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Some Notes on Device Calibration

The relationship between the input and the output of a measuring system is established during the
calibration of a measuring system. A calibration is the act of applying a known value to the input of the
measuring system for the purpose of observing the system output. The known value applied to the input
is known as the standard. By the application of a range of known values to the input and observation of
the system output, a direct calibration curve can be developed for the measurement system. On such a
curve the input x  is plotted on the abscissa against the measurement output y on the ordinate as in
Figure 1. In a calibration the input value should be a controlled input variable, while the measured output
value becomes the dependent variable of the calibration.

Figure 1. A Static Calibration Curve                A calibration curve forms the logic by
which a measurement system's indicated
output can be interpreted during an actual
measurement. For example, the calibration
curve is the basis for fixing the output display
scale on a measurement System, such as
that of Figure 1. Alternatively, a calibration
curve can be used as part of developing a
functional relationship, an equation known as
a correlation, between input and output. A
correlation will have the form )(xfy =
and is determined by applying physical
reasoning and curve fitting techniques to the
calibration curve. The correlation can then be
used in later measurements to ascertain the
unknown input value based on the output
value, the value indicated by the

measurement system.

Static Calibration

The most common type of calibration is known as a static calibration. In this procedure, a known value is
input to the system under calibration and the system output is recorded. The term "static" refers to a
calibration procedure in which the values of the variables involved remain constant during a measurement,
that is, they do not change with time. In static calibrations, only the magnitudes of the known input and the
measured output are important.

A representative static calibration curve is shown in Figure 1. The measured data points describe the
static input-output relationship for a measurement system. A polynomial curve fit to the data may be

conveniently used to describe this relationship as )(xfy = .
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Dynamic Calibration

In a broad sense, dynamic variables are time dependent in both their magnitude and frequency
content. The input-output magnitude relation between a dynamic input signal and a measurement
system will depend on the time-dependent content of the input signal. When time-dependent variables
are to be measured, a dynamic calibration is performed in addition to the static calibration. A dynamic
calibration determines the relationship between an input of known dynamic behavior and the
measurement system output. Usually, such calibrations involve either a sinusoidal signal or a step
change as the known input signal.

Static Sensitivity

The slope of a static calibration curve yields the static sensitivity of the measurement system. As
depicted graphically in the calibration curve of Figure 1, the static sensitivity, K, at any particular static
input value, say 1x , is evaluated by

where K is a function of x. The static sensitivity is a measure relating the change in the indicated output
associated with a given change in a static input. Since calibration curves can be linear or nonlinear
depending on the measurement system and on the variable being measured, K may or may not be
constant over a range of input values.

Range

The proper procedure for calibration is to apply known inputs ranging from the minimum and to the
maximum values for which the measurement system is to be used. These limits define the operating
range of the system. The input operating range is defined as extending from minx to maxx . This
range defines its input span expressed as the difference between the range limits  maxmax xxri −=

Similarly, the output operating range is specified from miny to maxy . The output span or full-scale-
operating range (FSO) is expressed as   maxmax yyro −=

It is important to avoid extrapolation beyond the range of known calibration during measurement since the
behavior of the measurement system is uncharted in these regions. As such, the range of calibration
should be carefully selected.

Accuracy

The accuracy of a system can be estimated during calibration. If we assume that the input value is
known exactly, then the known input value can be called the true value. The accuracy of a measurement
system refers to its ability to indicate a true value exactly. Accuracy is related to absolute error.
Absolute error, ε, is defined as the difference between the true value applied to a measurement
system and the indicated value of the system:

valueindicatedvaluetrue .. −=ε
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from which the percent relative accuracy is found by

By definition, accuracy can be determined only when the "true value" is known, such as during a

calibration.

An alternative form of calibration curve is the deviation plot. Such a curve plots the difference or deviation
between a true or expected value, y', and the indicated value, y, versus the indicated value. Deviation
curves are extremely useful when the differences between the true and the indicated value are too small
to suggest possible trends on direct calibration plots. They are often required in situations that require
errors to be reduced to the minimums possible.

Precision and Bias Errors

The repeatability or precision of a measurement system refers to the ability of the system to indicate a
particular value upon repeated but independent applications of a specific value of input. Precision error
is a measure of the random variation to be expected during such repeatability trials. An estimate of a
measurement system precision does not require a calibration, per se. But note that a system that
repeatedly indicates the same wrong value upon repeated application of a particular input would be
considered to be very precise regardless of its known accuracy.

The average error in a series of repeated calibration measurements defines the error measure known as
bias. Bias error is the difference between the average and true values. Both precision and bias errors
affect the measure of a system's accuracy.
The concepts of accuracy, and bias and precision errors in measurements can be illustrated by the throw
of darts. Consider the dart board of Figure 2 where the goal will be to throw the darts into the bull's-eye.
For this analogy, the bull's-eye can represent the true value and each throw can represent a
measurement value. In Figure 2a, the thrower displays good precision (i.e., low precision error) in that
each throw repeatedly hits the same spot on the board, but the thrower is not accurate in that the dart
misses the bull's-eye each time. This thrower is precise, but we see that low precision error alone is not a
measure of accuracy. The error in each throw can be computed from the distance between the bull's-eye

100*
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(a) High repeatability
gives low precision error
b u t  g i v e s  n o  d i r e c t
indication of accuracy

(b) High accuracy means
low precision and bias
errors

(c) Bias & precision errors
lead to poor accuracy

Figure 2. Illustrating precision, bias errors & accuracy
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Figure 3. Effect of Precision & Bias errors on Calibration Readings

and each dart. The average value of the error yields the bias. This thrower has a bias to the left of the
target. If the bias could be reduced, then this thrower's accuracy would improve. In Figure 2b, the thrower
displays high accuracy and high repeatability, hitting the bull's-eye on each throw.  Both throw scatter
and bias error are near zero. High accuracy must imply both low precision and bias errors as shown. In
Figure 2c, the thrower displays neither high precision nor accuracy with the errant throws scattered
around the board. Each throw contains a different amount of error. While the bias error is the average of
the errors in each throw, precision error is related to the varying amount of error in the throws. The
accuracy of this thrower's technique appears to be biased and lacking precision. The precision and bias
errors of the thrower can be computed using statistical methods. Both precision and bias errors quantify
the error in any set of measurements and are used to estimate accuracy.

Suppose a measurement system was used to
measure a variable whose value was kept constant
and known exactly, as in a calibration. Ten
independent measurements are made with the results,
Figure 3. The variations in the measurements, the
observed scatter in the data, would be related to the
system precision error: associated with the
measurement of the variable. That is, the scatter is
mainly due to (1) the measurement system and (2) the
method of its use, since the value of the variable is
essentially constant. However, the offset between the
apparent average of the readings and the true value
would provide a measure of the bias error to be

       expected from this measurement system.

In any measurement other than a calibration the
error cannot be known exactly since the true value is not known. But based on the results of a calibration,
the operator might feel confident that the error is within certain bounds (a plus or minus range of the
indicated reading). Since the magnitude of the error in any measurement can only be estimated, one
refers to an estimate of the error in the measurement as the uncertainty present in the measured value.
Uncertainty is brought about by errors that are present in the measurement system, its calibration, and
measurement technique, and is manifested by measurement system bias and precision errors.

The precision and bias errors of a measurement system are the result of several interacting errors
inherent to the measurement system, the calibration procedure, and the standard used to provide the
known value. These errors can be delineated and quantified as elemental errors through the use of
particular calibration procedures and data reduction techniques. An example is given for a typical
pressure transducer in Table 1.

TABLE 1. Manufacturer's Specifications: Typical Pressure Transducer

Operation: Input range 0 to 1000 cm (FSO)
Excitation +/- 15 V dc
Output range 0 to 5 v dc

Performance: Linearity error +/- 0.5% full scale (FSO)
Hysteresis error < +/- 0.15% full scale (FSO)
Sensitivity error +/- 0.25% of reading
Thermal sensitivity error+/- 0.02% /degC of reading
Thermal zero drift 0.02% /degC full scale (FSO)
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Sequence Calibration

A sequence calibration applies a sequential variation in the input value over the desired input range. This
may be accomplished by increasing the input value (up-scale direction) or by decreasing the input value
(downscale direction) over the full input range.

Hysteresis

The sequence calibration is an effective diagnostic technique for identifying and quantifying; hysteresis
error in a measurement system. Hysteresis error refers to differences between an upscale sequence
calibration and a downscale sequence calibration. The hysteresis error of the system is given by

downscaleupscaleh yye )()( −= , The effect of hysteresis in a sequence calibration curve is illustrated
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Figure 4. Examples of the Elements of Error
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(a) Hysteresis (b) Linearity Error

(c) Sensitivity Error (d) Zero Shift (null) Error

(e) Repeatability Error
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in Figure 4a. Hysteresis is usually specified for a measurement system in terms of the maximum
hysteresis error as a percentage of full-scale output range (FSO):

such as that indicated in Table 1. Hysteresis occurs when the output of a measurement system is
dependent on the previous value indicated by the system. Such dependencies can be brought about
through some realistic system limitations such as friction or viscous damping in moving parts or residual
charge in electrical components. Some hysteresis is normal for any system and affects the precision of
the system.

Random Calibration

A random calibration applies a randomly selected sequence of values of a known input over the
intended calibration range. The random application of input tends to minimize the impact of interference.
It breaks up hysteresis effects and observation errors. It ensures that each application of input value is
independent of the previous. This reduces calibration bias error. Generally, such a random variation in
input value will more closely simulate the actual measurement situation.

A random calibration provides an important diagnostic test for the delineation of several measurement
system performance characteristics based on a set of random calibration test data. In particular,
linearity error, sensitivity error, zero error, and instrument repeatability error, as illustrated in Figure 4e,
can be quantified from a static random calibration

Linearity Error

Many instruments are designed to achieve a linear relation between an applied static input and indicated
output values. Such a linear static calibration curve would have the general form:

where the curve fit )(xyL provides a predicted output value based on a linear relation between x and y.
However, in real systems, truly linear behavior is only approximately achieved. As a result, measurement
device specifications usually provide a statement as to the expected linearity of the static calibration curve
for the device. The relation between )(xyL and measured value )(xy is a measure of the nonlinear
behavior of a system:

where )(xeL is the linearity error that arises in describing the actual system behaviour by eq.1. Such
behavior is illustrated in Figure 4b in which a linear curve has been fitted through a calibration data set. For
a measurement system that is essentially linear in behavior, the extent of possible non-linearity in a
measurement device is often specified in terms of the maximum expected linearity error as a percentage of
full-scale output range:
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This value is listed as the linearity error expected from the pressure transducer in Table 1. Statistical
methods of quantifying such data scatter about a line exist.

Sensitivity and Zero Errors

The scatter in the data measured during a calibration affects the precision in the slope of the calibration
curve. As shown for the linear calibration curve in Figure 4c, if we fix the zero intercept at zero (a zero
output from the system for zero input), then the scatter in the data leads to precision error in estimating
the slope of the calibration curve. The sensitivity error, Ke , is a statistical measure of the precision
error in the estimate of the slope of the calibration curve. The static sensitivity of a device is also
temperature dependent and this is often specified. In Table 1., the sensitivity error reflects calibration
results at a constant reference ambient temperature, whereas the thermal sensitivity error was found by
calibration at different temperatures.

If the zero intercept is not fixed but the sensitivity is constant, then drifting of the zero intercept
introduces a vertical shift of the calibration curve, as shown in Figure 4d. This shift of the zero intercept
of the calibration curve is known as the zero error, ze  of the measurement system. Zero error can
usually be reduced by periodically adjusting the output from the measurement system under a zero in-
put condition. However, some random variation in the zero intercept is common, particularly with
electronic and digital equipment subjected to temperature variations (e.g., thermal zero-drift in Table 1.).

Instrument Repeatability

The ability of a measurement system to indicate the same value upon repeated but independent
application of the same input is known as the instrument repeatability. Specific claims of repeatability
are based on multiple calibration tests (replication) performed within a given lab on the particular unit.
Repeatability, as shown in Figure 4e, is based on a statistical measure called the standard deviation,

xS , a measure of the variation in the output for a given input. The value claimed is usually in terms of
the maximum expected error as a percentage of full-scale output range:

The instrument repeatability reflects only the error found under controlled calibration conditions. It does

not include the additional errors introduced during measurement due to variation in the measured

variable or due to procedure.

Reproducibility

The term "reproducibility" when reported in instrument specifications, refers to the results of separate
repeatability tests. Manufacturer claims of instrument reproducibility must be based on multiple
repeatability tests (replication) performed in different labs on a single unit.

Instrument Precision

The term "instrument precision" when reported in instrument specifications, refers to the results of
separate repeatability tests. Manufacturer claims of instrument precision must be based on multiple
repeatability tests (replication) performed in different labs on different units of the same manufacture.

Overall Instrument Error
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An estimate of the overall instrument error is made based on all known errors. This error is often
misleadingly referred to as the instrument accuracy in some instrument specifications. An estimate is
computed from the square root of the sum of the squares of all known errors. For M known errors, the
instrument error, e, is estimated by

For example, for an instrument having known hysteresis (h), linearity (L), sensitivity (K), and repeatability
(R) errors, the instrument error is estimated by

End note.
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