
Optical Metrology
Lecture 2: Random Data and Characterization of 

Measurement Systems



Content of the Lecture

• Deterministic Data.

• Random Data.

• Characteristics of Random Data.

• Characterization of measurement systems.

• Static and Dynamic characterization.



Deterministic versus 

Random Data



Deterministic Data
• Any observed data 

representing a physical 

phenomenon can be broadly 

classified as being either 

deterministic or 

nondeterministic.

• Deterministic data are those 

that can be described by an 

explicit mathematical 

relationship.



Classification of Deterministic Data

(Periódico

arbitrario)



Sinusoidal

Discrete spectra



Complex Periodic
(Arbitrario)

Data consists of a static component 

X0 and an infinite number of 

sinusoidal components called 

harmonics. integral multiples of f1.



Almost-periodic

No relation



Transient Nonperiodic Data



Continuous spectral 

representation.

How do you approximate 

sampling?



Classification of Random Data



Random Data

• A single time history 

representing a random 

phenomenon is called a 

sample function (or a sample 

record when observed over a 

finite time interval).

• The collection of all possible 

sample functions that the 

random phenomenon might 

have produced is called a 

random process or a 

stochastic process. 



• A random process can be 

described by computing 

average values over the 

collection of sample functions

• If         and                   vary 

with t1, the process is non-

stationary.

Stationary Random Data



• If   𝜇𝑥(𝑡1) and 𝑅𝑥𝑥(𝑡1, 𝑡1 + 𝜏)
vary with 𝑡1, the process is non-
stationary.

• If   𝜇𝑥(𝑡1) and 𝑅𝑥𝑥 𝑡1, 𝑡1 + 𝜏 do not 
vary with 𝑡1 ,the process is weak or 
wide-sense stationary.

• If   𝜇𝑥(𝑡1) and 𝑅𝑥𝑥 𝑡1, 𝑡1 + 𝜏 do not 
vary with 𝑡1,and other high order 
moments the process is strongly or 
strict-sense stationary.

Stationary Random Data



Ergodic Random Data

• A sample can be taken out of 

any signal, or across a signal 

and it will be representative of 

the event.

• This example could be 

turbulence across 4 flights in 

similar conditions with similar 

aircraft.



Ergodic Random Data
• If the process is stationary and    
𝜇𝑥(𝑡1) and 𝑅𝑥𝑥 𝑡1, 𝑡1 + 𝜏 do 
not vary along different sample 
functions then the process is 
ergodic.

• For an ergodic process the 
temporal moments (time-
averaged mean and 
autocorrelation) correspond to 
the average values of the 
ensamble

𝜇𝑘 𝑘 = 𝜇𝑥

𝑅𝑥𝑥 𝜏, 𝑘 = 𝑅𝑥𝑥(𝜏)



Ergodic Random Data
Fortunately, generally all 

physical process that produce 

stationary data are ergodic.

Therefore, the properties of 

the random process can be 

measured with a single 

temporal record.



Analysis of Random Data
• All measurement procedures are random processes because 

the measurement result includes implicit errors introduced by the 
system.

• This means that when comparing a realized measurement with 
the true value the difference is due to the measurement 
conditions.

• E.g., when measuring the length of a rod. You would have to 
think if the extremes are parallel or not, if the extremes are 
rough, how precise do you require the measurement to be, or 
the metrological requirements from the customer.

• How reliable is the measurement system? Statistics define the 
necessary variables that characterize the measurement system.



Analysis of Random Data

• Basic statistical properties of importance for describing single 

stationary random records are:

• Mean, mean square values, and moments of order n

• Probability density functions

• Autocorrelation functions

• Autospectral density functions

• Joint probability density functions

• Cross-correlation functions



Probability density functions



Autocorrelation functions

Note: autocorrelation functions are used to detect the presence of deterministic data mixed 

with noise, because noise decays rapidly to zero.



Autospectral density functions



Characterization of  Measurement 

Systems

A simple instrument model

• An observable variable X is obtained from the measurand.

• X is related to the measurand in some KNOWN way (i.e., measuring mass)

• The sensor generates a signal variable that can be manipulated: 

• Processed, transmitted or displayed

• In the example above the signal is passed to a display, where a measurement 

can be taken



Characterization of  Measurement 

Systems

A simple instrument model

Measurement

• The process of comparing an unknown quantity with 

a standard of the same quantity (measuring length) 

or standards of two or more related quantities 

(measuring velocity)



Characterization of  Measurement 

Systems

The relationship between the 

physical measurement variable 

(X) and the signal variable (S)

• A sensor or instrument is 

calibrated by applying a 

number of KNOWN physical 

inputs and recording the 

response of the system.



Characterization of  Measurement 

Systems

Interfering inputs (Y)

• Those that the sensor to respond as the linear 

superposition with the measurand variable X.

• Linear superposition assumption: 

S(aX+bY)=aS(X)+bS(Y)



Characterization of  Measurement 

Systems

Modifying inputs (Z)

• Those that change the 

behavior of the sensor and, 

hence, the calibration curve

• Temperature is a typical 

modifying input.



Characterization of  Measurement 

Systems

Static characteristics

•The properties of the system after all transient effects have settled to their 

final or steady state.

•Accuracy

•Discrimination

•Precision

•Errors

•Drift

•Sensitivity

•Linearity

•Hystheresis



Dynamic characteristics

• The properties of the system transient response 

to an input.

• Zero order systems.

• First order systems.

• Second order systems.

Characterization of  Measurement 

Systems



Characterization of  Measurement 

Systems

Static characterization of a 3D structured light system.



Characterization of  Measurement 

Systems

Static characterization implies:

1. Establishing a list of input variables.

• Fringe pitch, projection angle, projection distance, FOV, ADC, etc.

2. Establish which threshold, according to theoretical judgment, should be 
calibrated or not.

• Projection angle, fringe pitch, observation angle, …, the other variables 
are assumed constant.

3. Verify the range of values for each variable.

4. Establish an input-output relation (y = f(x)).



Characterization of  Measurement 

Systems

Static quantities can be classified as general or 

specific.

• Specific quantities are related to unique variables 

related to the measurement instrument.

• General quantities are common to all 

measurement instruments.



Determining accuracy

To establish the accuracy of a measurement 

instrument implies a comparison against the “true 

value”.

This value is never obtained, but it is a necessary 

condition to use a model instrument closest to the true 

value

𝑒𝑟𝑟𝑜𝑟 = ෠𝜙 − 𝜙,

where ෠𝜙 is the measured or estimated value and 𝜙 is 

the true value.



Determining accuracy

Suppose ෠𝜙 can be estimated many times by repeating 
an experiment. Then, the expected value of ෠𝜙, 
denoted by E[ ෠𝜙], is something one can estimate. For 
example, if an experiment is repeated many times 
then 

𝐸 ෠𝜙 = lim
𝑁→∞

1
𝑁
σ𝑖=1
𝑁 ෢𝜙𝑖

The expected value may or may not be equal to the 
true value. If it does it is said to be unbiased, else the 
bias 𝑏[ ෠𝜙] is

𝑏 ෠𝜙 = 𝐸 ෠𝜙 − 𝜙



Determining accuracy

The expected value may or may not be equal to the 

true value. If it does it is said to be unbiased, else the 

bias 𝑏[ ෠𝜙] is

𝑏 ෠𝜙 = 𝐸 ෠𝜙 − 𝜙

Bias error is a systematic error. 



Determining accuracy

The variance of the estimate describes the random error of the 
estimate,

V𝑎𝑟 ෠𝜙 = 𝐸 ( ෠𝜙 − 𝐸 ෠𝜙 )2

An assessment of the total estimation error is given by

mean square error [ ෠𝜙] = 𝐸 ( ෠𝜙 − 𝜙)2

It can be verified that 

𝐸 ( ෠𝜙 − 𝜙)2 = V𝑎𝑟 ෠𝜙 + 𝑏[ ෠𝜙]

In words, the mean square error is equal to the variance plus 
the square of the bias. 



Determining accuracy

The numerical estimation of the error is obtained 

assuming that all measurement are obtained under 

identical conditions, thus a sequence of random data 

are obtained.

In general, the instrument not only has the variables to 

be characterized but many other variables impossible 

to control (e.g., atmospheric pressure).

The stochastic nature of 

the process.



Rules of two and three sigma

If 𝑋 follows the normal distribution, then for any constants 𝑎
≠ 0 and 𝑏, the variable 𝑎𝑋 + 𝑏 also follows the normal 

distribution.

We standardize 𝑋 by defining 𝑍 = (𝑋 − 𝜇)/𝜎. 𝑍 has the 

normal distribution 𝑁 0,1 . This is the standard normal 

distribution 

𝑃 𝜇 − 𝑘𝜎 ≤ 𝑋 ≤ 𝜇 + 𝑘𝜎 = 𝑃(−𝑘 ≤ 𝑍 ≤ 𝑘)



Rules of two and three sigma

For 𝑘 = 1 → 𝑃 ≈ 0.68, 𝑘 = 2 → 𝑃 ≈ 0.95, 𝑘 = 3 → 𝑃 ≈ 0.997

For example, the two-sigma rule tells us that approximately 

95% of the distribution lies within two standard deviations 

from the mean. 



To guarantee that the objects are resolved in height we 

need the best object-height sensitivity

Zhou et al. (2014)

Example: depth resolution



For a given object height we can maximize the 

sensitivity by increasing 

By how much?

Example: depth resolution



For h = 100 μm, D = 100 mm, L = 100 mm, noise σ = 0.5 

rad. Three-sigma rule →  of at least 1.5 rad.

By how much?

Example: depth resolution



For h = 100 μm, D = 100 mm, L = 100 mm, noise σ = 0.5 

rad. Three-sigma rule → of at least 1.5 rad.

By how much?

Example: depth resolution



Confidence interval

• A disadvantage of point estimators is that they give us only a 

single value as the best guess of the unknown parameter. 

• Of course, knowing the standard error of the point estimator tells 

us how far the estimate might be from the true value of the 

parameter, especially for the unbiased estimators. However, this 

issue can be addressed more directly by constructing an interval 

that would contain the unknown parameter with a given 

confidence. 



Confidence interval



Confidence interval



Confidence interval





Calibration: Simple Linear 

Regression Model
Example 4.1 The Landsat Program is a series of Earth-observing satellite 

missions jointly managed by NASA and the U.S. Geological Survey since 

1972. Due to the long-term nature of the program, there is a significant 

interest in the long-term calibration of the results, so that measurements 

taken at different times can be meaningfully compared. One approach to 

this calibration problem is discussed by Anderson (2010). As part of the 

approach, Landsat measurements of a fixed desert site were collected. 

The desert site was confirmed to be sufficiently stable over time, so that 

the changes in measurements can be attributed to a drift of the 

measuring instrument, except for some factors such as the Sun position 

in the sky. In this example, we consider the surface reflectance 

measurements of the desert site performed at 76 different times 

(different days and times of the day). The reflectance measurements 

are from one spectral band (Band 2) of the instrument. For each time 

of the measurement, we also know the solar elevation angle.



Calibration: Simple Linear 

Regression Model
In order to investigate a relationship between reflectance 

in Band 2 and the solar elevation angle, we can create a 

scatter plot of the two variables as shown in Figure 4.1. 

Based on the pattern in the scatter plot, we expect a 

linear relationship between the two variables.



Calibration: Simple Linear 

Regression Model
In the simplest scenario of a linear relationship between the 

response Y and a single predictor x, as seen in Figure 4.1, we can 

describe this relationship using a population linear regression 

model written as



Calibration: Simple Linear 

Regression Model



Calibration: another example



Calibration: linear fit

• Least squares estimates



Calibration: linear fit



Calibration: linear fit



Calibration: linear fit



Calibration: linear fit

• The fraction of the total variability explained by the 

model is measured by the coefficient of 

determination defined by



Calibration: linear fit



Calibration: residual analysis



Calibration: residual analysis



Calibration. Homoscedastic 

and Heteroscedastic Data.

Homoscedastic Heteroscedastic



Calibration example

• Ejemplo. Un sistema de 

medida de altura usando 

pulsos de luz. La tabla 

muestra los valores reales y 

los medidos (con error) 

cuando se incrementa la 

distancia y cuando se 

disminuye.



Calibration example



• In general when f is a function of x,y,z,

Combination of errors


