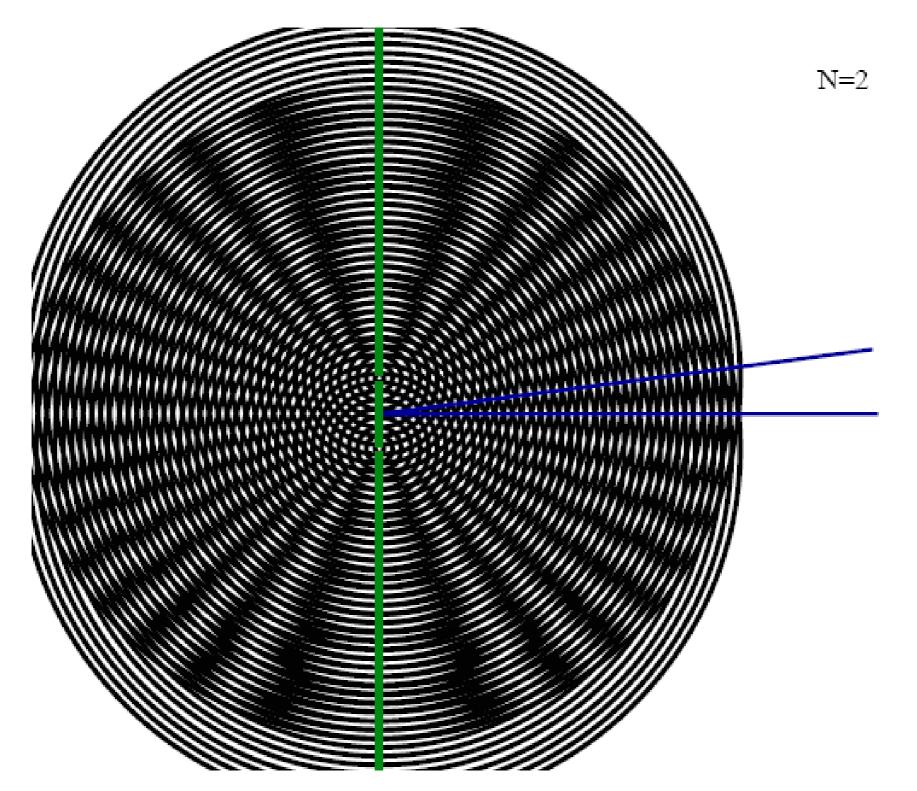
55

Double Slit

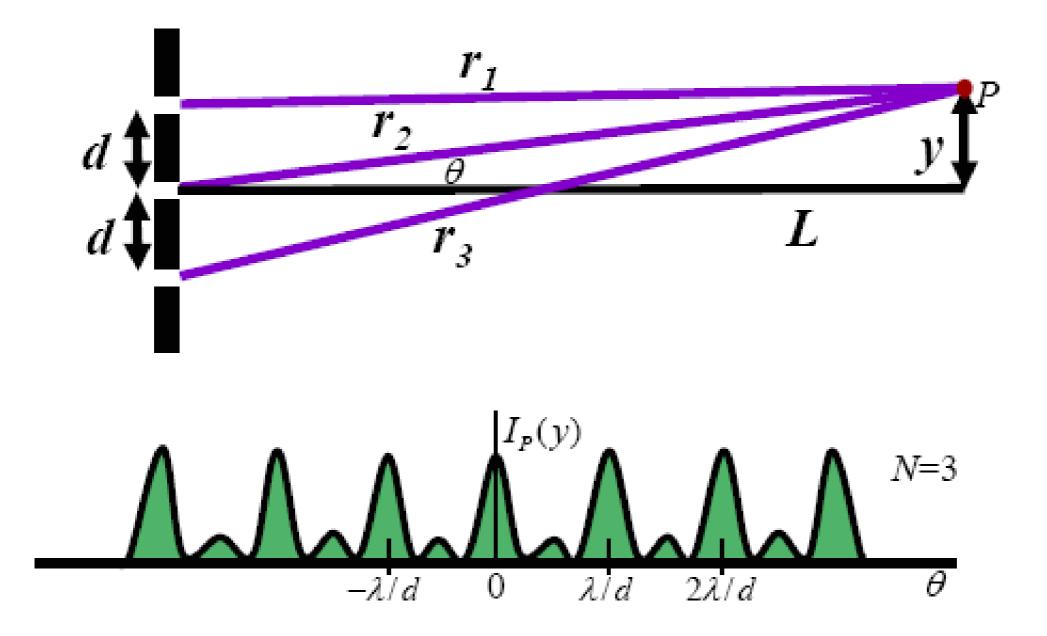




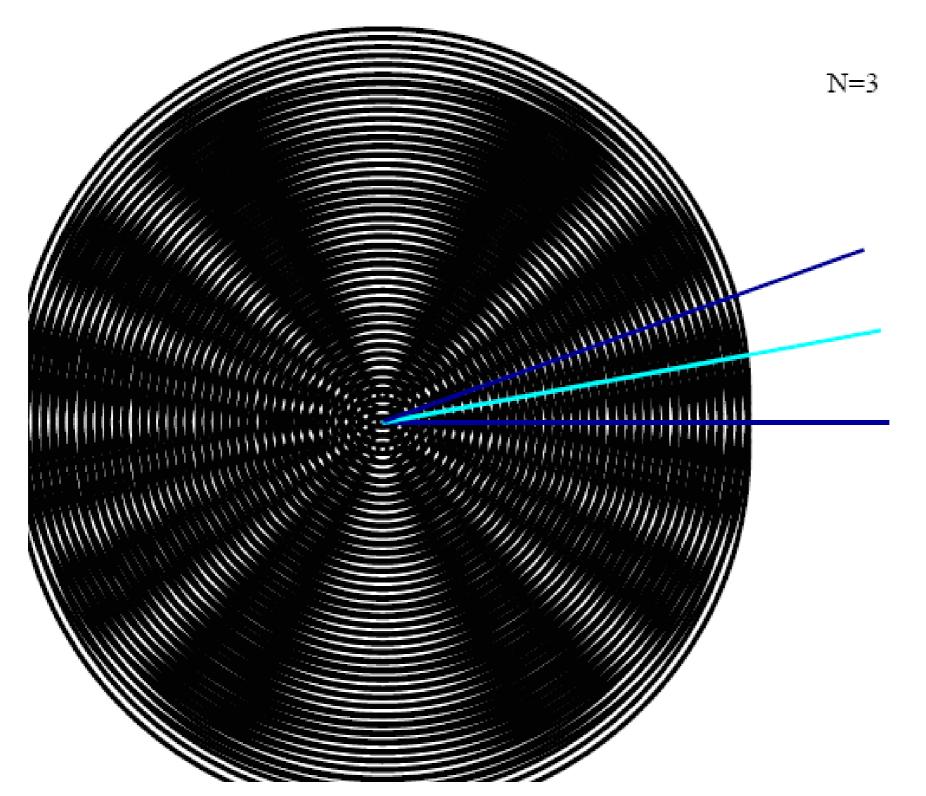
Double Slit



Triple Slit



Triple Slit



60

Multiple Slit

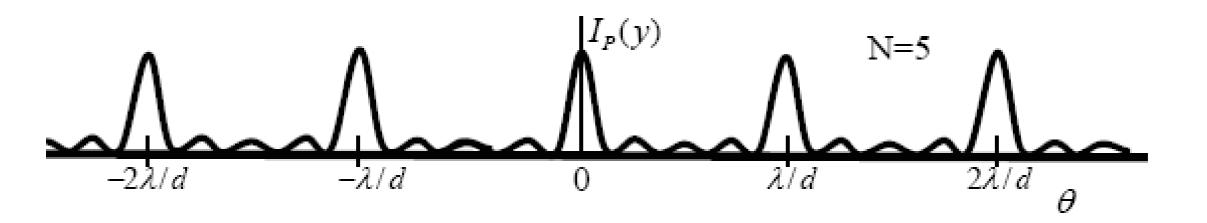


61

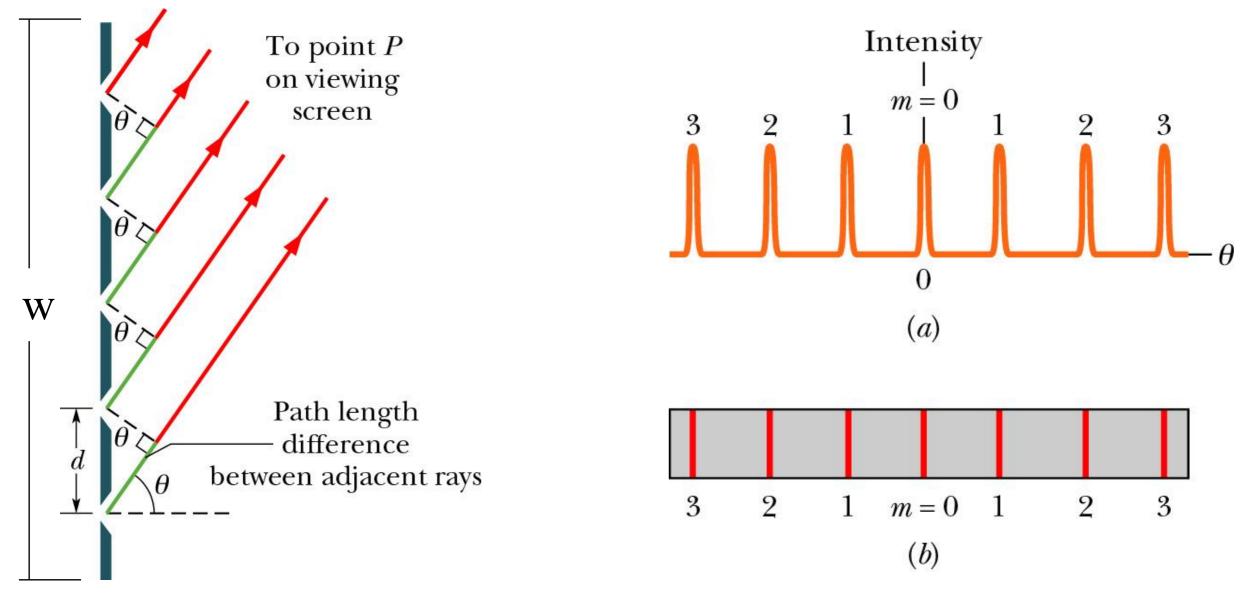
Multiple Slit

From N slits, with a spacing of d between adjacent slits:

- •Primary maxima at $\theta = m\lambda/d$, where m (the order) is an integer.
- •N-2 secondary maxima between adjacent primary maxima
- •The width of the maxima is approximately λ /(Nd).
- •The ratio of the primary maxima to secondary maxima increases with increasing N.



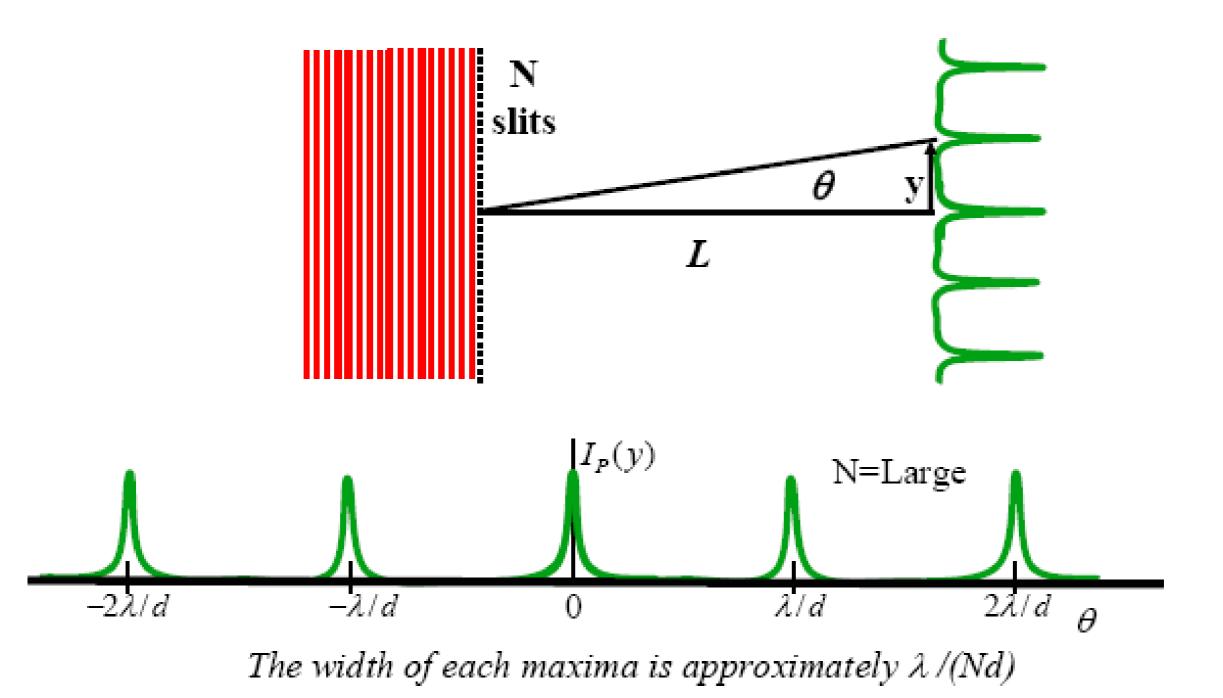
Grating -- N slits or rulings



 $d\sin\theta = m\lambda$ m=0,1,2,3..

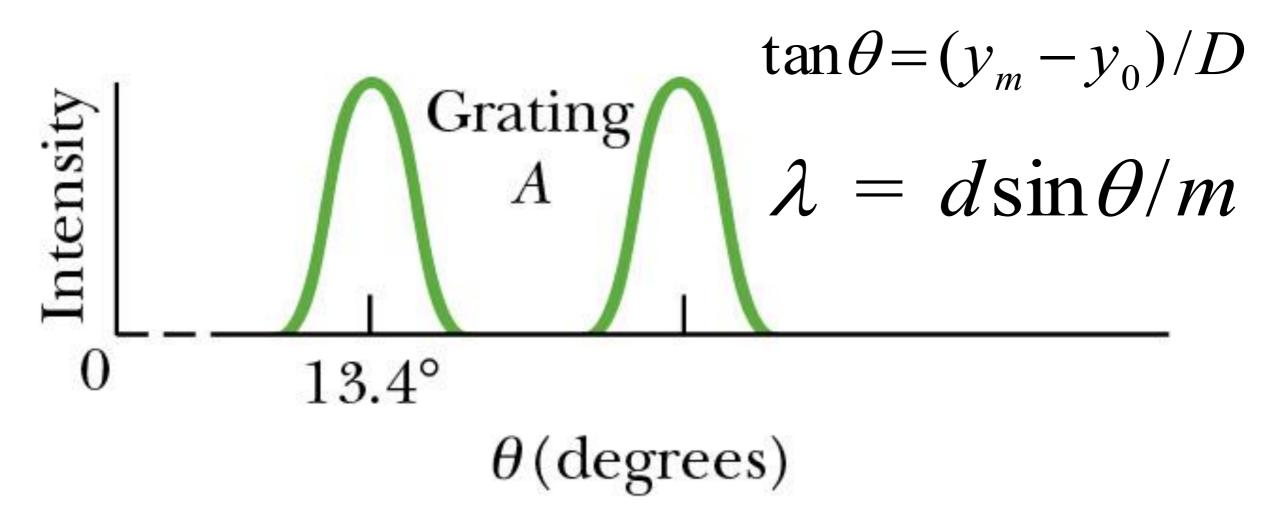
d = w/N where w is the entire width of the grating ₆₃

Grating -- N slits or rulings



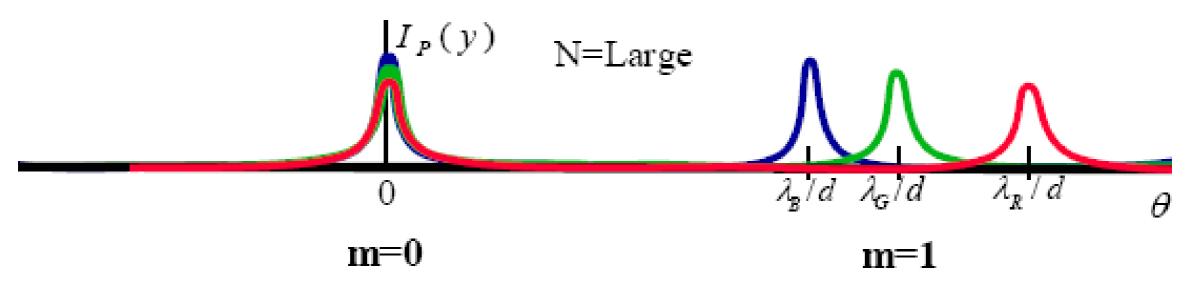
Measure Wavelength of Light

Measure angles of diffracted lines with a spectroscope using formula below. Then relate to wavelength



Measure Wavelength of Light

If very different wavelengths illuminate a diffraction grating



For each wavelength

$$\theta_{\lambda} = \frac{\lambda}{d}$$

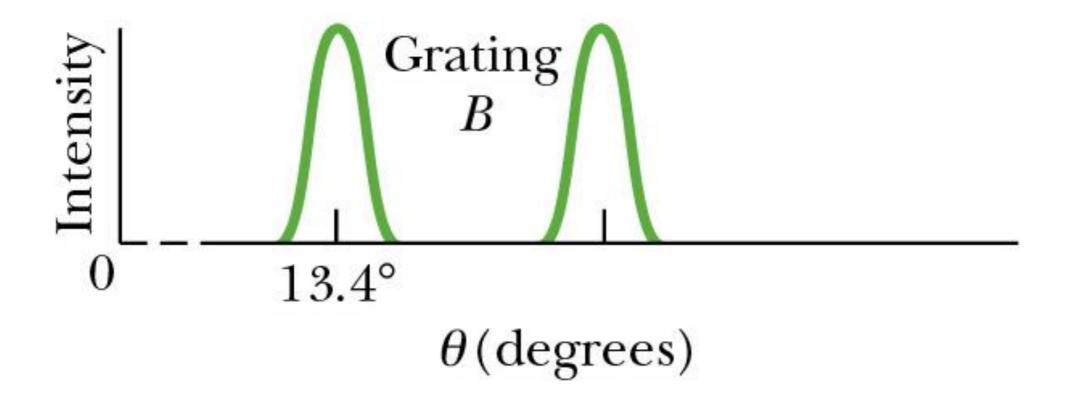
Higher wavelengths diffract more

Resolving Power

Resolving power of grating.

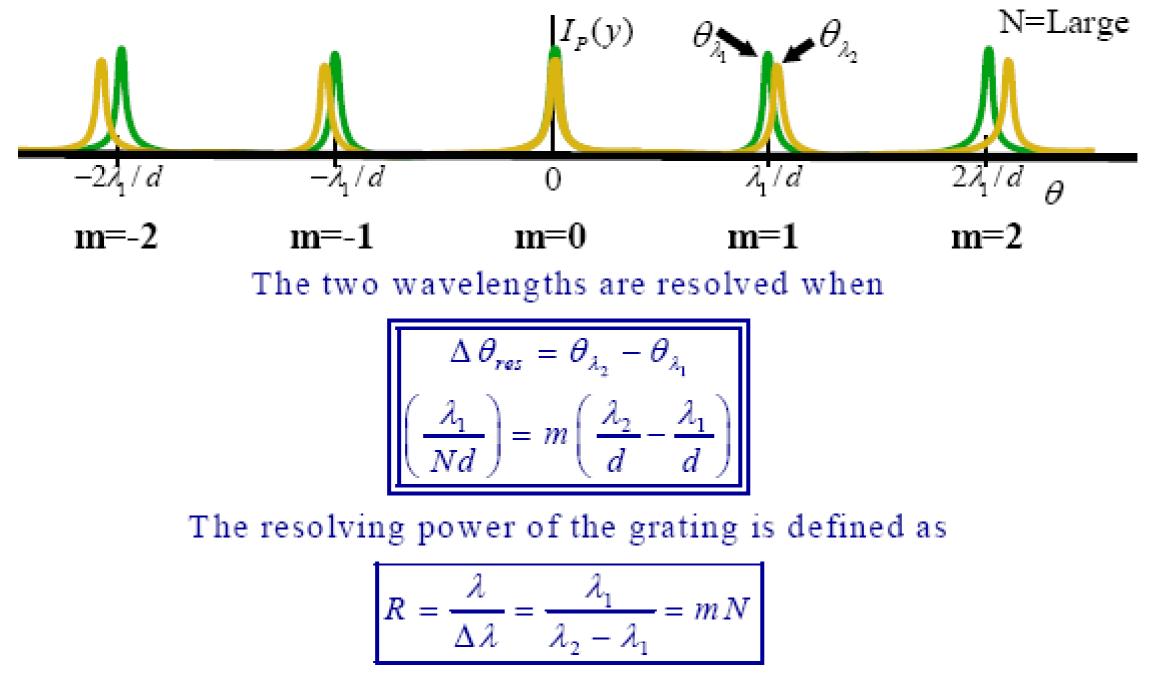
Measure of the narrowness of lines

 $R = \lambda / \Delta \lambda = Nm$

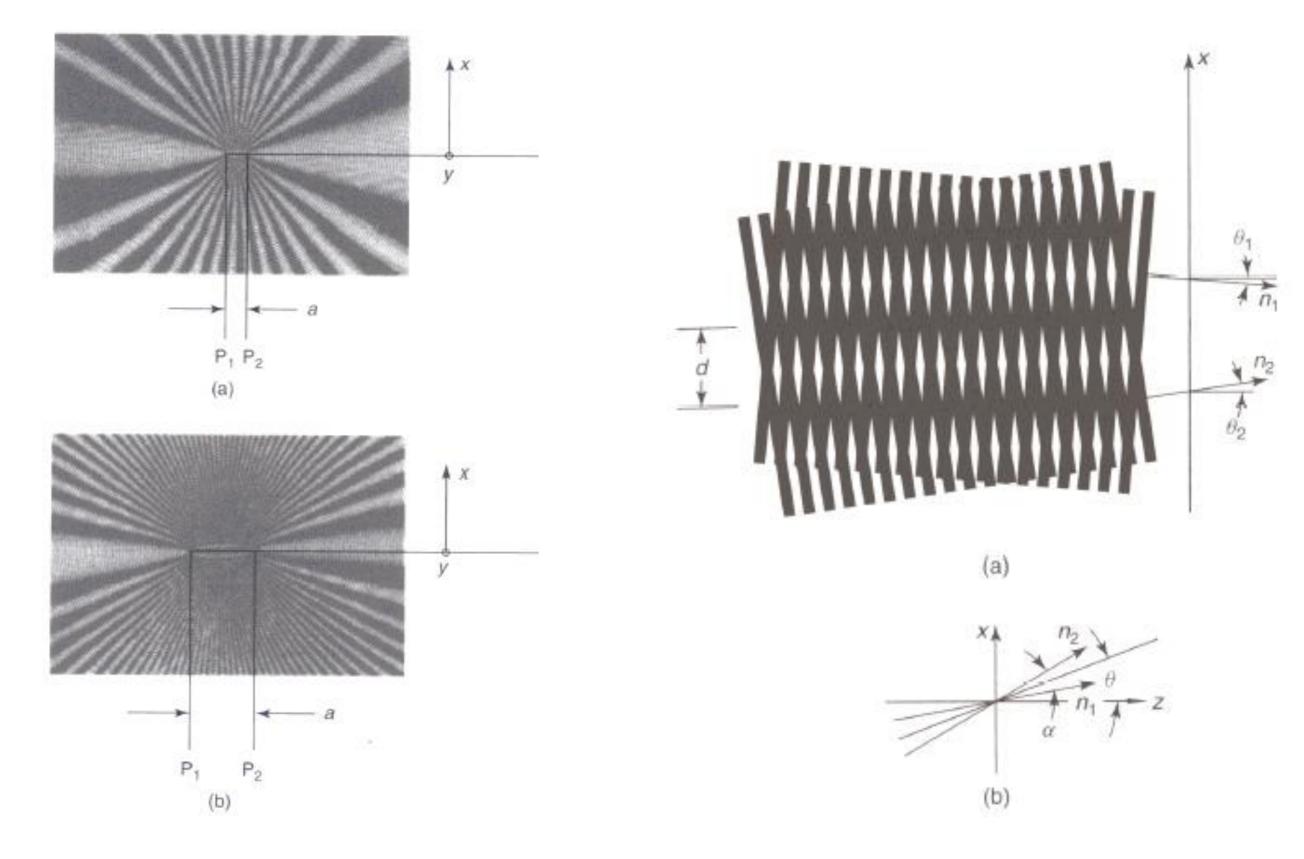


Resolving Power

If two nearly equal wavelengths illuminate a diffraction grating

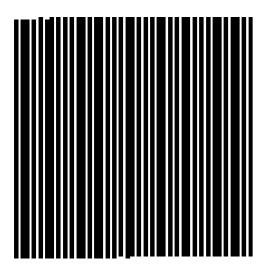


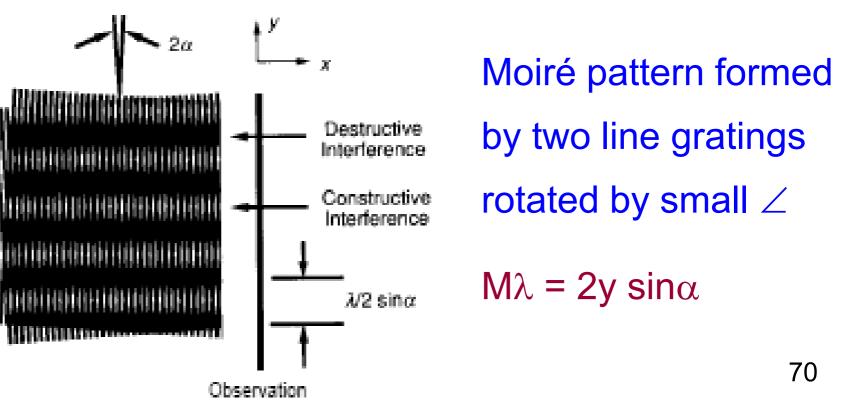
The higher the order the better the resolution.



- Dark fringe when the dark lines are out of step one-half period
- Bright fringe when the dark lines from one fall on the dark lines for of the other
- If the ∠ between the two gratings is increased the separation between the bright and dark fringes decreases

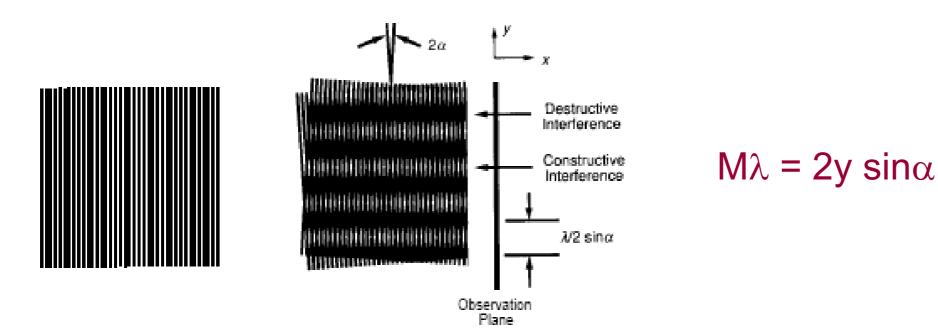
<u> Plane</u>





- Dark fringe when the dark lines are out of step one-half period
- If the gratings are not identical, the moiré pattern will not be straight equi-spaced fringes $\lambda_{\text{beal}} = \frac{\lambda_1 \lambda_2}{\lambda_2 \lambda_1}$.
- How are moiré patterns related to interferometry?
- The grating shown in Fig. can be a "snapshot" of plane wave traveling to the right, and the grating lines distance = λ of light.

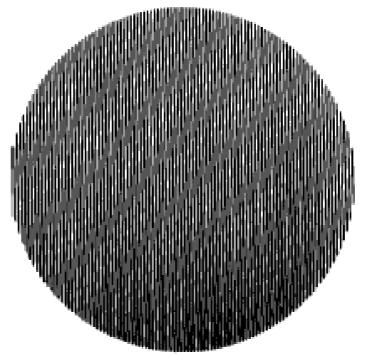
71



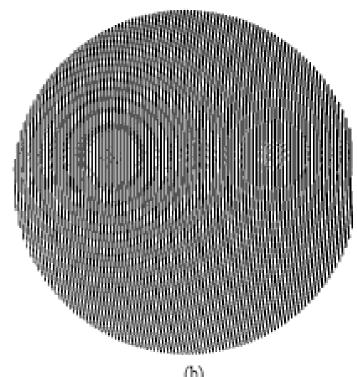
Moire Interferometry $d = \frac{\lambda}{2 \sin \alpha/2}$

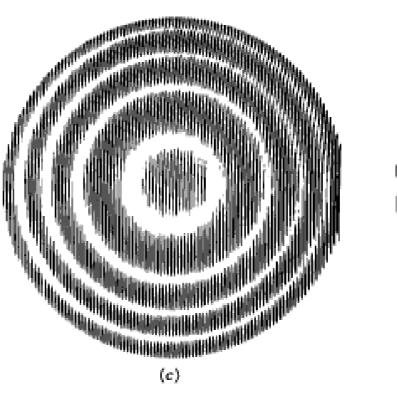
- It becomes like interfereing two plane waves at an angle 2α
- Where the two waves are in phase, bright fringes result, and where they are out of phase, dark fringes result
- The spacing of the fringes on the screen is given by previous eqn. where λ is now the wavelength of light (M λ = 2y sin α)
- Thus, the moiré of two gratings correctly predicts the centers of the interference fringes produced by interfering 2 plane waves
- Since binary gratings are used, the moiré does not correctly predict the sinusoidal intensity profile of the interference fringes.

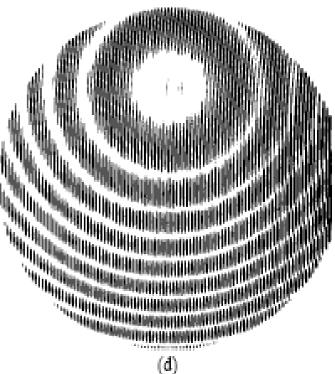
- Fig shows the moiré
 produced by superimposing
 two computer-generated
 interferograms.
- First interferogram (a) has
 50 waves of tilt across the
 radius
- Second interferogram (b)
 has 50 waves of tilt plus 4
 waves of defocus.



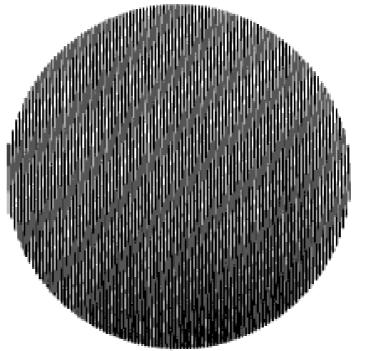
(a)



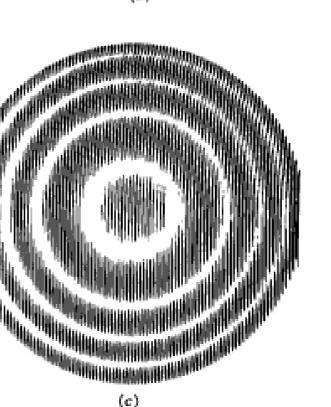


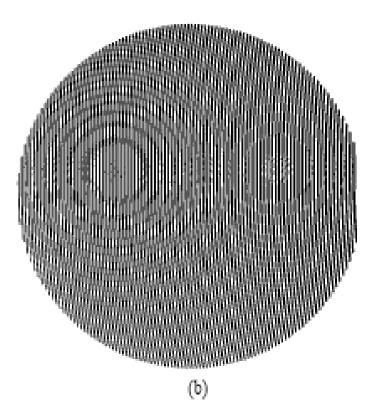


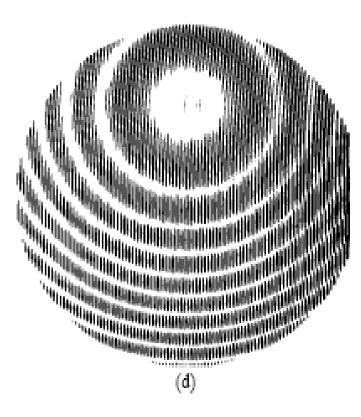
- If they are aligned such that the tilt is same for both, tilt
 cancels and the 4 waves of defocus remain (c).
- In (d), the two inferograms
 are rotated wrt each other so
 that the tilt will quite cancel.
- These results can be described mathematically using two grating functions:



(a)

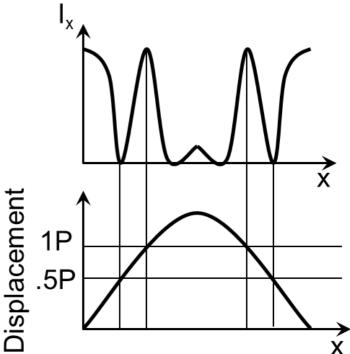


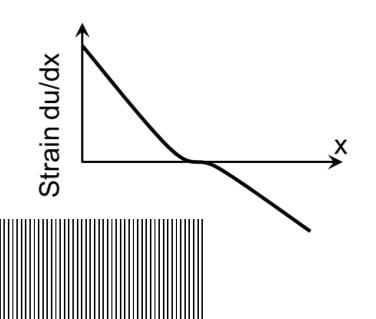




Moire – In Plane Measurement

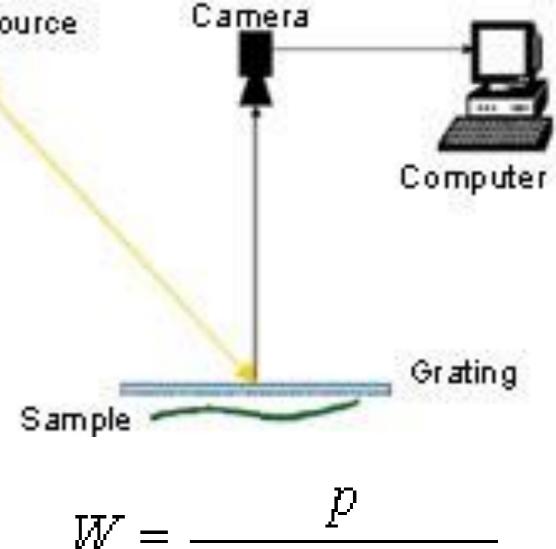
- Gratings used in Moire measurements are usually transparencies and if this is placed in contact with object, the phase of this grating will be modulated depending on the object displacement - np for maxima and (n+1/2) P for minima
- It there is a model grating as well, then the deformation produces fringes, with which the displacement can be computed
- The model grating can be placed over the grating, or imaged over the grating or imaged on photographic film





Shadow Moire – Out of Plane

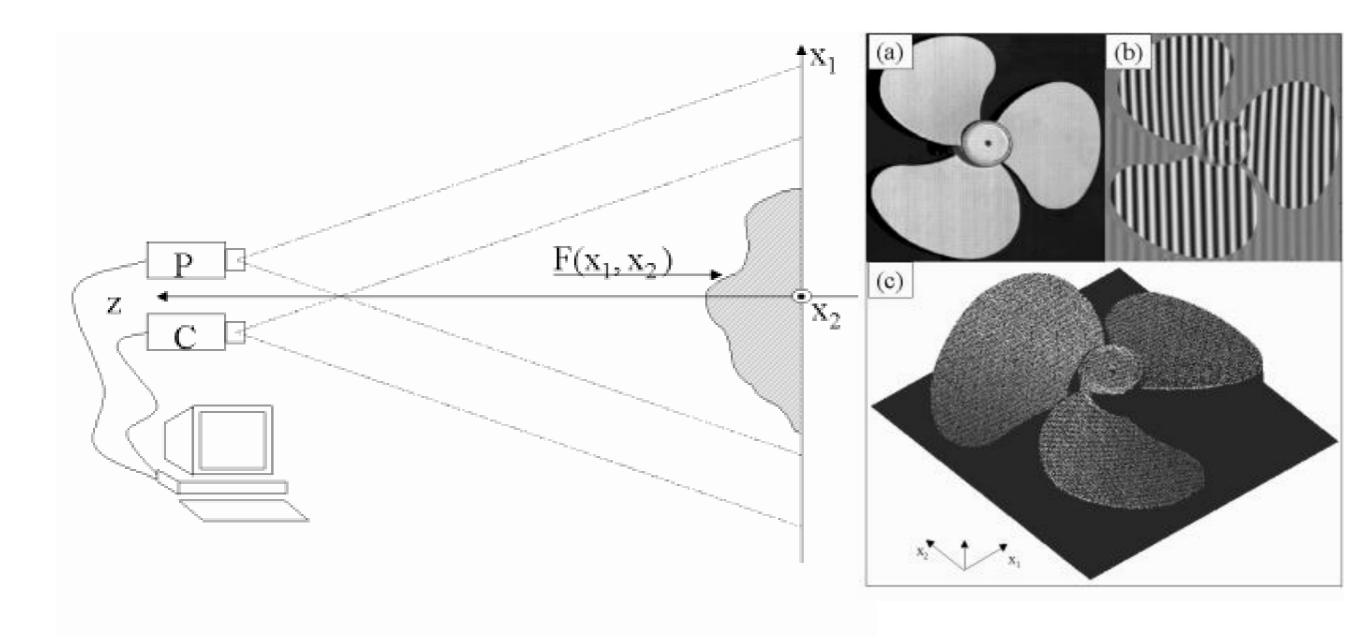
- Out of plane displacements areLight Source measured by using a single grating and an interference with the shadow of the grating itself
- The most successful application of shadow moire is in Medicine
- Useful in coarse measurements
 on large surfaces with complex
 contours



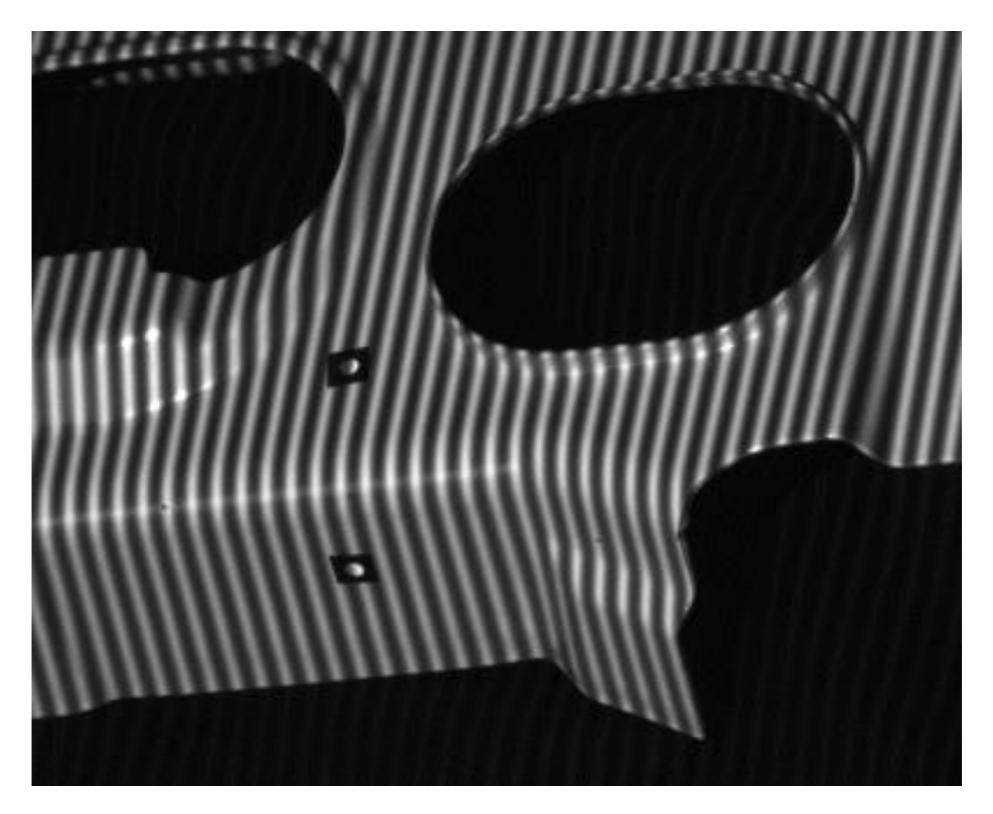
$$= \frac{1}{\tan \alpha + \tan \beta}$$

- W = out of plane displacement
- p = grating pitch; α = light angle
- β = observation angle ⁷⁶

Fringe Projection



Fringe Projection



Parameters	Fringe skeletonizing	Phase stepping/ shifting	Fourier transform	Temporal heterodyning		
No of interferograms to be reconstructed	1	Minimum 3	1 (2)	One per detection point		
Resolution (λ)	1 to 1/10	1/10 to 1/100	1/10 1/30	1/100 to 1/1000		
Evaluation between intensity extremes	No	Yes	Yes	Yes		
Inherent noise suppression	Partially	Yes	No (yes)	Partially		
Automatic sign detection	No	Yes	No (yes)	Yes		
Necessary experimental manipulation	No	Phase shift	No (phase shift)	Frequency		
Experimental effort	Low	High	Low	Extremely high		
Sensitivity to external influences	Low	Moderate	Low	Extremely high		
Interaction by the operator	Possible	Not possible	Possible	Not possible		
Speed of evaluation	Low	High	Low	Extremely low		
Cost	Moderate	High	Moderate	Very high 79		
	Comparison of phase evaluation methods					

- In phase shifting interferometers, the reference wave is shifted wrt the test wave, changing their phase difference.
- By measuring the irradiance changes for different phase shifts, it is possible to determine the phase of test wave.
- The intensity pattern of any interfering beams at any given point is governed by the following equation

$$I = I_0 [1 + V \cos{\{\phi + \alpha\}}]$$

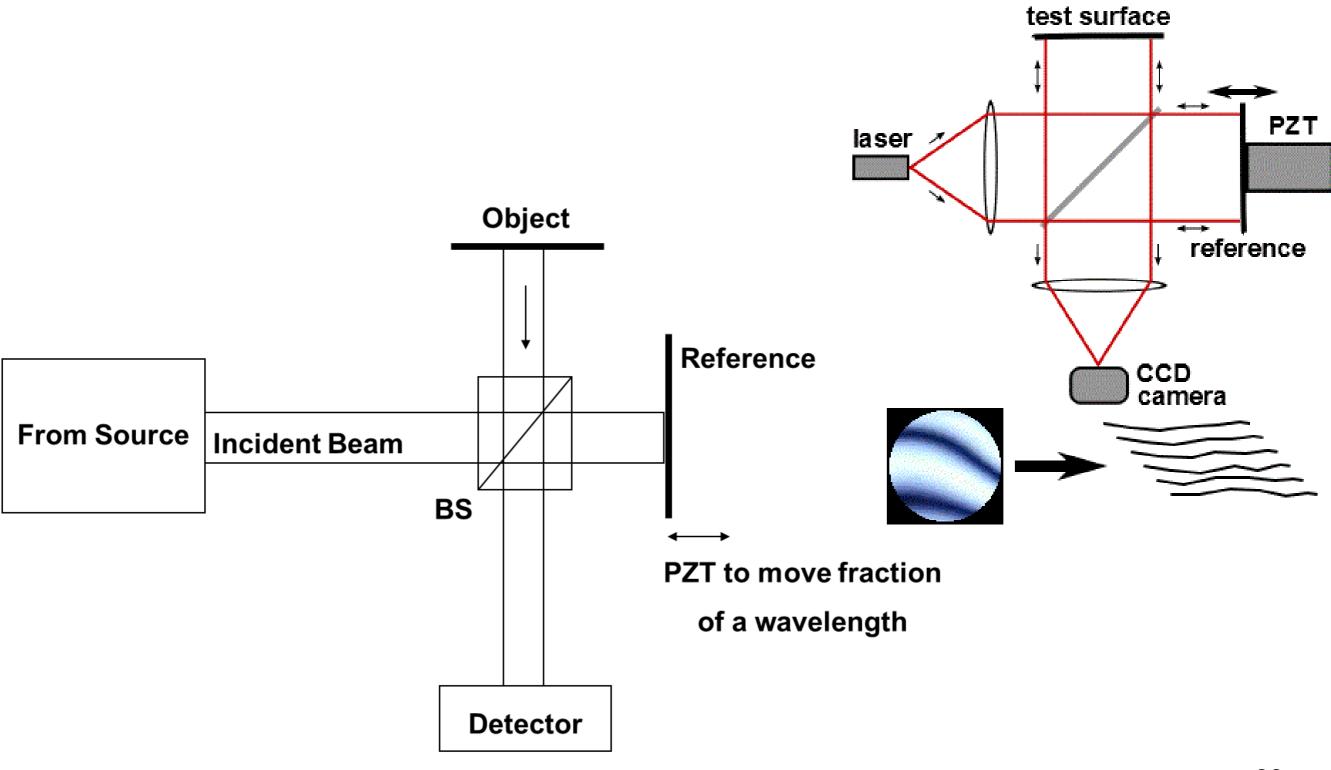
 where φ is the phase difference distribution across the interference pattern and V is the modulation of the fringes.

 With CCDs, the intensity at multiple points can be recorded and processed simultaneously at high speeds. Therefore, the equation can be:

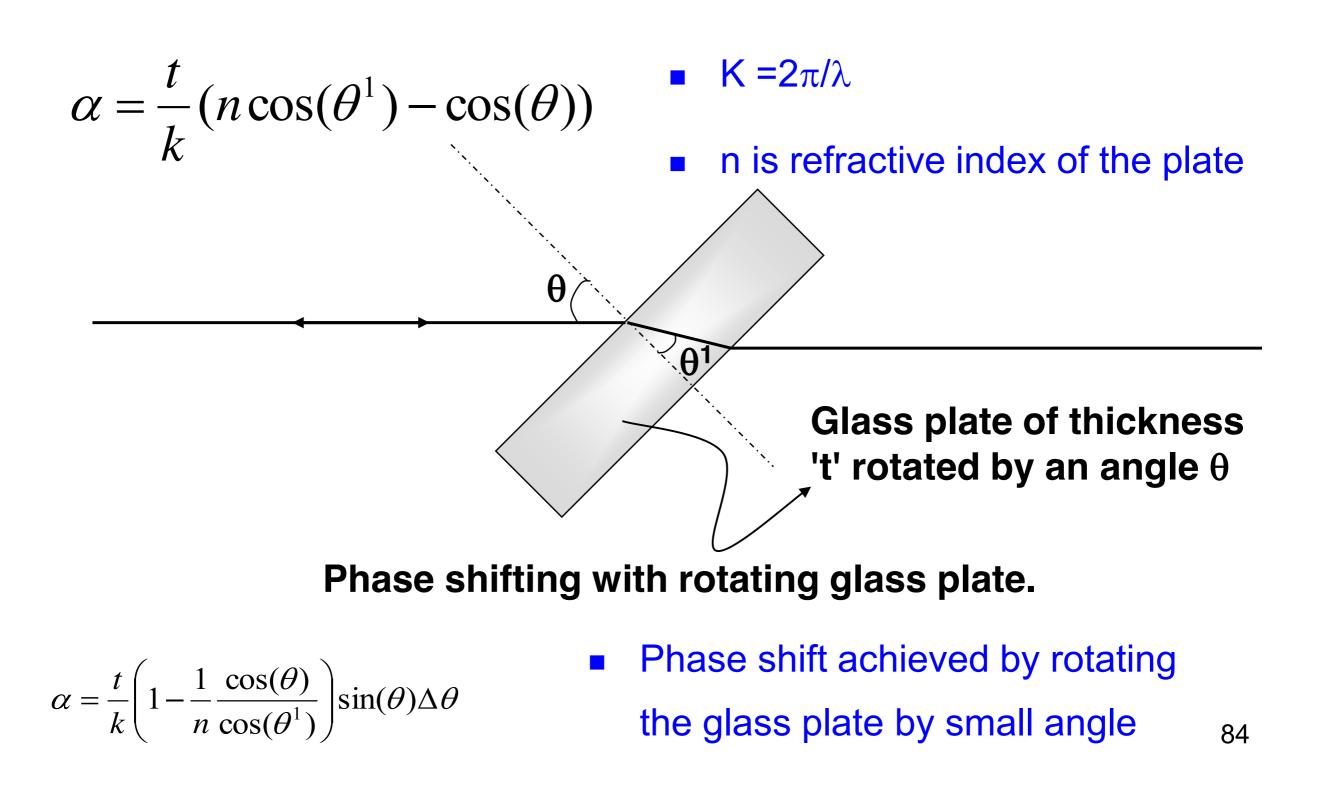
•
$$I(x, y) = I_0(x, y)[1 + V\cos{\phi(x, y) + \alpha}]$$

- where I(x, y) is the intensity of the interference pattern at the corresponding pixel of the CCD camera, \u03c6(x, y) is the phase difference at that particular pixel
- 3 unknowns in I₀, V and φ. Therefore, a minimum of three phase-shifted images is required to find out the phase φ value of a particular point

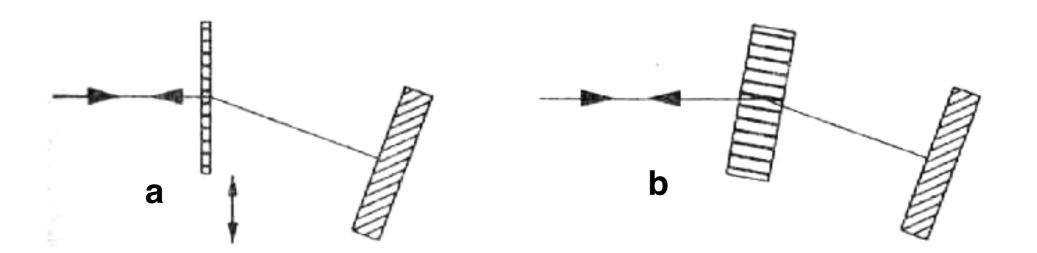
- 2 waves derived from a common source, the phase difference between the two waves is given by $\Delta p = \frac{\lambda}{2\pi} \Delta \phi$
- where $\Delta \phi$ is the phase difference, ΔP is the path difference between them and, λ the wavelength.
- The phase difference could be introduced by introducing path difference and vice versa
- In most of the phase shifting interferometric techniques, changing the path length of either the measurement, or the reference beam, by a fraction of the wavelength provides the required phase shifts



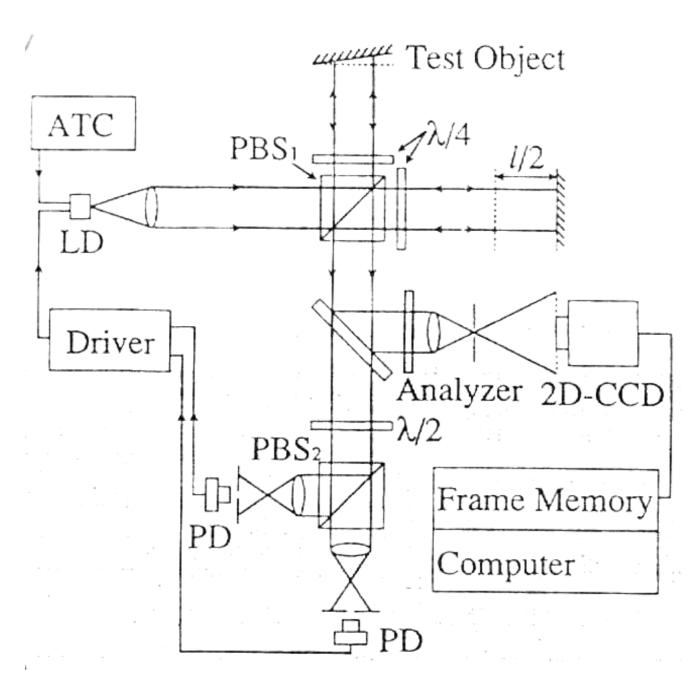
Phase shifting technique (Piezo Mirror)



- $\alpha = \frac{2\pi n}{d} \Delta y$
- Where d is the period of the grating and n is the order of diffraction

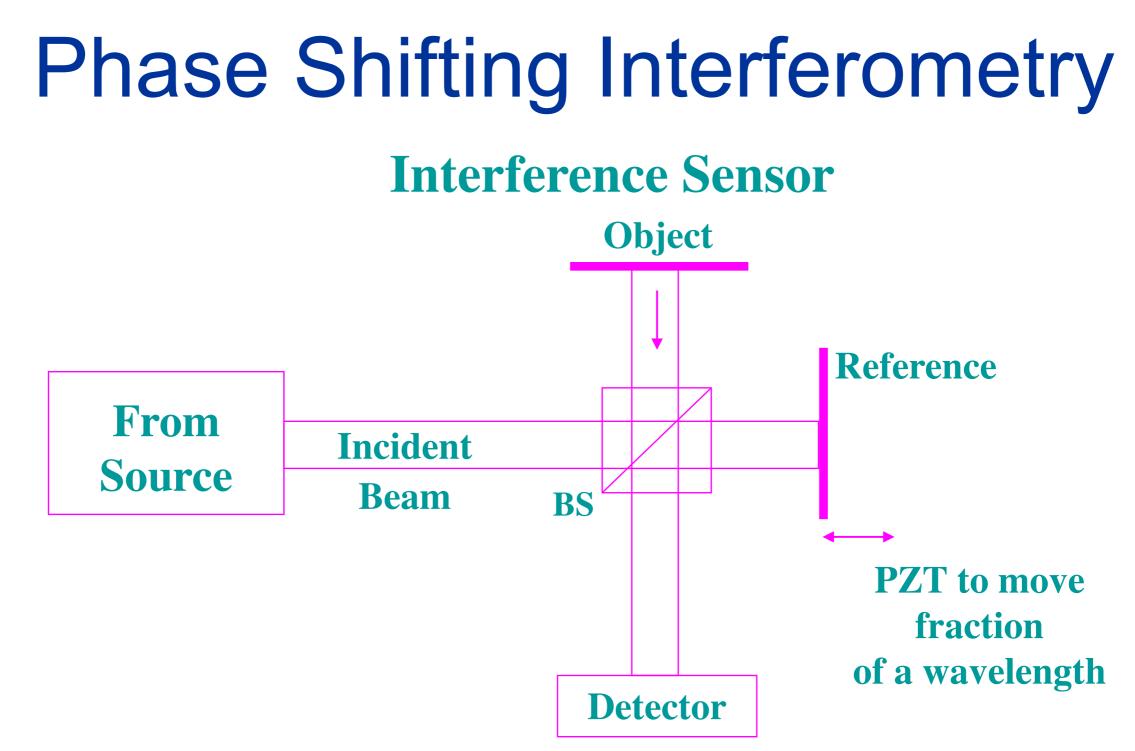


Phase shifting by moving grating and Bragg cell.



Phase shifting with laser feedback

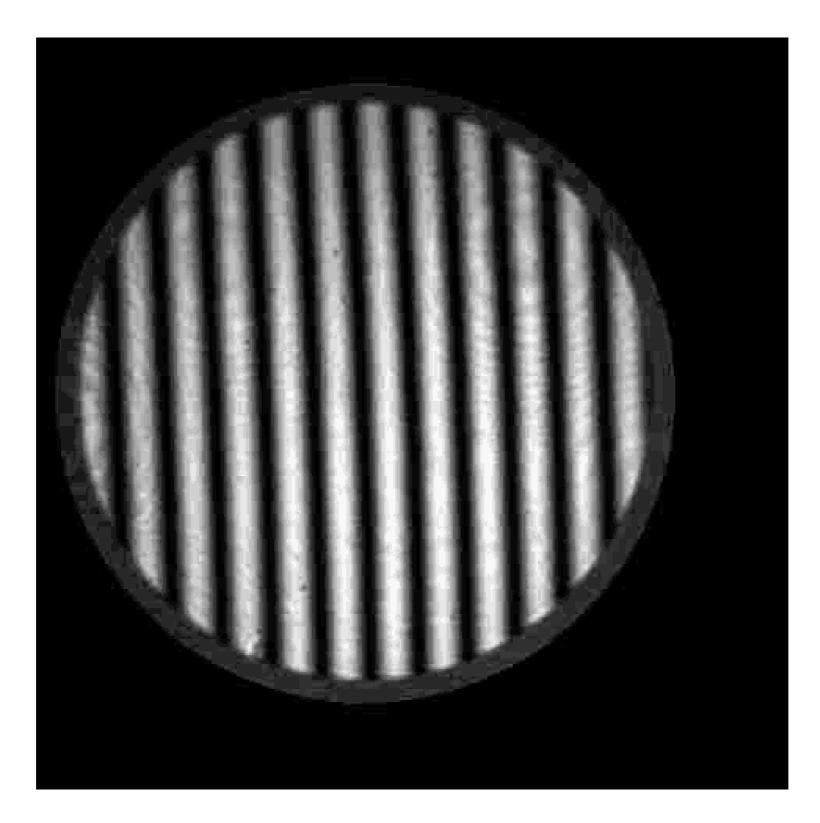
the frequency of the source is changed by injecting electrical current to the laser and using a large optical path difference between the measurement and reference beams



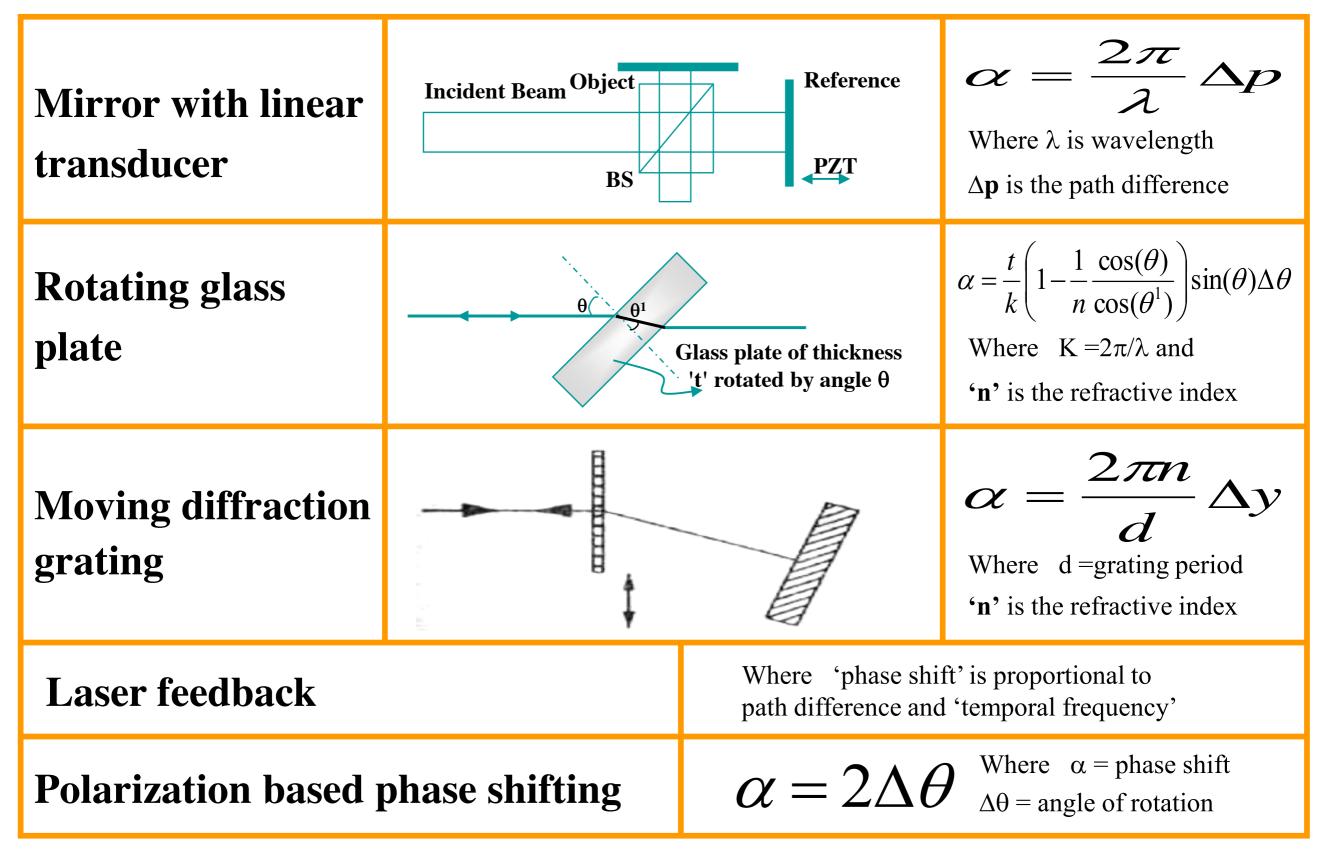
- ΔP is the path difference between the two beams
- $\Delta \phi$ is the phase difference between them
- λ the wavelength of the light source

$I_1(x, y) = I_0(x, y)(1 + V \cos \delta)$

- 'I(x, y)' is the intensity of the interference pattern,
 'δ(x, y)' is the phase difference between object and reference,
- **'V' is the modulation of the fringes**



Phase Shifting Techniques



Phase Shifting Algorithms

Three step method	$Tan\delta = \frac{\sqrt{3}(I_1 - I_3)}{2I_2 - I_1 - I_3} \qquad Tan\delta = \frac{I_2 - I_1}{I_3 - I_2}$
Four step m	ethod $Tan \mathcal{S} = \frac{I_4 - I_2}{I_1 - I_3}$
Carré method	$Tan\delta = \frac{\sqrt{[3(I_2 - I_3) - (I_1 - I_4)][(I_2 - I_3) + (I_1 - I_4)]}}{(I_2 + I_3) - (I_1 + I_4)}$
Five step method	$Tan\delta = \frac{2(I_2 - I_4)}{2I_3 - I_5 - I_1}$
	thms like <u>'Integrated Bucket Technique</u> ' for continuous g and <u>'multi-step techniques'</u> have been used ₉₁

Phase Shifting Errors

