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The paper summarizes critically the current approaches for the
calculation of the limits of detection and quantification.
In the context of the description of the method based on the
calibration line, the arguments concerning the underlying
experimental design, the choice of the appropriate model in the
univariate regression, the effects of the dispersion character-
istics of the data are deeply discussed. The effects of the sceda-
sticity of the experimental data are taken into account in the
obtainment of the calibration curve and in its utilization. To
gain transparency, adaptability, and tutorial effectiveness the
explicit formulas relevant to the use of straight line and quad-
ratic models are reported. An application of the described proce-
dures to GC-MS data is reported as an illustrative example.
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I. INTRODUCTION

Method validation, a major concern for analysts, requires that all
the characteristics of an analytical method must be evaluated.
Namely, specificity and/or selectivity, linear dynamic range,
precision, accuracy, detection and quantification limits, recovery,
proof of applicability have to be considered (Lindner & Wainer,
1996). In particular detection and quantification limits are two
fundamental criteria of method validation but the existence of
different approaches for their estimation can cause confusion and
difficulty for effective comparisons. Table 1 lists for illustration
the host of terms, symbols, and statistical items reported in the
literature since the pioneering work of Kaiser (1966). To
overcome the severe terminological and conceptual confusion
surrounding these topics, the International Organization for
Standardization (ISO) and the International Union of Pure and

Applied Chemistry (IUPAC) developed revised documents
bringing their nomenclature into essential agreement by 1995
(Currie, 1997).

Nevertheless two main points must still be remarked: in the
first place the need of knowledge from the analyst of the basic
statistical concepts underlying the different proposals for their
proper use, and the convenience of the declaration of the
approach chosen for the reliability of the data reported; second
the quite cumbersome handling of the uncertainty of the results
in the utilization of the calibration curve when the data do not
fulfil the condition of uniform signal variance and the analytical
technique gives a non-linear calibration curve.

The present work, therefore, in the spirit of a discussion- and
application-oriented paper, aims to several purposes: (i) to recall
the basic ideas underlying the most usual approaches in the
definitions of the detection limits; (ii) to give rigorous guidelines
to face the more cumbersome situations, that is, heteroscedas-
ticity of the data and non-linearity in the calibration; (iii) to avoid
any artlessness, like the use of calibration data too far away from
the region of the blank value to calculate the detection limit
(Mocak et al., 1997; Vial & Jardy, 1999) or the misunderstanding
of the meaning of the residual standard deviation with the use of
single data points or means of replicates; (iv) finally to remove the
analyst from the blind use of black-box statistical packages
allowing more transparency and unlimited applications.

Although the meaning of the detection limit is clear, in a
qualitative sense, that is, it indicates the smallest concentration or
amount of an analyte that can be reliably detected in a given
sample by a chosen analytical procedure, two fundamental
concepts must always be in mind: (i) one can operate in the signal
domain, that of the instrumental responses, or in the analyte
concentration/quantity domain with the passage from one
domain to the other allowed by the calibration procedure; (ii)
the detection of the analyte signal, that is, the statement of the
presence of the real response of the analyte in a noisy
background, is a problem at all different from the a priori
forecast of unambiguously detecting the analyte signal when
the analyte is effectively present in a sample at a defined
concentration level.
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TABLE 1. Terms and symbols reported in the literature
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Stating analyte presence or absence and carefully estimating
analyte concentration are primary goals which can be strictly
linked to the calibration procedure. On this basis we first describe
and thoroughly discuss the univariate calibration procedure, the
inverse regression or discrimination, even if much material is
available in standard tests, and then face the estimation of the
detection and quantification limits.

In addition to the approach based on the dispersion
characteristics of the calibration plot, also widely applied
methods will be described and critically discussed pointing out
the analogy of the concepts underlying the different approaches.

Finally, a practical application of the different procedures
illustrated using GC-MS data is reported; any discussion about
the qualitative identification-confirmatory step, necessary pre-
requisite for a meaningful quantification, will be omitted as
outside the purpose of this paper.

II. CALIBRATION

A. Calibration Design

In establishing the univariate calibration function, defined as the
functional relation between the expected instrumental responses
and the analyte concentration/amount, the proper calibration
design has to take into account whether the concentration of the
calibration solutions is affected or not by significant errors. When
the uncertainty in the concentration value x is negligible in
respect to that of the instrumental response y, the usual
assumptions in the regression analysis are valid and a very
simple experimental design can be proposed. An uncontamined
matrix aliquot is fortified at the jth standard concentration level xj

(j¼ 1, 2, . . . ., k) and mj repeated measurements are made on the
same solution to evaluate the instrumental uncertainty. Therefore
in the calibration design the overall number of data points is given
by n ¼

Pk
j¼1 mj.

If critical considerations of the characteristics of the
apparatus and materials used in making up solutions indicate
the presence of a non-negligible uncertainty in x and in the same
time they allow to estimate the variance of xj, s

2
xj

, a convenient
approach is the maintainement of the previous calibration design
adopting a weighted least-squares procedure with the weights
containing the contributes of errors in x and y (Sharaf, Illman, &
Kowalski, 1986). The estimates of the parameters of the model
y¼b0þb1 xþ e are then obtained minimizing, via a non-linear
procedure, the sum

S ¼
Xk
j¼1

Xmj

i¼1

1

s2
j

ðyi � b0w � b1wxjÞ2 ¼
Xk
j¼1

Xmj

i¼1

ðyi � b0w � b1wxjÞ2

s2
yj
þ b2

1ws
2
xj

where sj
2 is the overall variance of the responses at the level xj,

calculated for a straight line model via the error propagation
as s2

j ¼ s2
yj
þ b2

1w s2
xj

(s2
yj
¼ instrumental uncertainty; s2

xj
¼ con-

concentration uncertainty).
When s2

xj
is not calculable, the presence of significant errors

in xj can be tested by analysis of variance (Massart et al., 1988).
Actually, analysis of variance of repeated measurements
relative to different solutions of nominal equal concentration
xj evidentiates the effect of the ‘‘making up solutions’’ factor.
If this factor is effective, again a weighted least-squares
procedure must be employed with the weights given by 1

Sj2
,

where sj
2 is comprehensive of the contributes of the instrumental

variance s2
yj

and of the concentration variance s2
xj

(Mandel,
1967).

TABLE 2. Illustrative example: calibration data in terms of ratios of peak area of Chloromethane and of

internal standard (Fluorobenzene) as a function of Chloromethane concentration

The reported data for each concentration refer to ten replicates.
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Concerning this experimental design it can be noted that if
the different aliquots are samples of different matrices spiked at
known analyte concentrations, the calibration design provides an
overall calibration function applicable in the so-called ‘‘in-house
validation’’ and in routine analysis when the uncertainty
introduced by the different matrices is acceptable (Brueggemann,
Morgenstern, & Wennrich, 2005).

Finally, when the error is concentrated in x instead of in y
values, the conventional treatment can be applied simply using y
as the independent variable.

When for insufficient instrumental or procedure reproduci-
bility the variance sj

2 results too large, the use of an internal
standard is recommended. In the calibration plot the depen-
dent variable is the ratio of the measured responses and
the independent variable is the known molar concentration
ratio.

For the calculation of a reliable calibration model some
recommendations are often reported in the literature: (i) the
number of concentration levels must range between seven and ten
(Garden, Mitchell, & Mills, 1980); (ii) the replicates must be at
least eight to ten to verify the normality of the data by the
Shapiro–Wilk test (Shapiro & Wilk, 1965), for instance, and to
ascertain their scedasticity; (iii) the calibration design must tune
the problem in hand: the estimation of detection limits requires
calibration points near the hypothesized values of the limits,
whereas for accurate quantitative analysis the standard solutions
must bracket the unknown one; (iv) the calibration measurements
are to be run in blocks, each block containing one replicate of
each standard, randomly chosen to avoid the effect of any
systematic error, and blanks to avoid carryover effects; (v) finally,
the blank solution response must be inserted in the regression
procedure when the detection limits are determined (Mocak et al.,
1997; Vial & Jardy, 1999) to decrease the difference between the
experimentally measured blank and the intercept of the
regression line.

B. Homoscedastic and Heteroscedastic Data

Calibration data may be homoscedastic, that is, of uniform
variance, or heteroscedastic, that is, of non-uniform variance. In
the former case the correct calibration model is calculated by
the ordinary least squares (OLS) regression, whereas in the latter
one weighted least squares (WLS) regression is the appropriate
choice. It is noticeable that the two procedures furnish quite
similar parameter estimates but the choice becomes important
in the calculation of the uncertainty of a concentration value
obtained via inverse regression and on the detection limit
evaluation (Schwartz, 1979; Vial & Jardy, 1999).

Standard procedures can be followed to test whether
homoscedasticity or heteroscedasticity holds: (i) the plot of the
residuals of the un-weighted least squares regression versus the
predicted values: a funnel shape trend with the increasing
responses indicates an increasing variability with the concentra-
tion (Fig. 1). More immediately the plot of the differences among
the replicates and their mean at each concentration furnishes
analogous results; (ii) the Bartlett’s test, which compares the
variances of the replicates at each concentrations or a F-test
between the largest and the smallest variance of the replicates

(Massart et al., 1988). In this context the Hartley’sFmax-test could
be also mentioned (Hartley, 1950).

Under heteroscedastic conditions the plot of the experi-
mental variances versus concentration and the calculation of the
relevant model give some opportunities: the raw variance values
coming from few repeated measurements are smoothed; the
availability of the relationship between the variance values and
the concentration level makes easier the calculation of the WLS
regression and of its inverse as the weighting factors are the
inverse of the variances at each concentration level; finally a
comparison of the signal precision obtainable at differently
defined detection limits is immediate (Vial & Jardy, 1999). It
must be remarked that in this particular case the variance model
must be drawn from experimental data belonging to the region of
the detection limit including also the zero concentration (Wilson
et al., 2004).

C. Calibration Models

Two models will be considered: the straight line, by far the most
popular one,

y ¼ b0 þ b1xþ e ð1Þ

and the non-linear, quadratic, calibration function, particularly
useful, for example, when wide dynamic ranges and/or not
isotopically pure internal standards are considered (Millard,
1978)

y ¼ b0 þ b1xþ b2x
2 þ e ð2Þ

The independent variable x is assumed unaffected by error;b0,b1,
and b2 are the parameters of the model and e represents a
normally distributed random error, with mean zero and constant
variance s2 (homoscedastic condition), or non-constant variance
(heteroscedastic condition): e�N(0, s2).

The signal y, therefore, is thought to be composed of a
deterministic component predictable by the model and of a
random component e: y�N(b0þb1x, s2) or y�N(b0þ b1x,

FIGURE 1. Plot of residual values for heteroscedastic data (Table 2)

when ordinary least-squares regression is performed using a straight line

model, y¼ b0þ b1x.
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b2x
2, s2). Figure 2 illustrates these assumptions in the case of a

straight line for homoscedastic data.
The b parameters are unknown and the unweighted or

weighted least-squares regression furnishes their estimates b by
using a set of experimental data points (xi, yi). Thus one writes

y
_ ¼ b0 þ b1x ð10Þ

or

y
_ ¼ b0 þ b1xþ b2x

2 ð20Þ

where y
_

represents the predicted response of y for a given x.
Even if it is common practice to use software packages to

calculate estimates of the parameters and of any other statistics of
interest, here the explicit formulas for the two models considered
are reported. This choice will allow to face any particular
requirements like simultaneous prediction intervals and toler-
ance intervals, which usually are not provided by commercially
available software packages.

III. CALIBRATION CURVE VIA
UNWEIGHTED REGRESSION

A. Straight Line Calibration Curve

The least-squares estimates of parameters b0 and b1 in Equation
(10), of their variances s2

b0
and s2

b1
and of the variance of the y

values s2
y=x are given by

b0 ¼ �y� b1 �x ð3Þ

b1 ¼

Pn
i¼1

ðxi � �xÞyi
Pn
i¼1

ðxi � �xÞ2
ð4Þ

s2
y=x ¼

Pn
i¼1

ðyi � y
_

iÞ2

n� 2
ð5Þ

s2
b0
¼ s2

b=x

1

n
þ �x2

Pn
i¼1

ðxi � �xÞ2

0
BB@

1
CCA ð6Þ

s2
b1
¼

s2
y=xPn

i¼1

ðxi � �xÞ2
ð7Þ

where n is the overall data point number (n ¼
Pk

j¼1 mj,
k¼ number of the concentration levels, mj¼ number of repli-
cates at the level j), �x ¼

Pn
i¼1 xi n

�
and �y ¼

Pn
i¼1 yi n

�
. The

statistic s2
y/x is called the residual variance of the regression and

represents an estimate of the error variance s2 if the model is
correct.

The adequacy of the model can be tested in several
ways: (i) by the evaluation of the correlation coefficient r ¼
nSxy� SxSyð Þ=ðnSx2 � ðSxÞ2Þ½ ðnSy2 � ðSyÞ2Þ½; (ii) by the

use of an analysis-of-variance technique which, in the absence of
replicate data, implies an F-test on the regression significance
(Mocak et al., 1997) while with replicate data is the so called lack
of fit test (Analytical Method Committee, 1994); (iii) by
inspection of the behavior of the residuals versus the predicted
values. The first procedure is to be discouraged since a value of r
close to unity not necessarily indicating a linear calibration
function can lead to misinterpretation; the second one is effective
when replicates at each concentration level are available; the
third is graphical, easy to do and very revealing whether the
assumptions on the errors e and the model are correct.

The problem of confidence-banding the unknown true
straight line with a fixed (1� a) probability is solved taking into
account the joint uncertainties of b0 and b1. This leads to define a
region in the plane x� y bounded by the two functions

y� ¼ b0 þ b1x� ð2Fa
2;n�2Þ

1=2
sy=x

1

n
þ ðx� �xÞ2

Pn
i¼1

ðxi � �xÞ2

0
BB@

1
CCA

1=2

ð8aÞ

whereF represents the chosen critical value of the Fisher statistic.
When the interest is in the calculation of a confidence

interval on y at a particular point x instead of on the entire x value
range, the critical constant (2F2,n� 2

a )1/2 changes to the critical
Student constant t(1� a/2, n� 2) (Wilson et al., 2004) to give

y� ¼ b0 þ b1x� tð1�a=2; n�2Þ sy=x
1

n
þ ðx� �xÞ2

Pn
i¼1

ðxi � �xÞ2

0
BB@

1
CCA

1=2

ð8bÞ

where t(1� a/2, n� 2) is (1� a/2)100% point of Student’s
t-distribution on n� 2 degrees of freedom.

The uncertainty of a future observation y predictable at a
single x value has two contributes: the uncertainty of the
estimates b0 and b1, which implies the non-uniqueness of the
regression line, and the uncertainty of the single measurement or
of the average of m (m� 1) replicates (Miller, 1993). This

FIGURE 2. Illustration of the hypotheses for linear regression in the

case of homoscedasticity.
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uncertainty can be expressed by means of the (1� a)100% two
sided prediction intervals whose limits are

�ym
� ¼ b0 þ b1x� tð1�a=2; n�2Þ sy=x

1

m
þ 1

n
þ ðx� �xÞ2

Pn
i¼1

ðxi � �xÞ2

0
BB@

1
CCA

1=2

ð9aÞ

If m is very large, m!1, Equation (9a) collapses to

�y�m!1 ¼ b0 þ b1x� tð1�a=2; n�2Þ sy=x
1

n
þ ðx� �xÞ2

Pn
i¼1

ðxi � �xÞ2

0
BB@

1
CCA

1=2

ð9bÞ

which coincides with Equation (8b).
The real significance of Equation (9a) and (9b) is as follows:

they give the limits of the intervals which contain the mean
responses �ym, or �ym!1 at a fixed x, with probability of 1� a
(see Fig. 3).

Actually one can be interested to define an interval bounding
not a single measurement or a mean of m future measurements,
but a proportion P of the entire population of y at a fixed x, with
probability 1� a. This interval, called non-simultaneous toler-
ance interval, is given by

y� ¼ b0 þ b1x� sy=x

(
tð1�a=4; n�2Þ

�
1

n
þ ðx� �xÞ2

Pn
i¼1

ðxi � �xÞ2

�1=2

þ NðPÞ
�

n� 2
a=2w2

n�2

�1=2�

whereN(P) is the two-sidedP percentile point of the standardized
normal distribution and a/2wn� 2

2 is the lower a/2 percentile point

of the w2-distribution with n� 2 degrees of freedom (Miller,
1966; Zorn, Gibbons, & Sonzogni, 1997).

Prediction intervals or non-simultaneous tolerance intervals
are the basis of a detection limit theory with the latter ones more
appropriate with a large or unknown number of future detection
decisions. More clearly, if a single sample ism times examined to
detect the presence of the analyte, the use of the prediction
interval at x¼ 0 is the proper choice; alternatively, when an
unknown number of samples have to be examined the use of the
non-simultaneous tolerance interval at x¼ 0 is appropriate.

When the number of prediction intervals to be handled
simultaneously is large or unknown or when tolerance intervals
are directly required, the use of simultaneous tolerance intervals
is useful. In this case the limits bounding with probability at least
(1� a) are given by

y� ¼ b0 þ b1x� sy=x

�
ð2Fa=2

2;n�2Þ
1=2

�
1

n
þ ðx� �xÞ2

Pn
i¼1

ðxi � �xÞ2

�1=2

þ NðPÞ n� 2
a=2w2

n�2

� �1=2�

This situation occurs when the inverse regression step is many
times executed to quantify the content of the analyte in very
numerous samples using always the same calibration line.

B. Outliers in Regression

In the context of OLS regression, several statistical approaches
have been proposed to face the problem of outliers, that is, values
which seem to be substantially different from the others. The
identification of a data point as an outlier implies the decision of
rejecting it before the calculation of the accepted regression line.

The question, particularly important when restrictions of
time and/or standard material preclude further measurements, is
cumbersome for two reasons: (1) the apparent presence can
depend on the model chosen in the regression analysis; (2) even a
single outlier can affect deeply the estimates of the regression
coefficients calculated by the weak OLS method (Miller, 1993).

The residual diagnostic-based methods for identifying
outliers can be of different complexity depending on whether
the leverage value of the suspected point is considered.

A very simple test considers as outliers the points whose
standardized residuals (mean zero and standard deviation unity)
are larger than 2 or less than (�2) (Miller, 1993). Since this test
suffers from the disadvantage that the residuals are not
independent, its use deserves some caution particularly when
the number of data points is small. Among the methods
overcoming this drawback the so-called jackknife approach can
be cited (Belsley, Kuh, & Welsch, 1980). It calculates at the ith
suspected point the residual

r�i ¼
ei

sið1 � hiÞ1=2
;

where

s2
i ¼

ðn� 2Þs2
y=x �

e2
i

1�hi

n� 3

FIGURE 3. Illustrative example: (o) calibration data as summarized in

Table 2; calibration line y¼ b0þ b1x, regression bands (broken line), and

prediction functions (continuous line) when a ordinary least-square

regression is performed.
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and hi, the leverage value of the i-th point, is defined by

hi ¼
1

n
þ ðxi � �xÞ2P

ðxi � �xÞ2

.
The property of the jackknife residuals of approximately

following a t-distribution allows the easy identification of an
outlier when jr�ij> t(1� a/2, n� 3), at any chosen 1� a value.

C. Inverse Regression

The analytical application of the calibration curve is the inverse
regression, called also discrimination (Miller, 1966; Garden,
Mitchell, & Mills, 1980), that is, the obtainment of x from an
instrumental response y with the confidence interval for the true
value of x (Brownlee, 1960). This interval depends on two
factors: the uncertainty of b0 and b1 and the uncertainty of the
experimental response reading, which can be a single or the mean
of m replicate measurements. A common way to take into
account these two sources of error is the application of the error
propagation to the estimated concentration x

_

0 ¼ �y0m � b0ð Þ=b1

or better x
_

0 ¼ �xþ 1
b1
ð�y0m � �yÞ where �y0m is the mean of m

measurements. The variance of x
_

0 results to be

s2

x
_

0

¼
s2
y=x

b2
1

1

m
þ 1

n
þ ðx_0 � �xÞ2

Pn
i¼1

ðxi � �xÞ2

0
BB@

1
CCA ð10Þ

Assuming x
_

0 as approximately normal (Currie, 1997), the
limits of the (1� a)100% confidence interval for the true value
of x0 corresponding to the response average �y0m are (Massart
et al., 1988)

x̂�0 ¼ x
_

0 � tð1�a=2; n�2Þsx̂0
ð11Þ

Graphically this finding corresponds to select two limits x̂�0 and
x̂þ0 , whose corresponding y values coincide with the limits of
the prediction interval for y at the discriminated x

_

0 value
(Fig. 4a) (method I):

y� ¼ b0 þ b1x
_

0 � tð1�a=2; n�2Þ sy=x
1

m
þ 1

n
þ ðx_0 � �xÞ2

Pn
i¼1

ðxi � �xÞ2

0
BB@

1
CCA

1=2

ð12Þ

Consequently the limits x̂�0 and x̂þ0 are given by the equation
x̂�0 ¼ y� � b0ð Þ=b1, which coincides with Equation (11) when
s2

x
_

0

is given by Equation (10).
Equation 12 was also theoretically derived under the

hypothesis that the function g ¼ t2s2
b1
=b2

1 has a value less than
0.05 (Brownlee, 1960; Miller, 1991).

Another approach for the calculation of the limits x̂�0 and x̂þ0
originates from the use of the (1� a)100% two sided prediction
band by intersecting it with a straight line y¼ y0m (Fig. 4b)

(method II) (Millard, 1978). The two limits x̂�0 and x̂þ0 are
defined by

�y0m ¼ b0 þ b1x̂
�
0 þ tð1�a=2; n�2Þ sy=x

1

m
þ 1

n
þ ðx̂�0 � �xÞ2

Pn
i¼1

ðxi � �xÞ2

0
BB@

1
CCA

1=2

ð13aÞ

FIGURE 4. Graphical solution for the discriminated value x̂0 and its

confidence limits x̂�0 and x̂þ0 , in correspondence to a mean response

obtained from m repeated measurements, using the methods I (a), II (b),

and III (c). The middle line in the a–c is the calibration line; the bounding

lines are prediction functions in the a and b, and regression bands in the c.

c: the regression bands, together with the confidence interval on �y0m,

individuate the confidence interval on x.
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and

�y0m ¼ b0 þ b1x̂
þ
0 � tð1�a=2; n�2Þ sy=x

1

m
þ 1

n
þ ðx̂þ0 � �xÞ2

Pn
i¼1

ðxi � �xÞ2

0
BB@

1
CCA

1=2

ð13bÞ

These limits x̂�0 and x̂þ0 , whose (1� a)100% prediction intervals
for y yet have as upper and lower limits respectively the
experimental response �y0m, bracket the true value x0with
probability 1� a. It must be remarked that this confidence
interval for x0 can result asymmetric since normality is preserved
in y-responses but no assumption is made on x.

In the case of unlimited applications of the calibration curve
for discrimination, a suitable approach defines the (1� a)100%
confidence interval for x0 by intersecting the (1� a/2)100%
confidence interval of �y0m with the two sided (1� a/2)100%
regression band of the straight line and projecting the intersec-
tions onto the x axis (Fig. 4c) (method III) (Garden, Mitchell, &
Mills, 1980)

�y0m � tð1�a=4; m�1Þ s�y0m

¼ b0 þ b1x̂
�
0 þ ð2Fa=2

2;n�2Þ
1=2

sy=x
1

n
þ ðx̂�0 � �xÞ2

Pn
i¼1

ðxi � �xÞ2

0
BB@

1
CCA

1=2

ð14aÞ

and

�y0m þ tð1�a=4; m�1Þ s�y0m

¼ b0 þ b1x̂
þ
0 � ð2Fa=2

2;n�2Þ
1=2

sy=x
1

n
þ ðx̂þ0 � �xÞ2

Pn
i¼1

ðxi � �xÞ2

0
BB@

1
CCA

1=2

ð14bÞ

where s�y0m
is the standard deviation of the mean �y0m of m

experimental responses. For few sample replicates m, the
standard deviation of the mean �y0m can be substituted by
sy=

ffiffiffiffi
m

p
.

The basic idea of this third approach is that all the points of
the common area in Figure 4c have coordinates belonging jointly
to the confidence intervals of �y0m and of the regression line.

Finally, the most conservative approach combines the
regression band of the regression line and the tolerance interval
on �y0m (method IV)

�y0m � NðPÞ n� 2
a=2w2

n�2

� �1=2

s�y0m

¼ b0 þ b1x̂
�
0 þ ð2Fa=2

2;n�2Þ
1=2

sy=x
1

n
þ ðx̂�0 � �xÞ2

Pn
i¼1

ðxi � �xÞ2

0
BB@

1
CCA

1=2

ð14cÞ

and

�y0m þ NðPÞ n� 2
a=2w2

n�2

� �1=2

s�y0m
¼ b0 þ b1x̂

þ
0

�ð2Fa=2
2;n�2Þ

1=2
sy=x

1

n
þ ðx̂þ0 � �xÞ2

Pn
i¼1

ðxi � �xÞ2

0
BB@

1
CCA

1=2
ð14dÞ

D. Detection and Quantification Limits

The availability of the calibration line and of its dispersion
characteristics allows the calculation of the critical, detection and
quantification limits. According to the literature (Hubaux & Vos,
1970; Long & Winefordner, 1983; Currie, 1995; Zorn, Gibbons,
& Sonzogni, 1997), the critical level LC is the assay signal above
which a response is reliably attributed to the presence of analyte;
the detection limit LD is the signal corresponding to an analyte
concentration level which may be a priori expected to be
recognized; finally the quantification limit LQ is a signal with a
precision which satisfies an expected value.

The statistical definition of the critical level is based on the
rejection of the null hypothesis, H0: concentration equal to zero,
at the significance level a, for example, a¼ 0.05 (type I-error rate,
false positive): P(y>LCjX¼ 0)� a. The numerical value of LC

can be easily calculated as the upper limit yþ in Equation (9a)
using x¼ 0, m¼ 1, and the t(1� a, n� 2) one-sided variate value

LC ¼ b0 þ tð1�a; n�2Þ sy=x 1 þ 1

n
þ �x2

Pn
i¼1

ðxi � �xÞ2

0
BB@

1
CCA

1=2

The critical level in the concentration domain is xC ¼
LC � b0ð Þ=b1.

Figure 5 explains that the signal at x¼ 0 has only 5% of
proability of overcoming the critical level LC. Consequently any
response greater than LC is to be attributed to the presence of
analyte.

The detection limit LD can be established invoking the type
II-error, false negative error rate b. Actually, at the concentration
xC,LC is the mean of the responses but a single response lies under
LC with probability b equal to 0.5. Therefore the detection limit
LD must be defined controlling the b-value which is usually set
equal to the type I error rate a: P(y<LCjX¼ xD)�b. Different
values of a and b can be adopted when special circumstances, for
example, a too high cost due to false negative error, suggest the
choice.

The xD value can be calculated as the abscissa of the
intersection of the parallel line to the x axis passing through LC,
with the lower one-sided (1�b)100% prediction function

LD ¼ b0 þ b1xD � tð1�b; n�2Þ sy=x 1 þ 1

n
þ ðxD � �xÞ2

Pn
i¼1

ðxi � �xÞ2

0
BB@

1
CCA

1=2

It is noticeable that in the equations giving LC and LD the terms
inside the square root represent the two contributes of variance
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coming from the variability of the measurement and from the
uncertainty of the calibration curve. The second contribute
depends from the chosen experimental design so pointing out that
the values of LC and LD depend on the experimental design
adopted.

An alternative approach to calculate xD is reported in the
literature (Clayton, Hines, & Elkins, 1987; Currie, 1997; ISO,
1997). Remembering that the relations P(y>LCjX¼ 0)� a and
P(y< LCjX¼ xD)� b are the theoretical basis of the underlying
statistical tests, the critical level in the signal domain is
calculated, as above, via a central t-distribution. The detection
limit LD is calculated by a non-central t-distribution taking the
chosen protection against false negative error. The value of xD in
the concentration domain is immediately obtained by the
calibration function as

xD ¼ dða;b; n�2Þ
sy=x

b1

1 þ 1

n
þ �x2

Pn
i¼1

ðxi � �xÞ2

0
BB@

1
CCA

1=2

where da,b, n� 2 is the non-centrality parameter from the non-
central t-distribution (Clayton, Hines, & Elkins, 1987).

Summarizing the former approach compares the back-
ground signal distribution with the analyte signal distribution at
an unknown xD using two central t-distributions; the latter, on the
basis of the background signal distribution (central t-distribution)
infers, via a non-central t-distribution, a signal LD, and then xD,
which satisfies the type II error rate b.

Finally, the limits LC and LD can be calculated via the one-
sided non-simultaneous (at a specified value of x) tolerance
intervals:

LC ¼ b0 þ sy=x

�
tð1�a=2; n�2Þ

�
1

n
þ �x2

Pn
i¼1

ðxi � �xÞ2

�1=2

þ NðPÞ þ
�

n� 2
a=2w2

n�2

�1=2�

LD ¼ b0 þ b1 xD � sy=x

(
tð1�a=2; n�2Þ

 
1

n
þ ðxD � �x2ÞPn

i¼1

ðxi � �xÞ2

!1=2

þ NðPÞ þ
 

n� 2
a=2w2

n�2

!1=2)

The quantification limit LQ is defined in different ways: (i)
LQ � b0ð Þ=sLC

¼ 10: a net response equal to ten times the
standard deviation at the lowest detectable signal LC (Zorn,
Gibbons, & Sonzogni, 1997); (ii)

LQ

sy=x 1 þ 1
n
þ ðxQ��xÞ2Pn

i¼1

ðxi��xÞ2

0
B@

1
CA

1=2
¼ 10

a response equal to ten times the standard deviation of the
prediction value at the concentration xQ (Oppenheimer et al.,
1983); (iii) LQ � b0ð Þ sb0

¼ 10= : a net response equal to ten times
the standard deviation of the intercept (Miller & Miller, 1988;
Vial & Jardy, 1999); (iv) finally, Eurachem (1993)) defines the
quantification limit in the concentration domain as the analyte
concentration xQ for which the experimental relative standard
deviation of the responses reaches a fixed level, for example, the
level 0.1.

E. Quadratic Calibration Curve

When curvilinear calibration plots are obtained, the more usual
model is

y
_ ¼ b0 þ b1xþ b2x

2

or equivalently

y
_ ¼ �yþ b1ðx� �xÞ þ b2ðx2 � x2Þ

where �y ¼
Pn

i¼1 yi=n, �x ¼
Pn

i¼1 xi=n, and x2 ¼
Pn

i¼1 x
2
i =n.

The convenience of passing from a straight line to a
quadratic model is indicated by proper tests. In addition to those
cited previously, that is, plot of the residuals versus the predicted
values, and the ‘‘lack-of-fit’’ test, the Mandel approach can be
followed (Mandel, 1967): the residual variances obtained with
the straight line model (s2

y=x;I ; I¼ first order) and with the
quadratic model (s2

y=x;II ; II¼ second order) are used as mean
squaresMI andMII, respectively, to perform an ANOVA analysis.
Table 3 summarizes the overall procedure. A value of the test-
statistic F ¼ ðn� 2ÞMI � ðn� 3ÞMIIÞ=MIIð larger than the criti-
cal value with 1 and n� 3 degrees of freedom, for the level of
significance chosen, indicates the suitability of the quadratic
model.

The parameters, estimated by least-squares procedure, are

b1 ¼ Sff Sxy � SfxSfy

D

b2 ¼ SxxSfy � SfxSxy

D

FIGURE 5. Graphical representation of the critical and detection limits

in the signal and in the concentration domains with specified type I-error

rate a and type II error rate b.
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where

D ¼ SxxSff � S2
fx

Sxx ¼
Xn
i¼1

x2
i � n�x2

Sfx ¼
Xn
i¼1

x3
i � n�xx2

Sff ¼
Xn
i¼1

x4
i � nðx2Þ2

Sxy ¼
Xn
i¼1

xi�yi � nxy

Sfy ¼
Xn
i¼1

x2
i �yi � nx2�y

n is the overall number of calibration points.
The parameter variances and covariances of interest are

s2
b0 ¼ 1

n
þ �x2Sff

D
þ x2

2
Sxx

D
� 2�xx2Sfx

D

 !
s2
y=x

s2
b1
¼ Sff

D
S2
y=x

s2
b2
¼ Sxx

D
S2
y=x

s2
b1;b2

¼ � Sfx

D
S2
y=x

where s2
y=x ¼

Pn
i¼1 ðyi � y

_

iÞ2=n� 3 estimates the measurement
population variance s2.

Following the same arguments previously developed, the
prediction and regression bands are

�y�m ¼ �yþ b1ðx� �xÞ

þ b2ðx2 � x2Þ � tð1�a=2; n�3Þsy=x
1

m
þ UðxÞ

� �1=2 ð15Þ

�y�m!1 ¼ �yþ b1ðx� �xÞ

þ b2ðx2 � x2Þ � tð1�a=2; n�3Þsy=x
1

m
þ UðxÞ

� �1=2

ð16Þ

where
UðxÞ ¼ 1

n
þ ðx� �xÞ2 sff

D þ ðx2 � x2Þ2 sxx
D � 2ðx� �xÞðx2 � x2Þ sfxD .

Figure 6 shows a three-parameter parabolic calibration
function together with the regression bands and two-sided
prediction functions.

The calculation of an unknown x value, x
_

0, with its
confidence limits from an experimental �y0m response and of xC,
xD, and xQ is performed following the same guidelines used for
the straight line model. In particular LC¼ (yþ)x¼ 0 is given by

LC ¼ �y� b1�x� b2x2 þ tð1�a; n�3Þsy=xð1 þ Uð0ÞÞ1=2

and xC is calculated from LC ¼ �yþ b1ðxC � �xÞ þ b2ðx2
C � �x2Þ.

Again the analytical calculations can be replaced by a graphical
procedure.

IV. CALIBRATION CURVE
VIA WEIGHTED REGRESSION

Repeated measurements for each concentration level allow to test
the scedasticity of the data. It is known (Schwartz, 1979; Currie,
1997) that the heteroscedasticity slightly modifies the estimates
of the parameters but heavily affects confidence and detection
limits. To account for the heteroscedasticity the weighted
regression analysis is used suitably weighting the data to

TABLE 3. Analysis of variance to test the null-hypothesis H0: b2¼ 0
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obtain homoscedasticity. Each measurement relative to the
concentration level xj is multiplied by the factor

w
1=2
j ¼ s2=s2

j

� �1=2

;

where sj
2 is the experimental variance of the replicate responses

at xj and s2 is the unknown common variance of all the
weighted measurements (Garden, Mitchell, & Mills, 1980).

Some authors suggest the use of smoothed variance values
obtained modeling the experimental variance values versus
the concentration in place of the experimental ones (Schwartz,
1979; Analytical Method Committee, 1994; Zorn, Gibbons, &
Sonzogni, 1997).

A. Weighted Straight Line Calibration Curve

Convenient weighted least-squares estimates of the intercept b0

and of the slope b1 and of their variances are given by the
following formulas:

b0w ¼ �yw � b1w�xw ð17Þ

b1w ¼

Pn
i¼1

wiðxi � �xwÞyi
Pn
i¼1

wiðxi � �xwÞ2
ð18Þ

s2
b0w

¼ 1Pn
i¼1

wi

þ �x2
wPn

i¼1

wiðxi � �xwÞ2

0
BB@

1
CCAðsy=xÞ2

w ð19Þ

s2
b1w

¼ 1Pn
i¼1

wiðxi � �xwÞ2
ðsy=xÞ2

w ð20Þ

ðsy=xÞ2
w ¼

Pn
i¼1

wiðyi � ŷiwÞ2

n� 2
ð21Þ

where �xw ¼
P

wixi=
P

wi, �yw ¼
P

wiyi=
P

wi, and ŷiw ¼
b0w þ b1wxi.

The adoption of 1=s2
i as the weighting factor wi in the

squared weighted residual wiðyi � ŷiwÞ2
gives a dimensionless

residual standard deviation near unity, ðsy=xÞw � 1 (Oppenheimer
et al., 1983). Otherwise if a normalization factor is introduced in
the weighting scheme,

w�
i ¼ n

1
s2
iP

1
s2
i

;

which makes the sum of the normalized weights equal to the
number n of observations, the weighted residual standard
deviation (sy/x)w approximates the square root of the harmonic
mean of the experimental variances of the data at any xi.

The weighted prediction interval relevant to the mean �ymj
of

mj responses at concentration xj is calculated as

ð�ymj
Þ�jw ¼ b0w þ b1wxj � tð1�a=2; n�2Þ

ðsy=xÞw
1

mjwj

þ 1Pn
i¼1

wi

þ ðxj � �xwÞ2

Pn
i¼1

wiðxi � �xwÞ2

0
BB@

1
CCA

1=2

ð22Þ

The first term inside the parenthesis in Equation (22) is the
variance of the mean of mj responses at xj. For mj!1 this term
vanishes and Equation (22) then describes the regression band of
a WLS straight line.

When the model of the variance is not available, an easy
approach to obtain the prediction intervals is to calculate the
limits �y�jw at the calibration points inserting the experimentally
available values wj ¼ 1=s2

j into Equation (22), and then inter-
polating between them.

B. Inverse Regression

The arguments developed in the context of the Section ‘‘III. C.
Inverse Regression’’ hold again. To discriminate an unknown
value x

_

0 and to determine the confidence limits x̂�0 and x̂þ0 from
the average value of m responses �y0m , the procedures previously
described can be followed. Being x

_

0 ¼ �y0m � b0wð Þ b1w= , the first
approach gives x̂�0 ¼ �y�w � b0w

	 

=b1w , where

�y�w ¼ b0w þ b1w x
_

0 � tð1�a=2;n�2Þðsy=xÞw
1

m� w
x
_

0

þ 1P
wi

þ ðx_0 � �xwÞ2P
wiðxi � �xwÞ2

 !1=2

:

The second procedure gives x̂�0 and x̂þ0 as the solutions of
the following equations:

�y0m ¼ b0w þ b1wx̂
�
0 þ tð1�a=2;n�2Þðsy=xÞw

1

m� wx�
0

þ 1P
wi

þ ðx̂�0 � �xwÞ2P
wiðxi � �xwÞ2

 !1=2 ð23Þ

FIGURE 6. Illustrative example: (o) calibration data as summarized in

Table 2; quadratic calibration function (middle line) with its regression

bands (broken line) and prediction functions (continuous line) when OLS

regression is performed.
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and

�y0m ¼ b0w þ b1wx̂
þ
0 �

tð1 � a=2; n� 2Þðsy=xÞw
�

1

m� wxþ
0

þ 1P
wi

þ ðx̂þ0 � �xwÞ2P
wiðxi � �xwÞ2

�1=2

ð24Þ

The equations

�y0m þ tð1�a=4;m�1Þs�y0m
¼ b0w þ b1wx̂0

�ð2Fa=2
2;n�2Þ

1=2 ðsy=xÞw
�

1P
wi

þ ðx̂þ0 � �xwÞ2P
wiðxi � �xwÞ2

�1=2 ð25Þ

and

�y0m � tð1�a=4;m�1Þs�y0m
¼ b0w

þ b1wx̂
�
0 þ ð2Fa=2

2;n�2Þ
1=2 ðsy=xÞw�

1P
wi

þ ðx̂�0 � �xwÞ2P
wiðxi � �xwÞ2

�1=2

ð26Þ

furnish the limits x̂�0 and x̂þ0 according to the third procedure. In
the left-hand side of Equations (25) and (26) the term s�y0m

is the
experimental standard deviation of the mean �y0m of m measure-
ments.

Finally, with the weighted tolerance interval approach
(fourth procedure) the limits x̂�0 and x̂þ0 are given by the
following equations:

�y0m � ðsy=xÞw
�

1

m� wx�
0

�1=2

NðPÞ
�

n� 2
a=2w2

n�2

�a=2

¼ b0w þ b1wx̂
�
0

þ ð2Fa=2
2;n�2Þ

1=2ðsy=xÞw
�

1P
wi

þ ðx̂�0 � �xwÞ2P
wiðxi � �xwÞ2

�1=2

�y0m þ ðsy=xÞw
�

1

m� wx�
0

�1=2

NðPÞ
�

n� 2
a=2w2

n�2

�a=2

¼ b0w þ b1wx̂
þ
0

� ð2Fa=2
2;n�2Þ

1=2ðsy=xÞw
�

1P
wi

þ ðx̂þ0 � �xwÞ2P
wiðxi � �xwÞ2

�1=2

When the weightswx̂�
0

andwx̂þ
0

are calculated from the model
of the variance, the limits x̂�0 and x̂þ0 can be obtained via an
iterative procedure. More easily, the graphical procedure
furnishes the limits x̂�0 and x̂þ0 .

C. Detection and Quantification Limits

Equation (22), with xj¼ 0 and the (1� a)100% point of Student’s
t distribution (one-sided interval), determines LCw and then

xCw ¼ LCw � b0w

b1w

ð27Þ

The obtainment of LCw requires the insertion of the weight w0 at
zero concentration by using either the variance calculated with

the model of the variance (Zorn, Gibbons, & Sonzogni, 1997) or
the experimental variance of the blank.

Intersection of the parallel line to the abscissa axis at the
level LCw with the lower (1�b)100% one-sided prediction
function gives the detection limit xDw. The graphical solution is
immediate; otherwise a more cumbersome iterative approach
requiring the correct value for wxD

can be used. Further, the
procedure based on the non-central t-distribution can be adopted
(ISO, 1997).

About the calculation of xQw the same definitions reported
in Section ‘‘III. D. Detection and Quantification Limits’’ hold.
The starting equations are

LQw � b0w

sLcw

¼ 10 ð28Þ

LQw

ðsy=xÞw 1
wxQw

þ 1
Swi

þ ðxQw�xwÞ2

Swiðxi�xwÞ2

� �1=2
¼ 10 ð29Þ

LQw � b0w

sb0w

¼ 10 ð30Þ

D. Weighted Quadratic Calibration Curve

With non-uniform variance data the estimates of the parameters
b1w and b2w of a quadratic calibration curve

y
_

w ¼ �yw þ b1wðx� �xwÞ þ b2wðx2 � x2
wÞ ð31Þ

are

b1w ¼ sff sxy � sfxsfy

D

and

b2w ¼ sxxsfy � sfxsxy

D

where

D ¼ sxxsff � s2
fx

sxx ¼
Xn
i¼1

wix
2
i �

�Xn
i¼1

wi

�
�x2
w

sfx ¼
Xn
i¼1

wix
3
i �

�Xn
i¼1

wi

�
�xwx2

w

sff ¼
Xn
i¼1

wix
4
i �

�Xn
i¼1

wi

�
ðx2

wÞ2

sxy ¼
Xn
i¼1

wixiyi �
�Xn

i¼1

wi

�
�xw�yw
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sfy ¼
Xn
i¼1

wix
2
i yi �

�Xn
i¼1

wi

�
x2

w�yw

�xw ¼

Pn
i¼1

wixi

Pn
i¼1

wi

; x2
w ¼

Pn
i¼1

wix
2
i

Pn
i¼1

wi

; �yw ¼

Pn
i¼1

wiyi

Pn
i¼1

wi

and n is the overall number of calibration points.
The variances and covariances of interest are

s2
b1w

¼ sff

D
ðs2

y=xÞw

s2
b2w ¼ sxx

D
ðs2

y=xÞw

s2
b1;b2w

¼ � sfx

D
ðs2

y=xÞw

where

ðs2
y=xÞw ¼

Pn
i¼1

wiðyi � y
_

iwÞ2

n� 3
ð32Þ

The weighted prediction interval at xj is given by:

ð�ymj
Þ�jw ¼ �yw þ b1wðxj � �xwÞ þ b2wðx2

j � x2
wÞ

� tð1�a=2;n�3Þðsy=xÞw
�

1

mjwj

þ UwðxjÞ
�1=2 ð33Þ

ð�ymj!1Þ�jw ¼ �yw þ b1wðxj � �xwÞ þ b2wðx2
j � x2

wÞ

� tð1�a=2; n�3Þðsy=xÞwðUwðxjÞÞ1=2
ð34Þ

where

UwðxjÞ ¼
1Pn

i¼1

wi

þ ðxj � �xwÞ2 sff

D

þ ðx2
j � x2

wÞ2 sxx

D
� 2ðxj � �xwÞðx2

j � x2
wÞ

sfx

D

Figure 7 shows a quadratic calibration curve together with
the regression band and the two-sided prediction curves
calculated with mj¼ 1.

To find a discriminated x
_

0 value together with its confidence
limits and to calculate the critical value LCw, the detection LDw

and the quantification LQw limits, the arguments and the
approaches above described hold again.

V. OTHER APPROACHES IN THE SIGNAL
DETECTION AND IN THE ESTIMATION OF THE
DETECTION LIMIT

Other procedures to evaluate the detection limit are reported in
the literature. We here mention three of them for their continuous
and wide application.

FIGURE 7. Illustrative example: (o) calibration data as summarized in

Table 2; quadratic calibration function (middle line) with its regression

bands (broken line) and prediction functions (continuous line) obtained

with a WLS regression.

FIGURE 8. Plot of the residuals for the data of Table 2 fitted with the

correct quadratic calibration model: (a) OLS, (b) WLS regression.
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In the first approach, OLS regression furnishes the
calibration straight line y¼ b0þ b1x with the associated regres-
sion residual standard deviation sy/x and the standard deviation of
the intercept sb0. The limit of detection in the signal domain LD is
defined by the net response equal either to three times sy/x (Miller
& Miller, 1988) or to three times sb0 (Vial & Jardy, 1999) and
consequently by 3sy/x/b1 or by 3sb0/b1 in the concentration
domain. The net response is obtained as difference of the gross

signal and the blank signal estimated by the intercept of the
regression straight line.

It is noticeable that the traditional value 3 is simply the
rounding off of 3.29, that is, two times 1.645, which gives a and b
rates of false positive and false negative errors both equal to 5%.
For a Gaussian distribution the critical value of the one-tailed
standardized variable z for a¼ 0.05 is indeed 1.645. It can be
observed that, even if not explicitly mentioned, a critical level LC

TABLE 4. Critical LC and detection LD limits in the signal domain from the signal-to-noise ratio approach

*sA
(D), standard deviation of the analyte response LD.

**values of da,b,u for specified a, b, and n are given by Clayton, Hines, & Elkins (1987).
***sA

(C), sample standard deviation of the analyte response LC.
****from Sharaf, Illman, & Kowalski (1986).
*****sA

(D), sample standard deviation of the analyte response LD.
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is introduced at the net signal level 1.645 times the chosen
standard deviation. In the case of heteroscedastic data the
procedure to calculate LD is the same; however the use of the
weighted residual standard deviation (sy/x)w requires that weig-
hting factors normalized to their sum are employed in the weigh-
ted regression to save the dimensional significance of (sy/x)w.

The second approach considers the signal-to-noise ratio in
the signal domain. This procedure does aim to establish the
presence of the analyte rather than to foresee whether a defined
analyte concentration is detectable. In this context two operative
ways are proposed on the basis of the independence (Case A) or
dependence (Case B) of the measurements of the blank and of the
sample (Sharaf, Illman, & Kowalski, 1986).

Case A. Be �yB the mean of nB replicate measurements of the
blank, �yA the mean of nA replicate measurements of the analyte
signal and D ¼ �yA � �yB. Under the assumption of equal
variances of the sample and blank measurements,
sA

2¼sB
2¼s2, the variance of the difference D is

s2
D ¼ s2ð 1

nA
þ 1

nB
Þ. If only the estimates sA

2 and sB
2 are available

and the F test proves their statistical equality (Massart et al.,
1988), the estimate of s2 is the pooled value
s2

p ¼ ðnA � 1Þs2
A þ ðnB � 1Þs2

B=ðnA þ nB � 2Þ, and conse-
quently s2

D ¼ s2
pð 1

nA
þ 1

nB
Þ.

The threshold value or the critical level LC, defined as the
minimum signal-to-noise ratio detectable, comes from
D¼ t(1� a,n)SD and results to be

LC ¼ �yB þ tð1�a;uÞ sp
1

nA

þ 1

nB

� �1=2

where t(1� a,u) is the (1� a)100% point of the Student’s t-test
distribution on n¼ nAþ nB� 2 degrees of freedom.

Some observations can be advanced: (i) the critical level LC

can be lowered making more and more measurements, that is,
suitably changing the experimental design; (ii) if nA is equal to
unity, the variability of the signal is drawn from nB measurements
of the blank and the limit LC becomes

LC ¼ �yB þ tð1�a;nB�1Þ sB 1 þ 1

nB

� �1=2

(iii) if nB!1, sB
2 and �yB approximate the parameters sB

2 and
mB, respectively, and LC becomes

LC ¼ mB þ z1�asB

the early definition of the limit of detection; (iv) a deep analogy
exists between the relationship

LC ¼ �yB þ tð1�a; nB�1Þ sB 1 þ 1

nB

� �1=2

and

LC ¼ b0 þ tð1�a; n�2Þsy=x 1 þ 1

n
þ �x2

Pn
i¼1

ðxi � �xÞ2

0
BB@

1
CCA

1=2

drawn from the straight line calibration approach. The corre-
spondence between the different estimates is as follows: the mean
�yB with the intercept b0, the variance s2

B=nB of the mean of the

TABLE 5. Regression parameters for the straight line and the quadratic model

The dimensionless datum (sy/x)w is not comparable with sy/xbecause the weights chosen are not normalized so that

their sum is not equal to the number n of observations (Vial & Jardy, 1999). Dividing the weighted residual standard

deviation (sy/x)w by
P

wi=nð Þ1=2
, one obtains a value ðsy=xÞ0w which can be compared with sy/x.
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blank measurements with the variance of the intercept

s2
y=x

1

n
þ �x2

Pn
i¼1

ðxi � �xÞ2

0
BB@

1
CCA;

the variance of a single response sB
2 with sy/x

2. In both cases the
statistic t ¼ u� �uð Þ=½Varðu� �uÞ	1=2

, where �u and Varðu� �uÞ
are the mean value of u, and the variance of u� �u, is the
underlying concept for the calculation of the prediction value u.

Up to now only a type I error has been taken into account. To
infer the detection limit LD, protection against the type II error,
false negative, must be considered resorting to the normal
distribution when variances of the blank and of the sample signal
are known and to central or non-central t-distributions when only
estimated variances are available. Table 4 summarizes the
different situations occurring.

Case B. When the measurements of the blank and of
the sample are not independent owing to measurement proce-
dure required by matrix effect, the so called paired-data
procedure must be considered: each measurement of the blank
signal yB,i is followed by a measurement of the sample signal
yA,i. The net signal is therefore di¼ yA,i� yB,i with variance
s2

d ¼
P

ðdi � �dÞ2=ðn� 1Þ, where �d is the mean value of the
differences and n is the number of the pair of signals. The
mean value �d of n net signals is considered significantly different
from zero if �d � 0ð Þ= sd=

ffiffiffi
n

p
Þ > tð1�a;n�1Þ

	
. The critical level

in terms of net signal is �dC ¼ tð1�a;n�1Þðsd=
ffiffiffi
n

p
Þ and therefore

LC ¼ �yB þ tð1�a;n�1Þðsd=
ffiffiffi
n

p
Þ. The detection limit is given by

LD ¼ LC þ tð1�b;n�1Þðsd=
ffiffiffi
n

p
Þ.

In Case A and Case B the discussion has been developed in
the signal domain. The passage to the concentration-quantity

domain requires once again the use of the calibration curve so
introducing new sources of uncertainty.

Finally, in the third procedure, adopted by United States
Environmental Protection Agency (US EPA, 1993), a limit,
called method detection limit (MDL), is defined as

MDL ¼ tða¼0:01;n�1¼6Þ s ¼ 3:14 s

where s is the standard deviation of a sample of n¼ 7 replicates
in which the analyte is spiked at a concentration of two to five
times the suspected MDL, and t is the single-sided 99%,
six degrees of freedom variate of Student’s distribution. The
mean response value at the spiked concentration permits the
immediate calculation of xMDL admitting null response at null
concentration level.

VI. ILLUSTRATIVE EXAMPLE

In this section we present, as a comprehensive example of the
theory reported above, an application relative to GC-MS
measurements of Chloromethane in water. The data reported in
Table 2 and shown in Figures 3, 6, and 7 are treated to draw the
most suitable calibration model from 0 to 4 mg/L, to calculate
calibration based critical, detection and quantification limits and,
finally, to determine an unknown concentration with its
confidence limits.

The experimental data were collected following the
recommendations of the EPA method (Munch, 1995; Lavagnini,
Favaro, & Magno, 2004). The calibration design procedure
implied the preparation of ten replicate samples at each of
the nine concentration levels chosen and the recording of a single
GC-MS peak in total ion current acquisition mode. The replicate

TABLE 6. Illustrative example: GC-MS measurements of Chloromethane in water

Discriminated x
_

0 value, with 95% confidence limits x̂�0 and x̂þ0 , obtained with ordinary and weighted least-squares approaches

using a straight line and a quadratic calibration model. The x
_

0 value comes from the response �y0m ¼ 0:1983, average value of m¼ 10

measurements taken on ten replicate samples of nominal Chloromethane concentration equal to 1.60 mg/L.All x values are expressed

as mg/L. For simplicity, the notation of the limits is the same in the ordinary and weighted least-squares method.
amethod I.
bmethod II.
cmethod III.
dmethod IV.
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solutions were randomly analyzed at each of the nine concentra-
tions to encompass instrumental and dilution variability. More-
over, carryover effects were annihilated inserting blanks in the
sequence. The employed hyphenated instrument was made up
of the following modules: (i) AquaTek 70 Liquid vial
autosampler (Tekmar, Mason, OH); (ii) Tekmar HP76795
purge-and-trap with cryomodule; (iii) HP6890 gas chromato-
graph equipped with a J&W DB 624 capillary column
(60 m� 0.32 mm, 1.40 mm film thickness; Agilent, Palo Alto,
CA); and (iv) Agilent HP5973 quadrupole mass spectrometer.
The instrument worked under TekLink 3100 and HP Enhanced
Chemstation Control software.

To illustrate the effects of the use of incorrect and correct
calibration models for the data reported in Table 2, we used the
unweighted/weighted straight line and quadratic approaches.
Table 5 shows the parameters of the four calibration models.
Table 6 shows the discriminated values for the same instrumental
response for each calibration model and Table 7 shows the
critical, the detection, and the quantification limits. It appears that
the heteroscedasticity slightly affects the estimates of the
parameters for a given model (see Table 5) and slightly modifies
the discriminated value x

_

0 for a given response y0 (see Table 6).
On the contrary its effect is heavy on the values of the detection

limits (see Table 7). The confidence limits for x
_

0 are found
symmetric with the methods I and II, and asymmetric with the
approaches III and IV. Moreover the amplitudes of the confidence
intervals calculated with the I and II methods are very similar and
narrower than those obtained by the III and IV procedures.

The trend of the residuals in Figure 1 proves that the straight
line model is incorrect and the increasing variances with the
predicted y values indicate the absence of homoscedasticity. The
use of the quadratic model gives a more symmetric distribution of
the residuals around the zero values (Fig. 8a) and finally the WLS
quadratic regression also accounts for the heteroscedasticity
(Fig. 8b). A further confirmation of the suitability of the quadratic
weighted calibration curve instead of the weighted straight line
can be obtained by the Mandel test (Mandel, 1967). The resulting
F-value, equal to 36.2, is found to be significant at the 5% level
(F1,87¼ 3.99).
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