
C H A P T E R 4 

Statistical Principles 

Beyond the basic ideas of probability theory discussed in Chapter 3, the measurement 
and the analysis of random data involve uncertainties and estimation errors that must 
be evaluated by statistical techniques. This chapter reviews and illustrates various 
statistical ideas that have wide applications to commonly occurring data evaluation 
problems. The intent is to provide the reader with a minimum background in 
terminology and certain techniques of engineering statistics that are relevant to 
discussions in later chapters. More detailed treatments of applied statistics with 
engineering applications are available from Refs 1-3. 

4.1 SAMPLE VALUES AND PARAMETER ESTIMATION 

Consider a random variable x, as defined in Section 3.1, where the index k of the 
sample space is omitted for simplicity in notation. Further consider the two basic 
parameters of �  that specify its central tendency and dispersion, namely the mean 
value and variance, respectively. From Equations (3.8) and (3.11), the mean value and 
variance are given by 

where p(x) is the probability density function of the variable x. These two parameters 
of � : cannot, of course, be precisely determined in practice because an exact knowledge 
of the probability density function will not generally be available. Hence, one must be 
content with estimates of the mean value and variance based on a finite number of 
observed values. 
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xp(x)dx (4.1) 
� O O 

(4.2) 
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One possible method (there are others) for estimating the mean value and variance 
of �  based on �  independent observations would be as follows: 

1 

� = 1 

� =1 Here, �  and s2

b are the sample mean and sample variance, respectively. The hats Q 
over � � and � 2. indicate that these sample values are being used as estimators for the 
mean value and variance of x. The subscript on s\ means that this is a biased variance 
estimate (to be discussed later). The number of observations used to compute the 
estimates (sample values) is called the sample size. 

The specific sample values in Equations (4.3) and (4.4) are not the only quantities 
that might be used to estimate the mean value and variance of a random variable*. For 
example, reasonable estimates of the mean value and the variance would also be 
obtained by dividing the summations in Equations (4.3) and (4.4) by TV - 1 instead of 
N. Estimators are never clearly right or wrong since they are defined somewhat 
arbitrarily. Nevertheless, certain estimators can be judged as being "good" estimators 
or "better" estimators than others. 

Three principal factors can be used to establish the quality or "goodness" of an 
estimator. First, it is desirable that the expected value of the estimator be equal to the 
parameter being established. That is, 

� [� ] = �  (4.5) 

where �  is an estimator for the parameter � , If this is true, the estimator is said to be 
unbiased. Second, it is desirable that the mean square error of the estimator be smaller 
than for other possible estimators. That is, 

� � 4� -� )2} < � [(� ,-� )2] (4.6) 

where � � is the estimator of interest and is any other possible estimator. If this is 
true, the estimator is said to be more efficient than other possible estimators. Third, it is 
desirable that the estimator approach the parameter being estimated with a probability 
approaching unity as the sample size becomes large. That is, for any �  > 0, 

lim � � � [ | � - � | > � ] = 0 (4.7a) 
� —* o o 

If this is true, the estimator is said to be consistent. It follows from the Chebyshev 
inequality of Equation (3.23) that a sufficient (but not necessary) condition to meet the 
requirements of Equation (4.7a) is given by 

lim � [(� -� )2} = 0 (4.7b) 
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Note that the requirements stated in Equation (4.7) are simply convergence require-
ments in (a) the probability and (b) the mean square sense, as defined later in Section 
5.3.4. 

Consider the example of the mean value estimator given by Equation (4.3). 
The expected value of the sample mean �  is 

E[x] = �  
1 N 

N4-i 
= l-E 

�  i=l 
(4.8) 

Hence, from Equation (4.5), the estimator � �  = �  is unbiased. The mean square error 
of the sample mean �  is given by 

(x-Px) � ,� �-� �  
1=1 

� (� �-� �) 
, '=1 

From Section 3.2.1, since the observations Xj are independent, the cross product terms 
in the last expression will have an expected value of zero. It then follows that 

�  (� -� � �  Y (*<�~^)2 

� = 1 

(4.9) 

Hence, from Equation (4.7b), the estimator � �  = �  is consistent. It can be shown that 
the estimator is also efficient. 

Now consider the example of the variance estimator given by Equation (4.4). The 
expected value of the sample variance s\ is 

E[s 

i=l 
4 * 

�  (x~xf 
i=l 

However, 

�  

� (� <-� )2 = � {� �-� � +� � -� )2 

i=l i=l 
�  �  �  

= � (� �-� � )2-2(� -� � )� (�>-� � ) + � (� -� � )2 

� = 1 � = 1 �=1 

�  

= ^{� -� ,� -�^-� ^� ^-� ,) +� {� -� �)
2 

� = 1 

�  

= � (� �-� � )2-� (� -� �)
2 

� = 1 

Because � [(� ~� �)
2} = � 2 and � [(� -� �)

2] = � 2

� /� , it follows that 

(4.10) 

E[sl)=jj(N*x-*
2

x) = 
(� � -1) 

�  
(4.11) 
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Hence, the estimator � �  = s\ is biased. Although the sample variance s\ is a biased 
estimator for � � , it is a consistent and an efficient estimator. 

From the results in Equation (4.11), it is clear that an unbiased estimator for � 2

� may 
be obtained by computing a slightly different sample variance as follows: 

*2 = ^=>� � �� (*<-*")2
 (4-12) 

i = l 

The quantity defined in Equation (4.12) is an unbiased estimator for � 2.. For this 
reason, the sample variance defined in Equation (4.12) is often considered a "better" 
estimator than the sample variance given by Equation (4.4). The sample variance 
defined in Equation (4.12) will be used henceforth as an estimator for the variance of a 
random variable. 

4.2 IMPORTANT PROBABILITY DISTRIBUTION FUNCTIONS 

Examples of several theoretical probability distribution functions are given in Chapter 
3. The most important of these distribution functions from the viewpoint of applied 
statistics is the Gaussian (normal) distribution. There are three other distribution 
functions associated with normally distributed random variables that have wide 
applications as statistical tools. These are the � 2 distribution, the f distribution, and the 
F distribution. Each of these three, along with the normal distribution, will now be 
defined and discussed. Applications for each as an analysis tool will be covered in 
later sections. 

4.2.1 Gaussian (Normal) Distribution 

The probability density and distribution functions of a Gaussian distributed random 
variablex are defined by Equations (3.47) and (3.48) in Section 3.3. As noted in that 
section, a more convenient form of the Gaussian distribution is obtained by using the 
standardized variable �  given by 

z = ^ (4.13) 

When Equation (4.13) is substituted into Equations (3.47) and (3.48), standardized 
Gaussian density and distribution functions with zero mean and unit variance (� � = 0; 
� 2 = 1) are obtained as given by 

P(z)=-Le-^
2
 (4.14a) 

�  In 

P(z) 
2� ) 

� -�>2� �  (4.14b) 
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The standardized Gaussian (normal) probability density and distribution functions in 
Equation (4.14) are plotted in Figure 3.5. 

It is desirable for later applications to denote the value of �  that corresponds to a 
specific probability distribution function value of P(z) = 1 — �  by za- That is, 

p(z)dz = Prob[z < Za] = l-a (4.15a) 

or 
r O O 

l-P(za)=\ p(z)dz = Prob[z > za] = a (4.15b) 

The value of z a that satisfies Equation (4.15) is called the 100a percentage point of 
the normal distribution. A limited tabulation of percentage points for the normal 
distribution is presented in Table A.2. 

4.2.2 Chi-Square Distribution 

Let z\, Z2, Z3, • • •, z�  be �  independent random variables, each of which has a Gaussian 
distribution with zero mean and unit variance. Let a new random variable be defined as 

X2

n = z2 + zl + zl+ ••• + z2�  (4.16) 

The random variable � 2 is the chi-square variable with �  degrees of freedom. The 
number of degrees of freedom �  represents the number of independent or "free" 
squares entering into the expression. From Ref. 3, the probability density function of 
� 2 is given by 

� (� 2) = [2"/2r(n/2)}-le-*1/2(x2)in/2)-1
 x2 > 0 (4.17) 

where T(n/2) is the gamma function. The corresponding distribution function of � 2, 
given by the integral of Equation (4.17) from -oo to a specific value of � 2 , is called 
the chi-square distribution with �  degrees of freedom. The 100a percentage point of 
the � 2 distribution will be denoted by � 2.� . That is, 

poo 

P(X2W = Prob[ X

2 > xlj = a (4.18) 

The mean value and variance of the variable � 2 are 

� [� � ]=� � 1=�  (4.19) 

� [ ( � „ 2 - / � ) 2 ] = � 2

2 = 2 �  (4-20) 

A limited tabulation of percentage points for the chi-square distribution function is 
presented in Table A.3. 

Several features of the chi-square distribution should be noted. First, the chi-square 
distribution is a special case of the more general gamma function [2]. Second, the 
square root of chi-square with two degrees of freedom ( y ^ f ) constitutes an important 



84 STATISTICAL PRINCIPLES 

case called the Rayleigh distribution function [3]. The Rayleigh distribution has wide 
applications to two-dimensional target problems and is also the limiting distribution 
function of both the envelope (see Section 3.4) and the peak values (see Section 5.5) 
for narrow bandwidth Gaussian random data as the bandwidth approaches zero. Third, 
a chi-square distribution approaches a Gaussian distribution as the number of degrees 
of freedom becomes large. Specifically, for �  > 100, the quantity � /2� 2

� is distributed 
approximately as a Gaussian variable with a mean of �  = \ / 2 n - l and a variance of 
� 2 = 1 [Ref. 1]. 

4.2.3 The t Distribution 

Let y and �  be independent random variables such that y has a � � distribution function 
and �  has a Gaussian distribution function with zero mean and unit variance. Let a new 
random variable be defined as 

tn=-
fyjn 

(4.21) 

The random variable tn is Student's t variable with �  degrees of freedom. From Ref. 2, 
the probability density function of tn is given by 

-(«+l)/2 

Pit) 
� (� _+1)/2] 

� � � ( � /2) 
1 + (4.22) 

The corresponding distribution function of tn, given by the integral of Equation (4.22) 
from -oo to a specific value of f„, is called the t distribution with �  degrees of freedom. 
The 100a percentage point of the t distribution will be denoted by tn:a. That is, 

p(t)dt = Prob[i„ > t� .a] = a (4.23) 

The mean value and variance of the variable /„ are 

E[tn] = � , = 0 for �  > 1 

(tn-� ,) = � , 
�  

� ^� 
for �  > 2 

(4.24) 

(4.25) 

A limited tabulation of percentage points for the t distribution function is presented in 
Table A.4. It should be noted that the t distribution approaches a standardized 
Gaussian distribution as the number of degrees of freedom �  becomes large. 

4.2.4 The F Distribution 

Let yi and y 2 be independent random variables such that yt has a � 2 distribution 
function with nx degrees of freedom and y 2 has a � 2 distribution function with n2 

degrees of freedom. Let a new random variable be defined as 

yi/tt! =yw2 

y2/n2 y2ti\ 
* � � = ^ = ^ (4-26) 
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The random variable F„, ,„2 is the F variable with ti\ and n2 degrees of freedom From 
Ref. 3, the probability density function of F� lA2 is given by 

n^mM-j"1^ F > 0 (4.27) 

The corresponding distribution function of Fnuni, given by the integral of 
Equation (4.27) from -oo to a specific value of Fnu� 2, is called the F distribution 
with ni and n2 degrees of freedom. The 100a percentage point of the F distribution 
will be denoted by F� un2;a. That is, 

p o o 

p(F)dF = Prob[F„„n 2 > F„„„2 ; a ] = a (4.28) 

The mean value and variance of F„ I ) / l 2 are 

E[Fnuni] = � �  = forn 2 > 2 (4.29) 

� [(� � �,� �-� � � ]=4=

 2?in\+/r2l f o - 2 > 4 (4.30) 
» i ( « 2 - 2 ) ( « 2 - 4 ) 

A limited tabulation of percentage points for the F distribution function is presented in 
Tables A.5(a), A.5(b), and A.5(c). It should be noted that the statistic r 2, the square of 
the variable defined in Equation (4.21), has an F distribution with n\ = 1 and n2 = n 
degrees of freedom. 

4.3 SAMPLING DISTRIBUTIONS AND ILLUSTRATIONS 

Consider a random variable �  with a probability distribution function P(x). Let x\, 
x2,..., xN be a sample of TV observed values of x. Any quantity computed from these 
sample values will also be a random variable. For example, consider the mean value �  
of the sample. If a series of different samples of size �  were selected from the same 
random variable x, the value of �  computed from each sample would generally be 
different. Hence, �  is also a random variable with a probability distribution function 
P{x). This probability distribution function is called the sampling distribution of x. 

Some of the more common sampling distributions that often arise in practice will 
now be considered. These involve the probability distribution functions defined and 
discussed in Section 4.2. The use of these sampling distributions to establish 
confidence intervals and perform hypothesis tests is illustrated in Sections 4.4-4.8. 

4.3.1 Distribution of Sample Mean with Known Variance 

Consider the mean value of a sample of �  independent observations from a random 
variable �  as follows: 
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First, consider the case where the random variable �  is normally distributed with 
a mean value of � � and a known variance of � 2.. From Section 3.3.1, the sampling 
distribution of the sample mean �  will also be normally distributed. From 
Equation (4.8), the mean value of the sampling distribution of �  is 

� , = � , (4-32) 

and from Equation (4.9), the variance of the sampling distribution of �  is 

= § (4-33) 

Hence, from Equation (4.13), the following sampling distribution applies for the 
sample mean x: 

i__� _M = z (4.34) 

where �  has a standardized normal distribution, as defined in Section 4.2.1. It follows 
that a probability statement concerning future values of the sample mean may be made 
as follows. 

Prob (4.35) 

Now, consider the case where the random variable �  is not normally distributed. 
From the practical implications of the central limit theorem (see Section 3.1.1), the 
following result occurs. As the sample size /Vbecomes large, the sampling distribution 
of the sample mean �  approaches a normal distribution regardless of the distribution 
of the original variable x. In practical terms, a normality assumption for the sampling 
distribution of �  becomes reasonable in many cases for �  > 4 and quite accurate in 
most cases for 7V> 10. Hence, for reasonably large sample sizes, Equation (4.34) 
applies to the sampling distribution of �  computed for any random variable x, 
regardless of its probability distribution function. 

4.3.2 Distribution of Sample Variance 

Consider the variance of a sample of �  independent observations from a random 
variable �  as follows: 

� 2 N-j ^ £ > - i ) 2 < 4 ' 3 6 ' 
= 1 

If the variable �  is normally distributed with a mean of � � and a variance of � \, it is 
shown in Ref. 1 that 

Y(Xi-xf = ayn n = N-l 
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where � 2 has a chi-square distribution with n = N—l degrees of freedom, as defined 
in Section 4.2.2. Hence, the sampling distribution of the sample variance s2 is given by 

„2 tn n = N-l (4.37) 

It follows that a probability statement concerning future values of the sample variance 
s2 may be made as follows: 

Prob 
� 2� 2 

= a (4.38) 

4.3.3 Distribution of Sample Mean with Unknown Variance 

Consider the mean value of a sample of �  independent observations from a random 
variables, as given by Equation (4.31). If the variable* is normally distributed with a 
mean value of � � and an unknown variance, it is seen from Equations (4.21) and (4.37) 
that 

(� -� �) � � � /\/�  
tn 

where t�  has a t distribution with n — N—\ degrees of freedom, as defined in 
Section 4.2.3. Hence, the sampling distribution of the sample mean �  when � 2 is 
unknown is given by 

(� -� �)>/�  
� -I (4.39) 

It follows that a probability statement concerning future values of the sample mean �  
may be made as follows: 

Prob �  > 
( St� ;a (4.40) 

4.3.4 Distribution of Ratio of Two Sample Variances 

Consider the variances of two samples: One consists of Nx independent observations 
of a random variable x, and the other consists of Ny independent observations of a 
random variable y, as given by Equation (4.36). If the variable �  is normally dis-
tributed with a mean value of � � and a variance of � 2 , and the variable y is normally 
distributed with a mean value of � � and a variance � 2 , it is seen from Equations (4.26) 
and (4.37) that 
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where F� ^� y has an F distribution with nx = Nx-\ and ny = Ny-\ degrees of 
freedom, as defined in Section 4.2.4. Hence, the sampling distribution of the ratio 
of the sample variances sx and s2 is given by 

*M _ F 

nx=Nx-l 

Hy = Ny—\ 
(4.41) 

It follows that a probability statement concerning future values of the ratio of the 
sample variances s2 and s2 may be made as follows: 

Prob 
2 2 

i>^F 
v2 > � 2

�  "�<"*�><* 

(4.42) 

Note that if the two samples are obtained from the same random variable x = y, then 
Equation (4.41) reduces to 

� �  =� � -\ 

n2 = N2 — l 
(4.43) 

4.4 CONFIDENCE INTERVALS 

The use of sample values as estimators for parameters of random variables is 
discussed in Section 4.1. However, those procedures result only in point estimates 
for a parameter of interest: no indication is provided as to how closely a sample value 
estimates the parameter. A more meaningful procedure for estimating parameters of 
random variables involves the estimation of an interval, as opposed to a single point 
value, which will include the parameter being estimated with a known degree of 
uncertainty. For example, consider the case where the sample mean �  computed from 
�  independent observations of a random variable �  is being used as an estimator for the 
mean value � � . It is usually more desirable to estimate � � in terms of some interval, 
such as �  �  d, where there is a specified uncertainty that � � falls within that interval. 
Such intervals can be established if the sampling distributions of the estimator in 
question is known. 

Continuing with the example of a mean value estimate, it is shown in Section 4.3 
that probability statements can be made concerning the value of a sample mean �  as 
follows: 

Prob 
(x-^/N 

l - a (4.44) 

The above probability statement is technically correct before the sample has been 
collected and �  has been computed. After the sample has been collected, however, the 
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value of �  is a fixed number rather than a random variable. Hence, it can be argued that 
the probability statement in Equation (4.44) no longer applies since the quantity 
(� —� �)\/�  J � � either does or does not fall within the indicated limits. In other words, 
after a sample has been collected, a technically correct probability statement would be 
as follows: 

Prob Zl-a/2 < S Za/2 (4.45) 

Whether the correct probability is zero or unity is usually not known. As the value of a 
becomes small (as the interval between Zi~a/2

 a r>d za/2 becomes wide), however, one 
would tend to guess that the probability is more likely to be unity than zero. In slightly 
different terms, if many different samples were repeatedly collected and a value 
of �  were computed for each sample, one would tend to expect the quantity in 
Equation (4.45) to fall within the noted interval for about 1 — a of the samples. In this 
context, a statement can be made about an interval within which one would expect to 
find the quantity (� —� �)\/� /� � with a small degree of uncertainty. Such statements 
are called confidence statements. The interval associated with a confidence statement 
is called a confidence interval. The degree of trust associated with the confidence 
statement is called the confidence coefficient. 

For the case of the mean value estimate, a confidence interval can be established for 
the mean value � � based on the sample value �  by rearranging terms in Equation (4.45) 
as follows: 

<*xZg/2 

\/N 
<� �<�  + 

<7� � � /2 

V^VJ 
(4.46a) 

Furthermore, if � � is unknown, a confidence interval can still be established for the 
mean value � � based on the sample values �  and s by rearranging terms in 
Equation (4.39) as follows: 

_ stn;a/2 . _ _ , � � � ; � / 2 

x \=- < � � < x + \/N 
n=N-l (4.46b) 

Equation (4.46) uses the fact that Z\-a/2 = —za/2 and tn-i-a/2 �  ~ r « ; a / 2 - The 
confidence coefficient associated with the intervals is 1 - a. Hence, the confidence 
statement would be as follows: The true mean value � � falls within the noted interval 
with a confidence coefficient of 1 - a, or, in more common terminology, with a 
confidence of 100(1 - a)%. Similar confidence statements can be established for any 
parameter estimates where proper sampling distributions are known. For example, 
from Equation (4.37), a 1 — a confidence interval for the variance � 2 based on a 
sample variance s2 from a sample of size TV is 

ns 

_%n;a/2 
<at< 

^ « ; l - a / 2 J 

n=N-l (4.47) 
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Example 4.1. Illustration of Confidence Intervals. Assume a sample of 7V= 31 
independent observations are collected from a normally distributed random variable* 
with the following results: 

60 61 47 56 61 63 
65 69 54 59 43 61 
55 61 56 48 67 65 
60 58 57 62 57 58 
53 59 58 61 67 62 
54 

Determine a 90% confidence interval for the mean value and variance of the random 
variable *. 

From Equation (4.46b), a 1 - �  confidence interval for the mean value � � based on 
the sample mean �  and the sample variance s2 for a sample size of � =31 is given by 

�#30;� /2 
* <� �< [�  

st30;a/2\ 
/31 J - - �  �  

From Table A.4, for a = 0.10, t3Q-a/2 = i3o;o.o5 — 1 -697, so the interval reduces to 

[(*-0.3048s) <� �< (* +0.3048s)] 

From Equation (4.47), a 1 - a confidence interval for the variance � 2 based on the 
sample variance s2 for a sample size of N= 31 is given by 

30s 2 

%�� ;� /2 <<< 
30s 2 

^30;l-a/2j 

From Table A.3, for a = 0.10, � 2

0 ; � / 2 = � 2

30.005 = 43.77 and � ^ 0 ; 1 _ � / 2 = = 
18.49, so the interval reduces to 

[0.6854/ < � 2 < 1.622s2] 

It now remains to calculate the sample mean and the variance, and substitute these 
values into the interval statements. From Equation (4.3), the sample mean is 

1 N 

x = ~y^Xi= 58.61 
TV 4 - i 

(=1 

From Equation (4.12), the sample variance is 

i=l V, �=1 
33.43 

Hence, the 90% confidence intervals for the mean value and variance of the random 
variable * are as follows: 

[56.85 < � �  < 60.37] 

[22.91 < � 2 < 54.22] 
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4.5 HYPOTHESIS TESTS 

Consider the case where a given estimator �  is computed from a sample of TV 
independent observations of a random variable x. Assume there is reason to believe 
that the true parameter �  being estimated has a specific value � 0. Now, even if �  = � 0, 
the sample value �  will probably not come out exactly equal to � 0 because of the 
sampling variability associated with � . Hence, the following question arises. If it is 
hypothesized that �  = � 0, how much difference between �  and � 0 must occur before 
the hypothesis should be rejected as being invalid? This question can be answered 
in statistical terms by considering the probability of any noted difference between �  
and � 0 based upon the sampling distribution of � . If the probability of a given 
difference is small, the difference would be considered significant and the hypothesis 
that �  = � �  would be rejected. If the probability of a given difference is not small, the 
difference would be accepted as normal statistical variability and the hypothesis that 
�  = � �  would be accepted. 

The preceding discussion outlines the simplest form of a statistical procedure 
called hypothesis testing. To clarify the general technique, assume that a sample 
value � , which is an estimate of a parameter � , has a probability density function of 
� (� ). Now, if a hypothesis that �  = � 0� & true, then � (� ) would have a mean value of 
� 0 as illustrated in Figure 4.1. The probability that �  would fall below the lower level 

� �~� /2 IS 

Prob �  < � �-�  � {� )� �  = �  (4.48a) 

The probability that �  would fall above the upper value � � /2 is 

Prob � >� �  72 
F>A/2 

� {� )� �  = - (4.48b) 

Hence, the probability that �  would be outside the range between � \-� /2 and � � /2 is 
a. Now let a be small so that it is very unlikely that �  would fall outside the range 

Region of 
rejection 

* l - a / 2 *0 * e / 2 

Figure 4.1 Acceptance and rejection regions for hypothesis tests. 
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between � � _ � / 2 and � � � . If a sample were collected and a value of �  were computed 
that in fact fell outside the range between � \-� �  and � � /2, there would be a strong 
reason to question the original hypothesis that �  — � �  because such a value for �  
would be very unlikely if the hypothesis were true. Hence the hypothesis that �  = � �  
would be rejected. On the other hand, if the value for �  fell within the range between 
�  �-a/2 and � � /2, there would be no strong reason to question the original hypothesis. 
Hence the hypothesis that �  = � �  would be accepted. 

The small probability a used for the hypothesis test is called the level of 
significance of the test. The range of values of �  for which the hypothesis will be 
rejected is called the region of rejection or critical region. The range of values of �  for 
which the hypothesis will be accepted is called the region of acceptance. The simple 
hypothesis test outlined above is called a two-sided test because, if the hypothesis is 
not true, the value of �  could be either greater or less than � 0. Hence, it is necessary to 
test for significant differences between �  and � 0 in both directions. In other cases, a 
one-sided test might be sufficient. For example, let it be hypothesized that � >� 0. 
For this case, the hypothesis would be false only if �  were less than � 0. Thus, the test 
would be performed using the lower side of the probability density function � (� ). 

Two possible errors can occur when a hypothesis test is performed. First, the 
hypothesis might be rejected when in fact it is true. This possible error is called a Type I 
error. Second, the hypothesis might be accepted when in fact it is false. This possible 
error is called a Type II error. From Figure 4.1, a Type I error would occur if the 
hypothesis were true and �  fell in the region of rejection. It follows that the probability 
of a Type I error is equal to a, the level of significance of the test. 

In order to establish the probability of a Type II error, it is necessary to specify some 
deviation of the true parameter �  from the hypothesized parameter � 0 that one desires 
to detect. For example, assume that the true parameter actually has a value of either 
�  = � 0 + d or �  — � 0 —d, as illustrated in Figure 4.2. If it is hypothesized that �  = � 0 

when in fact �  — � 0� � , the probability that �  would fall inside the acceptance 
region between � \-� �

 a n d � � /2 is � - Hence, the probability of a Type II error is �  for 
detecting a difference of � d from the hypothesized value � 0. 

� <�) 

*0~d * 1 - � / 2 *0 *� /2 *0 + �" 

Figure 4.2 Type �  error regions for hypothesis tests. 
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The probability 1 — �  is called the power of the test. Clearly, for any given sample 
size N, the probability of a Type I error can be reduced by reducing the level of 
significance a. However, this will increase the probability �  of a Type II error (reduce 
the power of the test). The only way to reduce both a and �  is to increase the sample 
size �  for the estimate � . These ideas form the basis for selecting the necessary sample 
sizes for statistical experiments. 

Example 4.2. Illustration of Hypothesis Test Design. Assume there is reason to 
believe that the mean value of a random variable �  is � �  = 10. Further assume that the 
variance of �  is known to be cx = 4. Determine the proper sample size to test the 
hypothesis that � �  = 10 at the 5% level of significance, where the probability of a Type 
II error is to be 5% for detecting a difference of 10% from the hypothesized value. 
Determine the region of acceptance to be used for the test. 

An unbiased estimate for � � is given by the sample mean value �  as 
defined in Equation (4.3). The appropriate sampling distribution of �  is given by 
Equation (4.34) as 

where �  is normally distributed with zero mean and unit variance. Note that this 
sampling distribution of �  is precise if �  is normally distributed and is still a good 
approximation if �  is not normally distributed. 

The upper and lower limits of the acceptance region for the hypothesis test are as 
follows: 

Upper limit = ~� � /2+� �  

Lower limit = ^=� � -<*/2 + � �  

Now if the true mean value were in fact � ��  = � � �  d, a Type II error would occur with 
probability �  if the sample value �  fell below the upper limit or above the lower limit. 
In terms of the sampling distributions of �  with a mean value � ��  = � �  + d or 

� ��  = � � -d, 

� �  

Upper limit — —�=� �-� +� � + �  
yN 

Lower limit = -^� =� �  + � �-�  
VN 

Hence the following equalities apply: 

^=� � ,2 + � � = ~� � -� +� � + �  
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These relationships both reduce to 

Za/2 = Zl-B �  « = —� �  �  a 

It follows that the required sample size is given by 

N _ ~� � (� � /2+� � )� 2 

L d 

For the specific values in this example (� �  = 2, � � / 2 = 1 . 9 6 , � �  —1.645, d = 
0.1(10)= 1), the required sample size is 

TV = 52 

The region of acceptance for the hypothesis test will be 

� �  

Upper limit — -j=za/2 + � � = 10.54 

ax 

Lower limit = � i=Z\-a/2 + � �  = 9.46 

4.5.1 Chi-Square Goodness-of-Fit Test 

A special type of hypothesis test that is often used to test the equivalence of a 
probability density function of sampled data to some theoretical density function is 
called the chi-square goodness-of-fit test. The general procedure involves the use of a 
statistic with an approximate chi-square distribution as a measure of the discrepancy 
between an observed probability density function and the theoretical probability 
density function. A hypothesis of equivalence is then tested by studying the sampling 
distribution of this statistic. 

To be more specific, consider a sample of �  independent observations from a 
random variable �  with a probability density function of p(x). Let the TV observations 
be grouped into �  intervals, called class intervals, which together form a frequency 
histogram. The number of observations falling within the ith class interval is called the 
observed frequency in the ith class and will be denoted by f. The number of 
observations that would be expected to fall within the ith class interval if the true 
probability density function of �  were po(x) is called the expected frequency in the ith 
class interval and will be denoted by F,. Now, the discrepancy between the observed 
frequency and the expected frequency within each class interval is given by / ; — F,. To 
measure the total discrepancy for all class intervals, the squares of the discrepancies in 
each interval are normalized by the associated expected frequencies and summed to 
obtain the sample statistic 
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X2^J2^-II (4.49) 
i = l t > 

It is shown in Ref. 2 that the distribution of X2 in Equation (4.49) is approximately 
the same as for � 2 discussed in Section 4.2.2. The number of degrees of freedom �  in 
this case is equal to �  minus the number of different independent linear restrictions 
imposed on the observations. There is one such restriction due to the fact that the 
frequency in the last class interval is determined once the frequencies in the first �  — 1 
class intervals are known. If the comparison is made by fitting the expected theoretical 
density function to the frequency histogram for the observed data, then one additional 
constraint results from each independent parameter of the theoretical density function 
that must be computed to make the fit. For example, if the expected theoretical density 
function is a normal density function with unknown mean and variance, then two 
additional constraints are involved, because two parameters (a mean and a variance) 
must be computed to fit a normal density function. Hence, for the common case where 
the chi-square goodness-of-fit test is used as a test for normality, the number of 
degrees of freedom for X2 in Equation (4.49) is �  = � — 3. 

Having established the proper degrees of freedom forX 2 , a hypothesis test may be 
performed as follows. Let it be hypothesized that the variable x has a probability 
density function of p(x) = po(x). After grouping the sampled observations into �  class 
intervals and computing the expected frequency for each interval assuming p(x) = 
p0(x), compute X2 as indicated in Equation (4.49). Because any deviation of p(x) from 
pQ(x) will cause X2 to increase, an one-sided (upper tail) test is used. The region of 
acceptance is 

X2 < lla (4-50) 

where the value of � 2 . �  is available from Table A.3. If the sample value X2 is 
greater than � 2 . � , the hypothesis that p(x)=p0(x) is rejected at the a level of 
significance. If X2 is less than or equal to � 2.� , the hypothesis is accepted at the a 
level of significance. 

There are two basic ways to apply the chi-square goodness-of-fit test. The first way 
is to select class intervals in a manner that will provide equal expected frequencies 
within each interval. Excluding a uniform distribution hypothesis, this procedure will 
result in different interval widths from one class interval to another. The second way is 
to select class intervals of equal width. Again, except for the uniform distribution 
hypothesis, this procedure will result in different expected frequencies from one class 
interval to another. Chi-square tests for normality are usually performed using the 
constant interval width approach. Given sample data with a standard deviation of s, a 
class interval width of Ax ~ 0.4i is often used. A more fundamental requirement is 
that the expected frequencies in all class intervals must be sufficiently large to make 
Equation (4.49) an acceptable approximation to � 2. A common recommendation is 
that > 3 in all intervals. In a normality test where the expected frequencies diminish 
on the tails of the distribution, this requirement is complied with by letting the first and 
last intervals extend to —oo and + oo, respectively, such that F\,FK> 3. 
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Table 4.1 Sample Observations Arranged in Increasing Order 

-7.6 -3.8 -2.5 -1.6 -0.7 0.2 1.1 2.0 3.4 4.6 
-6.9 -3.8 -2.5 -1.6 -0.7 0.2 1.1 2.1 3.5 4.8 
-6.6 -3.7 -2.4 -1 .6 -0.6 0.2 1.2 2.3 3.5 4.8 
-6.4 -3.6 -2.3 -1.5 -0 .6 0.3 1.2 2.3 3.6 4.9 
-6.2 -3 .5 -2.3 -1.5 -0.5 0.3 1.3 2.3 3.6 5.0 
-6.1 -3.4 -2.3 -1.4 -0.5 0.3 1.3 2.4 3.6 5.2 
-6.0 -3.4 -2.2 -1.4 -0.4 0.4 1.3 2.4 3.7 5.3 
-5.7 -3.4 -2.2 -1.2 -0.4 0.4 1.4 2.5 3.7 5.4 
-5.6 -3.3 -2.1 -1.2 -0.4 0.5 1.5 2.5 3.7 5.6 
-5.5 -3.2 -2.1 -1.2 -0.3 0.5 1.5 2.6 3.7 5.9 
-5.4 -3.2 -2.0 -1.1 -0.3 0.6 1.6 2.6 3.8 6.1 
-5.2 -3.1 -2.0 -1.1 -0.2 0.6 1.6 2.6 3.8 6.3 
-4.8 -3.0 -1.9 -1.0 -0.2 0.7 1.6 2.7 3.9 6.3 
-4.6 -3.0 -1.9 -1.0 -0.2 0.8 1.7 2.8 4.0 6.5 
-4.4 -2.9 -1.8 -1.0 -0.1 0.9 1.8 2.8 4.2 6.9 
-4.4 -2.9 -1.8 -0.9 -0.0 0.9 1.8 2.9 4.2 7.1 
-4.3 -2.9 -1.8 -0.9 0.0 1.0 1.8 3.1 4.3 7.2 
-4.1 -2.7 -1.7 -0.8 0.1 1.0 1.9 3.2 4.3 7.4 
-4.0 -2.6 -1.7 -0.8 0.1 1.1 1.9 3.2 4.4 7.9 
-3.8 -2.6 -1.6 -0.7 0.2 1.1 2.0 3.3 4.4 9.0 

Example 4.3. Illustration of Test for Normality. A sample of TV=200 inde-
pendent observations of the digitized output of a thermal noise generator are presented 
in Table 4.1. The sample values have been rank ordered from the smallest to largest 
value for convenience. Test the noise generator output for normality by performing a 
chi-square goodness-of-fit test at the a = 0.05 level of significance. 

The calculations required to perform the test are summarized in Table 4.2. For an 
interval width of Ax = OAs, the standardized values of the normal distribution that 
define the class interval boundaries are as shown under za in the table. These interval 
boundaries are converted to volts in the next column. From Table A.2, the probability 
�  that a sample value will fall in each class interval is determined using the za values. 
The product of �  and the sample size TV yields the expected frequency in each interval 
as listed under F in Table 4.2. Note that the first and last class intervals are selected so 
that F> 3. A total of 12 class intervals result. The observed frequencies are now 
counted using the interval boundaries in volts as indicated in Table 4.1. The normal-
ized squared discrepancies between the expected and observed frequencies are then 
calculated and summed to obtain X 2 = 2.43. Note that the appropriate degrees of 
freedom isn = K — 3 = 9. The acceptance region for the test is found in Table A.3 to be 
X2 < X% �  05 — 16.92. Hence, the hypothesis of normality is accepted at the a = 0.05 
level of significance. 

4.5.2 Nonparametric Trend Test 

Situations often arise in data analysis where it is desired to establish if a sequence of 
observations or parameter estimates include an underlying trend. This is partiularly 
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Upper Limit of 

Interval Interval 

Number x = sz + x �  F = NP f \F-f\ 
(F-ff 

F 
1 -2.0 -6.36 0.0228 4.5 4 0.5 0.06 
2 -1.6 -5.04 0.0320 6.4 8 1.6 0.40 
3 -1.2 -3.72 0.0603 12.1 10 2.1 0.36 
4 -0.8 -2.40 0.0968 19.4 21 1.6 0.13 
5 -0.4 -1.08 0.1327 26.5 29 2.5 0.24 
6 0 0.24 0.1554 31.1 31 0.1 0.00 
7 0.4 1.56 0.1554 31.1 27 4.1 0.54 
8 0.8 2.88 0.1327 26.5 25 1.5 0.08 
9 1.2 4.20 0.0968 19.4 20 0.6 0.02 
10 1.6 5.52 0.0603 12.1 13 0.9 0.07 
11 2.0 6.84 0.0320 6.4 6 0.4 0.03 
12 oo oo 0.0228 4.5 6 1.5 0.50 

1.000 200 200 2.43 
�  =200 X = 0.24 5 = 3.30 n = K- 3 = 9 X2 = 2.43 

true in the analysis of nonstationary data discussed later in Chapter 12. Because the 
observations or parameter estimates of interest may have a wide range of probability 
distribution functions, it is convenient to perform such evaluations with distribution-
free or nonparametric procedures, where no assumption is made concerning the 
probability distribution of the data being evaluated. One such procedure that is easy to 
apply and useful for detecting underlying trends in random data records is the reverse 
arrangement test. 

Consider a sequence of �  observations of a random variable x, where the 
observations are denoted by xt, i= 1, 2, 3, . . . , TV. Now, count the number of times 
that Xi > Xj for i < j . Each such inequality is called a reverse arrangement. The total 
number of reverse arrangements is denoted by A. 

A general definition for A is as follows. From the set of observations X\, x2, • � Xni 
define 

^ _ { 0 otherwise ^ ^ 

Then 

A = (4.52) 
i = l 

where 

�  

At = �  h�J ( 4 � 5 3 ) 

j=i+l 

Table 4.2 Calculations for Goodness-of-Fit Test 
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For example, 

�  �  �  

� �=� � �  � 2 = � � �  � 3 = ^ � % etc. 
j=2 j=3 j=4 

To help clarify the meaning of reverse arrangements, consider the following 
sequence of TV = 8 observations: 

JCI = 5, x2 = 3, *3 = 8, x 4 = 9, *5 = 4, *6 = 1, *7 = 7, x$ = 5 

In the above sequence x\ >x2, X\ > * 5 , and X\ >x6, which gives Ai = 3 reverse 
arrangements for � �. Now, choosing x2 and comparing it against subsequent observa-
tions (i.e., f o r / = 2 and / < j = 3 ,4 , . . . , 8), one notes x2 >x6 only, so that the number of 
reverse arrangements for x2 is A 2 = 1. Continuing on, it is seen that A 3 = 4, A 4 = 4, 
A 5 = 1, A 6 = 0, and A 7 = 1. The total number of reverse arrangements is, therefore, 

A=Ai+A2+ ••• + A 7 = 3 + 1 + 4 + 4 + 1 + 0 + 1 = 14 

If the sequence of /Vobservations is independent observations of the same random 
variable, then the number of reverse arrangements is a random variable A, with a mean 
variable and a variance as follows [Ref. 4]: 

( 4 . 5 4 ) 

2 _ 2N3+3N2-5N _ N{2N + 5)(N-l) 

72 72 
(4.55) 

A limited tabulation of 100a percentage points for the distribution function of A is 
presented in Table A.6. 

Example 4.4. Illustration of Reverse Arrangement Test. Assume a sequence 
of TV = 2 0 observations of a random variable produces results as noted below: 

(1) 5.2 

(2) 6.2 

(3) 3.7 

(4) 6.4 

(5) 3.9 

(6) 4.0 

(7) 3.9 

(8) 5.3 

(9) 4.0 

(10) 4.6 

(11) 5.9 

(12) 6.5 

(13) 4.3 

(14) 5.7 

(15) 3.1 

(16) 5.6 

(17) 5.2 

(18) 3.9 

(19) 6.2 

(20) 5.0 

Test the sequence of TV = 2 0 observations for a trend at the �  = 0.05 level 
of significance. The number of reverse arrangements in the observations is as follows: 

Ai = 10 A 6 = 3 A n = 7 A16 = 3 

A 2 = 15 A 7 = 1 Al2 = 8 An = 2 

A 3 = 1 A 8 = 7 Al3 = 2 Al8 = 0 

A 4 = 15 Ag = 2 A , 4 = 5 Al9 = 1 

A 5 = 1 Aio = 3 Ais = 0 

The total number of reverse arrangements is A = 86. 
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Let it be hypothesized that the observations are independent observations of a 
random variable x, where there is no trend. The acceptance region for this 
hypothesis is 

[A20;i-a/2 < A < A20;a/2] 

FromTableA.6,fora = 0.05,A2 0;i-a/2 - A2o;o.975 = 64andA 2 0 ; Q , / 2 = A20;0.025 = 125. 
Hence, the hypothesis is accepted at the 5% level of significance because A = 86 falls 
within the range between 64 and 125. 

4.6 CORRELATION AND REGRESSION PROCEDURES 

Techniques of correlation and regression analysis are fundamental to much of the 
material developed in this book. The concept of correlation between two random 
variables has already been introduced in Chapter 3 and will be expanded on in Chapter 
5. The concept of linear regression is basic to the techniques of frequency response 
function estimation from input/output data, as formulated in Chapters 6 and 7. The 
material in these chapters, however, is developed in a frequency domain context that 
may obscure associations with more familiar classical presentations. Hence, a brief 
review of correlation and regression concepts from the viewpoint of elementary 
statistics may be helpful as an introduction to this later material. 

4.6.1 Linear Correlation Analysis 

For a wide class of problems, a matter of primary interest is whether or not two or more 
random variables are interrelated. For example, is there a relationship between 
cigarette smoking and life expectancy, or between measured aptitude and academic 
success? In an engineering context, such problems often reduce to detecting a 
relationship between some assumed excitation and an observed response of a physical 
system of interest. The existence of such interrelationships and their relative strength 
can be measured in terms of a correlation coefficient �  as defined in Section 3.2.1. For 
the simple case of two random variables �  and y, the correlation coefficient is given by 
Equation (3.36) as 

P*y = VZT (4-56) 

where is the covariance of �  and y as defined in Equation (3.34). 
Now assume the random variables �  and y are sampled to obtain TV pairs of observed 

values. The correlation coefficient may be estimated from the sample data by 

rxy — Pxy — 
Ej= � (�*<—*) Cy>—y) 

1/2 

TH=iXiyi-Nxy 

[(^xf-N^iELyl-Nf)]^2 

(4.57) 
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Figure 4.3 Illustration of varying degrees of correlation, (a) Perfect linear correlation, (b) Moderate linear 
correlation, (c) Nonlinear correlation, (d) No correlation. 

Like pxy, the sample correlation coefficient will lie between - 1 and + 1, and will 
have a bounding value only when the observations display a perfect linear relation-
ship. A nonlinear relationship and/or data scatter, whether it be due to measurement 
errors or imperfect correlation of the variables, will force the value of toward zero, 
as illustrated in Figure 4.3. 

To evaluate the accuracy of the estimate it is convenient to work with a 
particular function of given by 

1, 
w • :ln 

1 + � ; 

l-rr 

(4.58) 

From Ref. 1, the random variable w has an approximately normal distribution with a 
mean and a variance of 

1 + P . 

l-Pxy 

1 

7V-3 

(4.59) 

(4.60) 
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Using the above relationships, confidence intervals for p x y based on a sample 
estimate may be readily established as outlined in Section 4.4. 

Because of the variability of correlation estimates, it is usually desirable to verify 
that a nonzero value of the sample correlation coefficient indeed reflects the existence 
of a statistically significant correlation between the variables of interest. This may be 
accomplished by testing the hypothesis that P x y = 0, where a significant correlation is 
indicated if the hypothesis is rejected. From Equations (4.59) and (4.60), the sampling 
distribution of w given P x y = 0 is normal with a mean of � �  — 0 and a variance of 
aw ~ 1 Hence the acceptance region for the hypothesis of zero correlation is 
given by 

-Za/2 < 
\ / jV-3 

In 
1- < Za/2 (4.61) 

where �  is the standardized normal variable. Values outside the above interval would 
constitute evidence of statistical correlation at the a level of significance. 

Example 4.5. Illustration of Linear Correlation Analysis. The heights 
and weights of � =25 male university students selected at random are presented 
in Table 4.3. Is there reason to believe that the height and weight of male students 
are correlated at the �  = 0.05 level of significance? 

Let �  be height and y be weight. From the data in Table 4.3, the following values 
needed in Equation (4.61) are calculated: 

�  �  �  

Yjayi = 299,056 = 124,986 ^ y 2 = 723,604 
i = l i = l 

1 N 1766 

i = l 

�  

25 
= 70.64 

1 

1 = 1 

4224 

~2� �  
168.96 

Substituting the above values into Equation (4.57) yields the estimated correlation 
coefficient as follows: 

299,056-(25)(70.64)(168.96) 

[ (124,986-25(70.64) 2 ) (723,604-25(168.96) 2 ] I / 2 

= 0.44 

Table 4.3 Height and Weight Data for Male Students 

�  = height in inches y= weight in pounds 

X 70 74 70 65 69 73 72 69 72 76 74 72 
y 140 210 148 145 182 165 155 170 174 155 185 185 

X 68 70 71 68 73 65 73 74 64 72 72 67 73 
y 165 220 185 180 170 135 175 180 150 170 165 145 170 
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From Equation (4.58), the quantity w = 0.472; thus \fN—2>w — 2.21. Now using 
Equation (4.61), the hypothesis that P x y = 0 is rejected at the 5% level of significance 
since y/N—Zw = 2.21 falls outside the acceptance region bounded by � za/2 = �  1 -96. 
Hence, there is reason to believe that significant correlation exists between the height 
and weight of male students. 

4.6.2 Linear Regression Analysis 

Correlation analysis can establish the degree to which two or more random variables 
are interrelated. Beyond this, however, a model for the relationship may be desired so 
that predictions can be made for one variable based on specific values of other 
variables. For instance, a significant linear relationship between the height and weight 
of male university students is indicated by the correlation analysis of data presented in 
Example 4.5. A logical second step would be to evaluate the relationship further so 
that the weight of students can be predicted for any given height. Procedures for 
dealing with problems of this type come under the heading of regression analysis. 

Consider the simple case of two correlated random variables �  and y. Referring 
again to Example 4.5, �  might be student height and y student weight. A linear 
relationship between the two variables would suggest that for a given value of x, a 
value of y would be predicted by 

where A and �  are the intercept and slope, respectively, of a straight line. For the case 
of data that display perfect linear correlation (r^ = 1), the predicted value y, would 
always equal the observed value y, for any given xt. In practice, however, data usually 
do not display a perfect linear relationship. There generally is some scatter due to 
extraneous random effects, and perhaps distortion due to nonlinearities, as illustrated 
in Figure 4.3. Nevertheless, if a linear relationship is assumed and unlimited data are 
available, appropriate values of A and �  can be determined that will predict the 
expected value of y, for any given xt. That is, y, will not necessarily equal the observed 
value y, associated with the corresponding x(, but it will be an average for all such 
values that might have been observed. 

The accepted procedure for determining the coefficients in Equation (4.62) is to 
select those values of A and �  that minimize the sum of the squared deviations of the 
observed values from the predicted values of y. This procedure is called a least squares 
fit. Specifically, noting that the deviation of the observed values from the predicted 
values is 

y = A+Bx (4.62) 

yi-yi = yi-(A+Bxi) (4.63) 

it follows that the sum of this squared deviations is given by 

�  
(4.64) 

i=l 
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Hence, a least squares fit is provided by those values of A and �  that make 

£=§=� 
In practice, the available data will be limited to a sample of TV pairs of observed values 
for �  and y. This means that Equation (4.65) will yield only estimates of �  and B, to be 
denoted by a and b, respectively. Substituting Equation (4.64) into Equation (4.65) 
and solving for the estimates of A and �  yields 

a = y—bx (4.66a) 

� �� (*.-*) EL*2-"*2 

These estimates can now be used to write a prediction model for y given �  as 
follows: 

y = a + bx = {y-bx) + bx = y + b(x-x) (4.67) 

The straight line defined by Equation (4.67) is called the linear regression line for 
y on x. By switching the dependent and independent variables in Equation (4.66), 
a regression line for �  on y could also be calculated. Specifically, 

x = x + b�(y-y) (4.68) 

where 

� �� �-Ny2 

Comparing the product of Equations (4.66b) and (4.69) to Equation (4.57), it is seen 
that the slopes of the regression lines for y on �  and �  on y are related to the sample 
correlation coefficient of �  and y by 

Txy = [bb�}l/1 (4.70) 

Now consider the accuracy of the estimates a and b given by Equation (4.66). 
Assuming a normal distribution of y given x, it is shown in Ref. 1 that a and b are 
unbiased estimates of A and B, respectively, with sampling distributions related to 
the t distribution as follows: 

a—A 

1 + N � �  : ��<< > 
b-B 

1/2 = ty*^ (4-71) 

1/2 = sy\xtN-2 (4.72) 
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Of particular interest is the sampling distribution of y associated with a specific 
value of �  = x 0 . This is given by 

y-y 

1 � (xo-x)1 

x 

sy\xtN-2 (4.73) 

In Equations (4.71)-(4.73), the term sy^ is the sample standard deviation of the 
observed values of y, about the prediction y,• — a + bxt and is given by 

sy\x ~~ 
Ef=, {yt-% )21 1/2 

v) 
1/2 

N-2 \n-2j �  x 

(4.74) 

The above relationships provide a basis for establishing confidence intervals for A, B, 
and y based on the estimates a, b, and y. 

Example 4.6. Illustration of Linear Regression Analysis. Using the data 
presented in Table 4.3 for Example 4.5, determine a regression line that will provide 
a linear prediction for the average weight of male university students as a function of 
their height. Determining a 95% confidence interval for the average weight of male 
students who are 70 in. tall. 
As in Example 4.5, let �  be height andy be weight. The values needed to determine the 
slope and intercept of the regression line for y on �  have already been calculated in 
Example 4.5. Substituting these values into Equation (4.66) yields the estimated 
slope and the intercept as follows: 

b = 299,056-(25)(70.64)(168.96) = 2 g f . 

168.96-(25)(70.64) 2 

a = 168.96-(2.85)(70.64) = -32 .6 

Hence, the regression line estimating the average weight of male university students 
given height is 

y = - 3 2 . 6 + 2.85* 

which yields an estimated weight of y = 167.1 lb for a height of * = 70 in. 
To establish a confidence interval for the average weight y based on the estimate 

y = 167.1 lb, it is necessary to calculate sy\x given by Equation (4.74). A more 
convenient equation for sy\x from the computational viewpoint is 

sy\x N-2 
[ l£ i (* . -*) (y . - -y) f 

Ef=i ( * - * ) 2 

�  1/2 
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where the terms in the above expression are further simplified for computational 
purposes by noting that 

�  

i=l i=l 1=1 1=1 

Substitution of the appropriate values into these expressions yields 

1 / (673�  
— 9 9 1 7 - - -
23 I 236 

1/2 

= 18.65 

Then, from Equation (4.73), a 95% confidence interval for the average weight of male 
university students with a height of 70 in. is 

S �  sy\xtN-2;a/2 
J _ (xo-x) 

1/2 

= 167.2 �  (18.65)�23;0. .025 
J_ (70-70 .64) 2 

25 + 236 

1/2 

= 167.2 �  7.9 = 159.3 to 175.1 lb 

This concludes Example 4.6. 
The techniques of correlation and regression analysis are readily extended for 

applications involving more than two random variables. As noted earlier, such 
extensions are fundamental to the analysis of multiple-input/output problems devel-
oped in Chapter 7. Hence, further discussions of this subject are deferred to that 
chapter. 

PROBLEMS 

4.1 Given the random variable y~cx where c is a constant and � ; is a random 
variable with a mean value and a variance of � � and � 2 , respectively, prove that 
the following relationships are true. 

(a) � � = � � � . 

(b) a) = c2a2

x. 

4.2 Given a random variable JC with a probability density function of 

� 0 ) = _ L ^ - t * - ' ) 2 / * 
2 V 2 I R 

What are the mean value and variance of x? 
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4.3 Given two independent random variables, �  and y, with mean values of � �  and 
� � , and variances of � 2 and � 2, determine the 

(a) mean value of the product xy. 

(b) variance of the difference �  — y. 

4.4 The normalized random error (coefficient of variation) e r of an unbiased 
parameter estimate �  is defined as the ratio of the standard deviation of the 
estimate to the expected value of the estimate, that is, � �  = � ^/� ^. Determine 
the normalized random error of a variance estimate s2 computed from � =200 
sample observations using Equation (4.12). 

4.5 Given four independent standardized normally distributed random variables, 
Zi, z 2 , Z3, and z 4 , define the distribution functions of the following combinations 
of these variables. For each case, specify the associated degrees of freedom or 
mean value and variance, as appropriate. 

(a) z2 + z2 + z2 + z2. 
(b) Z\ +Z2-Z3-Z4-

{[� 2 + � 2+� 2

3]� � /2� 
(d) [z2+zl + z2}/3 

z\ 

4.6 What distribution function would be used to establish confidence intervals for 
the following parameters of two independent normally distributed random 
variables, �  and y? 

(a) Interval for � �  based on a sample mean �  and known variance � 2. 

(b) Interval for � 2/� 2 based on a ratio of sample variances s2/s2. 

(c) Interval for � 2 based on a sample variance s2. 

(d) Interval for � �  based on a sample mean �  and sample variance s2. 

4.7 A correlation study is performed using a sample of �  = 7 pairs of observations 
(x\yu X2V2, � � �, Xiyi)- A sample correlation coefficient of = 0.77 is 
calculated. Test the hypothesis that is greater than zero at the �  = 0.01 
level of significance. 

4.8 Assume the sample mean values of two correlated random variables are �  = 1 
andy = 2. Further assume that the sample correlation coefficient is ^ = 0.5. If 
the regression line for y on �  is given by y = 1 + x, 

(a) what is the slope b� of the regression line for �  on y? 

(b) what is the equation for the regression line for �  on y(x = d + b�y)l 

4.9 Given a sample of �  independent observations of a random variable �  with a 
known mean value of zero, an efficient estimator for the variance of �  is 

1 N 

s 2 = - Y x 2 
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(a) Prove the above estimator is unbiased. 

(b) Write an expression relating the above estimator to a chi-square variable 
with the appropriate degrees of freedom specified. 

(c) What is the variance of the above estimator? (Hint: The variance of � � is 
In.) 

4.10 Assume a time sequence of TV=20 measurements are made of a normally 
distributed random variable x with the following results: 

Time Value Time Value Time Value Time Value 

1 10.1 6 10.6 11 10.9 16 11.4 
2 10.4 7 11.3 12 10.1 17 10.1 
3 9.9 8 9.7 13 10.5 18 11.5 
4 10.0 9 10.2 14 10.7 19 10.3 
5 10.0 10 11.2 15 10.8 20 10.9 

Test the time sequence of measurements for a trend at the 5% level of 
significance in two ways, namely, 

(a) by computing the reverse arrangements and performing a nonparametric 
test. 

(b) by comparing the slope b of the linear regression line and testing the 
hypothesis that �  = 0. 
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