Activity 1: surface characterization

Roughness Standard

6. EXPERIMENTAL RESULTS IN REAL OBJECTS

We used an Olympus BH microscope equipped with a motorized positioning stage, a $10 \times$ Mirau type interference objective lens and a Tucsen IS 130 CCD camera. We acquired a WLSI image series with the stage displaced 0.018 μ m for each frame.

To validate the proposed method, we used the flat lapping specimen of a Rubert & Co. Ltd roughness comparison set No. 130 with roughness parameter $R_a = 0.05 \mu m$. We reconstructed a portion of the specimen as shown in Fig 10a. In Fig. 10b we show a profile and its mean line profile along the P_1 direction. We estimated the mean line profile according to the standard ISO/TS 16610-22, and the R_a roughness parameter was calculated by following the standard EN ISO 4287. We obtained R_a values of 0.046 μ m, 0.057 μ m, and 0.063 μ m through the directions P_1 , P_2 , and P_3 respectively, as shown in Fig. 10a. The average value of $R_a = 0.055 \mu m$ and standard deviation $\sigma = 0.008 \ \mu m$, which is quite close to the reference value of $R_a = 0.05 \mu m$. We also performed the 3D reconstruction via WLSI (see Visualization 3) with maximum intensity detection yielding an average value of $R_a = 0.047 \mu m$ and standard deviation $\sigma = 0.008 \ \mu m$. As expected, in this sample of high reflectivity the measurements with both methods agree within the experimental error.

Roughness Standard

6. EXPERIMENTAL RESULTS IN REAL OBJECTS

We used an Olympus BH microscope equipped with a motorized positioning stage, a $10 \times$ Mirau type interference objective lens and a Tucsen IS 130 CCD camera. We acquired a WLSI image series with the stage displaced 0.018 μ m for each frame.

To validate the proposed method, we used the flat lapping specimen of a Rubert & Co. Ltd roughness comparison set No. 130 with roughness parameter $R_a = 0.05 \mu m$. We reconstructed a portion of the specimen as shown in Fig 10a. In Fig. 10b we show a profile and its mean line profile along the P_1 direction. We estimated the mean line profile according to the standard ISO/TS 16610-22, and the R_a roughness parameter was calculated by following the standard EN ISO 4287. We obtained R_a values of 0.046 μ m, 0.057 μ m, and 0.063 μ m through the directions P_1 , P_2 , and P_3 respectively, as shown in Fig. 10a. The average value of $R_a = 0.055 \mu m$ and standard deviation $\sigma = 0.008 \ \mu m$, which is quite close to the reference value of $R_a = 0.05 \,\mu\text{m}$. We also performed the 3D reconstruction via WLSI (see Visualization 3) with maximum intensity detection yielding an average value of $R_a = 0.047 \mu m$ and standard deviation $\sigma = 0.008 \ \mu m$. As expected, in this sample of high reflectivity the measurements with both methods agree within the experimental error.

Activity

- 1. You will get, find the Ra, Rrms, Rp, Rv, and Rt
 - 1.1. For the line at $y = 250\mu m$ (plot a graph x vs z @ y = 250 μm)
 - 1.2. For the line at $y = 450\mu m$ (plot a graph x vs z @ y = 450 μm)
 - 1.3. Whole image (all points)
- 2. Bonus: find Sa.