
C H A P T E R 2

Fundamentals of Statistics

This chapter is a brief review for readers with some prior experience with quantita-
tive analysis of data. Readers without such experience, or those who prefer more
thorough coverage of the material, may refer to the textbooks by Devore (2004) or
Mendenhall et al. (2006).

2.1 STATISTICAL THINKING

Statistics is a branch of mathematics, but it is not an axiomatic science as are many
other of its branches (where facts are concluded from predetermined axioms). In
statistics, the translation of reality to a statistical problem is a mix of art and science,
and there are often many possible solutions, each with a variety of possible
interpretations.

The science of statistics can be divided into two major branches—descriptive
statistics and inferential statistics. Descriptive statistics describes samples or popula-
tions by using numerical summaries or graphs. No probabilisticmodels are needed for
descriptive statistics. On the other hand, in inferential statistics, we draw conclusions
about a population based on a sample. Here we build a probabilistic model describing
the population of interest, and then draw information about the model from the
sample. When analyzing data, we often start with descriptive statistics, but most
practical applications will require the use of inferential statistics. This book is
primarily about inferential statistics.

In Chapter 1, we emphasized that variability is everywhere, and we need to utilize
statistical thinking to deal with it. In order to assess the variability, we first need to
define precisely what we are trying to measure, or observe. We can then collect the
data and analyze them. Let us describe that process, and on the way, introduce
definitions of some important concepts in statistics.
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Definition 2.1. A measurement is a value that is observed or measured.

Definition 2.2. An experimental unit is an object on which a measurement is
obtained.

Definition 2.3. A population is often defined as a set of experimental units of interest
to the investigator. Sometimes, we take repeated measurements of one characteristic
of a single experimental unit. In that case, a population would be a set of all such
possible measurements of that experimental unit, both the actual measurements taken
and those that can be taken hypothetically in the future.

Definition 2.4. A sample is a subset selected from the population of interest.

When designing a study, one should specify the population that addresses the
question of interest. For example, when investigating the color of nominally red
plastic part #ACME-454, we could define a population of experimental units as all
parts #ACME-454 produced in the past and those that will be produced in the future
at a given plant of ACME Labs.

We can say that this population is hypothetical because it includes objects not
existing at the time. It is often convenient to think that the population is infinite. This
approach is especially useful when dealing with repeated measurements of the same
object. Infinite populations are also used as approximations of populations consisting
of a large number of experimental units. As you can see, defining a population is not
always exact science.

Once we know the population of interest, we can identify a suitable sampling
method, which describes how the sample will be selected from the population. Our
goal is tomake the sample to be representative of the population, that is, it should look
like the population, except for being smaller. The closer we get to this ideal, the more
precise are our conclusions from the sample to the population. There are whole books
describing how to select samples (see Thompson (2002), Lohr (2009), Scheaffer et al.
(2011), and Levy and Lemeshow (2009)).

If a data set was given to you, you need to find out how the data were collected, so
that you can identify the population it represents. The less we know about the
sampling procedure used, the less useful the sample is. In extreme cases, it might be
prudent to use the old adage “garbage in–garbage out,” and try to collect new data
instead of using unreliable data.

Let’s say, you were given data on color measurements of 10 parts #ACME-454
that were taken from the current production process. However, there is no
information about the process of selecting the 10 parts. They all might have
been taken from one batch produced within 1 h or each part might have been
produced on a different day. They could also be rejects from the process. In this
case, it would be more productive to design a new study of those parts in order to
collect new data.

The purpose of this section is to give the reader a general overview of the principles
of statistical thinking and a sense of the nuances associatedwith statistics. If reading it
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led you to having even more questions than you started with, then continue to the
following sections and chapters, where you will find many answers.

2.2 DATA FORMAT

Data are often organized in a way that is convenient for data collection. In order to
implement statistical thinking and better understand the data, we usually find it
convenient to organize the data into the format of a traditional statistical database. The
format consists of a spreadsheet, where observations are placed in rows and variables
are placed in columns. Example 2.1 illustrates this traditional formatting technique.

Example 2.1 Optical fibers permit transmission of signals over longer distances and
at higher bandwidths than other forms of communication. An experiment was
performed in order to find out how much power is lost when sending signals through
optical fiber. Five pieces of 100m length of optical fiber were tested. A laser light
signal was sent from one end through each piece of optical fiber, and the output power
was measured at the other end. The power of the laser source was 80mW. The results
are shown in Table 2.1, where each row represents a set of results for a single piece of
optical fiber. Each unique optical fiber is identified by a number recorded in the first
column of the table. The remaining columns contain the variables from the experi-
ment. The Input Power Pinð Þ is the nominal value of 80mW, which is the same for all
observations. The Output Power Poutð Þ given in the next column is a quantity that was
measured in the experiment. The Power Loss Lpower

! "
in the last column was

calculated in decibels (dB) according to the following formula:

Power Loss dBð Þ ¼ 10 log10
Output Power

Input Power
: ð2:1Þ

Organized in this way, the data are easily analyzed. For a small data set like this
one, we can often draw some conclusions directly from the table, but for larger data
sets, we will need some summary statistics and graphs to understand the data.

Since the Power Loss is calculated from the Output Power (with constant Input
Power), the two variables convey the same information (within this data set). So, if we

Table 2.1 Experimental Results on Five Pieces of Optical Fiber

Optical Fiber
Number

Input
Power (mW)

Output
Power (mW)

Power
Loss (dB)

1 80 72.8 $0.4096
2 80 70.0 $0.5799
3 80 72.0 $0.4576
4 80 68.8 $0.6550
5 80 73.6 $0.3621

Negative dB means that there is loss of power.
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are trying to characterize a typical fiber based on the five pieces, which of the two
variables should we use? This question will be addressed in the next section on
descriptive statistics. &

The data are not always as neatly organized as those in Table 2.1. At the same time,
it is not always necessary to have an actual statistical database in the Table 2.1 format.
However, in the process of statistical thinking, we want to identify what the
observations and variables are in a given context, since this will be crucial in our
statistical analysis.

2.3 DESCRIPTIVE STATISTICS

When dealing with data, especially with large amounts of data, we find it useful to
summarize them with some appropriately chosen summary (or descriptive) statistics.
We will now concentrate on the values of one variable and will denote the n
observations of that variable by x1; x2; . . . ; xn. Note that the subscript index does
not imply any particular order in those values. The first step in understanding the data
is to describe themagnitude of the observations.Whenwe think of data as numbers on
the number axis, themagnitudewill tell us a general location of the data on the axis. In
the following subsection, we discuss various statistics for describing the data location.

2.3.1 Measures of Location

The most popular descriptive statistic is the sample mean defined by

x ¼ 1

n

Xn

i¼1

xi; ð2:2Þ

which describes the general (on average) location of the data. One appealing
property of the sample mean is a physical property that it is the balance point for
a system of equal weights placed at the points xi; i ¼ 1; . . . ; n, on the number axis.
Figure 2.1 shows an example of five data points with equal weights, which are
balanced at the x point.

Example 2.1 (cont.) For the data in Table 2.1, we can calculate the sample means of
all three variables. For the Input Power variable, we get its sample mean
Pin ¼ 80 mW, of course. For Output Power, we obtain Pout ¼ 71:44 mW, and for
the Power Loss, Lpower ¼ $0:4928. The means are supposed to represent a typical or
an average optical fiber. Let us assume that an optical fiber regarded as average has the

x = 71.44

69 70 71 72 73

Figure 2.1 Five Output Power values balanced at the sample mean point (see Example 2.1).
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Output Power value ofPout ¼ 71:44 mW, that is, the same as the previously calculated
mean. According to formula (2.1), its power loss would be described as $0:4915 dB,
which is different from the previously calculated average Power Loss of
Lpower ¼ $0:4928. The question is which of the two values should be regarded as
a typical power loss value. There is an easy mathematical explanation for why the two
numbers differ. Let us say that a variable y is calculated as a function of another variable
x, that is, y ¼ f xð Þ. In this case, PowerLoss is calculated as a function ofOutput Power.
This means that for observations xi; i ¼ 1; . . . ; n, we have yi ¼ f xið Þ; i ¼ 1; . . . ; n.
What we have just observed in our calculations simply means that y 6¼ f xð Þ. In other
words, a transformation of the mean is not necessarily the same as the mean of the
transformed values. A special case is when the function f is linear, and we do get an
equality y ¼ f xð Þ, that is, for yi ¼ axi þ b, we have y ¼ ax þ b.

Despite the above explanation, we still do not know which of the two power loss
values we should regard as typical for the type of optical fiber used in the experiment.
The answer will depend on how such a number would be used. Here we give two
possible interpretations. If the five measurements were performed on the same piece
of optical fiber, then the sample mean Pout would estimate the “true” output power of
the fiber. The true power loss for that fiber should then be calculated as
10 log10 Pout=80

! "
¼ $0:4915 dB. An alternative scenario would be when the five

different pieces tested in the experiment represent an optical fiber used in an existing
communication network, and we are trying to characterize a typical network power
loss (over 100m). In this case, it would be more appropriate to use the value of
Lpower ¼ $0:4928. To understand this point, imagine the five pieces being connected
into one 500m optical fiber. Its power loss would then be calculated as the sum of the
five power loss values in Table 2.1, resulting in the total power loss of $2:4642 dB.
The same value (up to the round-off error) can be obtained by multiplying the typical
value of Lpower ¼ $0:4928 by 5.

We now need to introduce the concept of ordered statistics. Let’s say we have n
observations xi; i ¼ 1; . . . ; n, of a given variable. We order those numbers from the
smallest to the largest, and call the smallest one the value of the first-order statistic
denoted by x 1ð Þ. The second smallest value becomes the second-order statistic denoted
byx 2ð Þ, and so on until the largest value becomes the nth-order statistic denoted byx nð Þ.
We can now introduce the sample median, which is the middle value in the data set
defined as

~x ¼
x kð Þ for odd n ¼ 2k$1;

x kð Þ þ x k þ 1ð Þ
! "

=2 for even n ¼ 2k:

(

ð2:3Þ

In Example 2.1, n ¼ 5 is odd, hence k ¼ 3, and for the Output Power variable, we
have ~x ¼ x 3ð Þ ¼ 72. The sample median is called a robust statistic because it is not
impacted by unusual observations called outliers. It is also useful for skewed data,
where the mean is pulled away from the bulk of data because of being influenced by a
few large values. Figure 2.2 shows an example where the bulk of the data is in the
range between 0 and 2, but the sample mean is above 2 because of two outliers.
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The samplemedian canbe regardedas too robust in the sense that it dependsonly on
the ordered statistics in themiddle of the data. As a compromise between themean and
the median, we can define a trimmed mean, where a certain percent of the lowest and
highestvaluesare removed, and themean iscalculated fromthe remainingvalues.Note
that themedian is an extreme case of the trimmedmean, where the same number of the
lowest and highest values are removed until only one or two observations are left.

The sample median divides the data set into two halves. For a more detailed
description of the data distribution, we can divide data into one hundred parts and
describe the position (or location) of each part. To this end, we can define a
sample 100pð Þth percentile, where p is a fraction 0 & p & 1ð Þ, as a number x such
that approximately 100pð Þ% of data is below x and the remaining 100 1$pð Þð Þ% of
data is above x. A 100pð Þth percentile is also called a pth quantile. Percentiles are
often used in reporting results of standardized tests, because they tell us how a person
performed in relation to all other test takers. Of course, it is not always possible to
divide the data into an arbitrary fraction, sowe need amore formal definition.We first
assign the kth-order statisticx kð Þ as the k$1ð Þ= n$1ð Þ quantile.When a different-level
quantile is needed, it is interpolated from the two nearest quantiles previously
calculated as the ordered statistics. The sample percentiles are best calculated for
large samples, but herewe give an educational example for the five observations of the
Output Power variable in Example 2.1. For n ¼ 5, the five ordered statistics are
assigned as 0th, 25th, 50th, 75th, and 100th percentiles. A 90th percentile is calculated
by a linear interpolation as the weighted average of the two ordered statistics, that is,

100$90

100$75
x 4ð Þ þ

90$75

100$75
x 5ð Þ; ð2:4Þ

which gives 73.28 for the Output Power variable (given as Problem 2.1). There are
many other ways of calculating percentiles, and the best way may depend on the
context of data. For large n, all methods give similar results.

It is easy to see that the samplemedian is the 50th percentile.We also define the first
and third quartiles as the 25th and 75th percentiles, respectively. The two quartiles
together with the median, which is also the second quartile, divide the data set into
four parts with approximately even counts of points.

2.3.2 Measures of Variability

In the previous subsection, we discussed the location aspect of data. Another
important feature of data is their variability. The simplest measure of variability is

xx~

0 2 4 6 8 10

Figure 2.2 Adata set skewed to the right due to two outliers. The samplemean does not represent the bulk

of data as well as the sample median does.
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the range, which is defined as the difference between the maximum and minimum
values, that is, x nð Þ$x 1ð Þ for a sample of size n. A significant disadvantage of the range
is its dependence on the two most extreme observations, which makes it sensitive
to outliers.

A differentway to describevariability is to use deviations from a central point, such
as the mean. The deviations from the mean, defined as di ¼ xi$x, have the property
that they sum up to zero (see Problem 2.2). Hence, the measures of variability
typically consider magnitudes of deviations and ignore their signs. The most popular
measures of variability are the sample variance defined as

s2 ¼ 1

n$1

Xn

i¼1

d2
i ¼ 1

n$1

Xn

i¼1

xi$xð Þ2 ð2:5Þ

and the associated sample standard deviation defined as s ¼
ffiffiffiffi
s2

p
. They both convey

the equivalent information, but the advantage of the standard deviation is that it is
expressed in the units of the original observations, while the variance is in squared
units, which are difficult to interpret.

Let us now consider a linear transformation of xi defined as yi ¼ axi þ b for
i ¼ 1; . . . ; n. Using some algebra, one can check that the sample variance of the
transformed data is equal to s2y ¼ a2s2x and the sample standard deviation is sy ¼ ajsxj
(see Problem 2.3). This means that both statistics are not impacted by a shift in data,
and scaling of data by a positive constant results in the same scaling of the sample
standard deviation.

Another measure of variability is the interquartile range (IQR), defined as the
difference between the third and first quartiles, which is the range covering themiddle
50% of the data.

2.4 DATA VISUALIZATION

We all know that a picture is worth a thousand words. In the statistical context, it
means that valuable information can be extracted from graphs representing data—
information thatmight be difficult to notice and conveywhen reporting only numbers.
For an efficient graphical presentation, it is important that the maximum amount of
information is conveyed with the minimum amount of ink. This allows representa-
tions of large data sets and at the same time keeps the graphs clear and easy to
interpret. This concept has been popularized by Tufte (2001), who used the informa-
tion-to-ink ratio as a measure of graph efficiency. In those terms, bar charts and pie
charts are very inefficient, and indeed they are of very little value in data analysis.

2.4.1 Dot Plots

One of the simplest graphs is a dot plot, where one dot represents one observation, and
one axis (such as the horizontal axis as in Figure 2.3) is devoted to showing the range
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of values. The second axis may not be used at all (with all dots lined up along a
horizontal line), or it can be used to show additional information such as grouping of
observations, or their order. One advantage of a dot plot is that it can be created in any
software program capable of plotting dots in a system of coordinates.

Example 2.2 As part of a printing experiment described in Appendix B, three
pages were printed with an identical pattern of color patches, such as the one shown in
Figure 1.3 in the context of Example 1.2. On each page, there were eight patches of
cyan (at maximum gradation, or amount, of the cyan ink). For each patch, Visual
Densitywasmeasured as a quality controlmetric. Figure 2.3 shows a dot plot ofVisual
Density for the three pages as three groups. The horizontal lines within each group
represent eight patches. The three groups of data (as pages) seem to be somewhat
different, but it is unclear if the differences could have happened by chance or if they
manifest a real difference. No real difference would be good news because it would
mean consistent printing from page to page. This questionwould need to be addressed
by statistical inference discussed in Chapters 3 and 4.

In Figure 2.3, we may have an impression of a slanted shape of points within each
group, where the patches with a higher identification number tend to give lower
densities. This suggests a possible pattern from patch to patch. In order to test this
hypothesis, we can group data into eight groups (for eight patches) of three
observations each and create a dot plot with patches as groups. In that case, the
number of groups is fairly large, and it makes sense to use a different version of a dot
plot, where each group is plotted along one horizontal line as in Figure 2.4. We can
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Figure 2.3 Dot plot for Visual Density of eight patches of cyan printed on three different pages (groups).
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now see that Patches 5, 7, and 8 tend to have lower Visual Density values than some
other patches, especially Patch 2. Sincewe have only three observations per patch, it is
unclear if this effect is incidental, or if there is a real systematic difference among
patches. Again, this question needs to be answered with some formal statistical
methods that will be discussed in Chapter 3. &

2.4.2 Histograms

Dot plots are convenient for small to medium-sized data sets. For large data sets, we
start getting significant overlap of dots, which can be dealt with by stacking the points,
but this requires extra programming or a specialized function. Also, it becomes
difficult to assess the shape of the distributionwith toomany points. In those cases, we
can use a histogram, which resembles a bar chart, except that the bars represent
adjacent bins or subintervals of equal length defined within the range of given data.
For example, the histogram in Figure 2.5 uses bins of width 0.05. The tallest bar
represents the bin from 0 to 0.05, the next bin to the right is from 0.05 to 0.1, and so on.
The height of the bar shows the number of points (frequency) in the bins. In this
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Figure 2.4 Dot plot for Visual Density of eight patches of cyan (as groups) printed on three different

pages.
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Figure 2.5 A histogram of the Light Intensity values from an image of a fish as used in Example 2.3.
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example, there are almost 40,000 observations in the bin from 0 to 0.05. The bins in a
histogram are adjacent with no gaps between them. Consequently, there are usually no
gaps between the bars. If there is a gap in the bars, it means that the respective bin had
zero frequency and was not plotted (or had zero height). In very large data sets, the
height of a bar might be larger than zero but still be so small (in relation to the vertical
scale of frequencies) that the bar is not visible.

Example 2.3 Consider Fish Image data set representing an image of a fish on a
conveyer belt as explained in Appendix B. The average transflected Light Intensity
over 15 image channels was calculated for each image pixel and plotted in Figure 2.6.
We use a convention that higher values are shown in darker colors. This produces
better displays in most cases than the traditional approach in imaging to usewhite for
the highest values. Using white for largest values may seem logical from the point of
view of color management, but it usually produces poor quality displays.

There are 45 pixels along the width of the conveyer belt and 1194 pixels along its
length, for a total of 53,730 pixels. In a paper byWold et al. (2006), a threshold on the
Light Intensity was used to distinguish between the fish and non-fish pixels, but no
details were provided as to the process of selecting the threshold. In order to
determine the threshold, it is helpful to perform exploratory analysis of the data.
To this end, we can create a histogram of all 53,730 Light Intensity values as shown
in Figure 2.5, so that we can look for a natural cutoff point between the two sets of
pixels. Unfortunately, that histogram is not very useful because the majority of
observations fall into one bin, and then not much can be seen in the remaining bins.
This is partially because of the scaling of the vertical axis being dictated by the very
high frequency for that one bin. It turns out that the largest Light Intensity is above
0.82, and as many as 33 values are above 0.7. Yet, one cannot see any frequency bars
above 0.7. The reason has been discussed earlier. The resulting height of the bar is
too small to be seen. It also turns out that 182 values are exactly zero, and they were
included in the first (tiny) bar on the left.

Oneway to improve the histogram inFigure 2.5 is to use a logarithmic scale. To this
end,we calculated a logarithm to base 10 of all positivevalues and created a histogram
shown in Figure 2.7. A larger number of bins were used, so that finer details of the

Figure 2.6 Light Intensity values from an image of a fish as used in Example 2.3.
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distribution could be seen. The computer software for creating histograms usually has
a built-in algorithm for a default number of bins, but users often have an option to
specify their own preference. Some experimentation may be needed to find a suitable
number of bins.

Based on the data in Figure 2.6,we know that there aremore pixels representing the
conveyer belt than those representing the fish. We also know that the higher values
represent the fish. This information, together with Figure 2.7, suggests the threshold
value identifying the fish pixels to be somewhere between $1:5 and $1 for
log10 Light Intensityð Þ, which corresponds to 0:0316 < Light Intensity < 0:1. How-
ever, it is unclear which exact value would be best. In order to find a good threshold
value, we can look at spatial patterns of pixels identified as fish. Since each image
pixel represents an areawithin the viewing scene, it is often represented as a rectangle,
like those in Figure 2.8. We could require that the set of selected pixels forms a
connected set because the image represents a fish in one piece. In the context of a
pixilated image, we define a set A of pixels as a connected set, if for any pair of pixels
from A, one can find a path connecting the pixels. The path can directly connect two
pixels only when they are neighbors touching at the sides (but not if they only touch at
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Figure 2.7 Ahistogramof a base 10 logarithmof the Light Intensity values from an image of a fish as used

in Example 2.3.

Figure 2.8 The darker shaded area is a connected set, but when the lighter shaded pixel is added, the set of

pixels is not connected.
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corners). The darker shaded area in Figure 2.8 is a connected set, but when the lighter
shaded pixel is added, the set of pixels is not connected.

When selecting all pixels with Light Intensity above 0.08104, one obtains a
connected set of pixels shown as the black area in Figure 2.9a. Reducing the threshold
below 0.08104 adds additional pixels that are not connected with the main connected
set. An algorithmwas used, where the threshold valuewas lowered, and the number of

Figure 2.9 Dark areas show connected sets of pixels with Light Intensity above 0.08104 (a) and above

0.03809 (b), based on Fish data from Example 2.3.
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Figure 2.10 The number of pixels not connected to the main connected set shown as a function of the

threshold value (for Fish data from Example 2.3).
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pixels not connected to themain connected set was recorded and shown in Figure 2.10
as a function of the threshold value.We can see that for thresholds slightly above 0.07,
the selected pixels again form a connected set (because the number of pixels not
connected equals zero). This happens again at several ranges of the smaller threshold
value until the smallest such value at 0.03809 (the place most to the left in Figure 2.10
where the function value is still zero). Below that value, the number of pixels not
connected goes to very high values (beyond the range shown in Figure 2.10). Clearly, a
good choice for the threshold value would be the one for which the number of pixels
not connected is zero. However, Figure 2.10 still leaves us with a number of possible
choices. Further investigation could be performed by looking at the type of graphs
shown in Figure 2.9 and assessing the smoothness of the boundary lines. &

2.4.3 Box Plots

Another useful graph for showing the distribution of data is a box plot (sometimes
called a box-and-whisker plot). An example of a box plot is shown in Figure 2.11,
where a vertical axis is used for showing the numerical values. The box is plotted so
that its top edge is at the level of the third quartile, and the bottom edge is at the level of
the first quartile. A horizontal line inside the box is drawn at the level of themedian. In
the simplest version of a box plot, vertical lines (called whiskers) extend from the box
to theminimum andmaximumvalues. Some box plotsmay show outliers with special
symbols (stars, here), and thewhiskers extending only to the highest and lowest values
that are not outliers (called upper and lower adjacent values). Clearly, this requires an
automated decision as to which observations are outliers. Computer software often
uses some simplified rules based on the interquartile range. For example, an
observation might be considered an outlier when it is above the third quartile or
below the first quartile by more than 1:5 ' IQR. However such rules are potentially
misleading because any serious treatment of outliers should also take into account the
sample size. We discuss outliers and their detection in Section 3.6.

Example 2.4 In Example 2.2, we discussed the Visual Density of cyan patches on
three pages printed immediately after the printer calibration. In the experiment
described in Appendix B, the printer was then idle for 14 h, and a set of 30 pages
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Figure 2.11 An example of a box plot.
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was printed, of which 18 pages were measured by a scanning spectrophotometer.
This gives us a total of 21 pageswith eightmeasurements of cyanpatches in each page.
Figure 2.12 shows the data in 21 groups using the dot plots (panel (a)) and the box plots
(panel (b)). The box plots are somewhat easier to interpret, and this advantage
increases with the increased number of groups and observations per group.

In Figure 2.12, we cannot see any specific patterns in Visual Density changes from
page to page, which means that the idle time and subsequent printing of 30 pages
had no significant impact on the quality of print as measured by the Visual Density of
cyan patches.

2.4.4 Scatter Plots

When two characteristics, or variables, are recorded for each observation, or row, in
the statistical database, we can create a two-dimensional scatter plot (as shown in
Figure 2.13), where each observation is represented as a point with the two
coordinates equal to the values of the two variables. A specific application of a
scatter plot is best illustrated by the following example.

Example 2.5 This is a follow-up on Example 1.1, where you can find some
background information about eye tracking. Here we want to consider an RGB
image obtained in an Eye Tracking experiment as explained in Appendix B. This is a
128 by 128 pixel image (shown in Figure 2.14). The image consists of 16,384 pixels,
which are treated as observations here. For each pixel, we have the intensity values
(ranging from0 to 1) for the three colors: Red, Green, andBlue, which can be regarded
as three variables.

Figure 2.13 shows a scatter plot of Red versus Green values for that image. The
pixels (observations) are represented as very small dots, so that thousands of them can
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Figure 2.12 Visual Density of cyan printed on 21 pages shown as groups in the dot plots (a) and the box

plots (b).
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be seen as separate dots in the graph. A scatter plot is intended for continuous
variables, and a primary color intensity is a continuous variable in principle. However,
the three colors in the RGB image were recorded using 8 bits, which means that there
are only 256 gradations of each color. This causes some discreteness of values, which
can be seen as a pattern of dots lining up horizontally and vertically in Figure 2.13. It
also turns out that there are many pixels in this image with exactly the same
combination of gradations for the two colors. That is, some dots in the scatter plot
represent more than one pixel. In order to deal with this issue, a technique of random
jitter can be used, which amounts to adding a small random number to each point
coordinate, before the points are plotted. This way, the dots do not print on the top of

Figure 2.13 Ascatter plot of intensities from theEyeTracking image discussed inExample 2.5 and shown
in Figure 2.14.

Figure 2.14 An RGB image from the Eye Tracking data set.
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each other. In Figure 2.15, a jitter in the amount equal to U$0:5ð Þ=256 was used,
whereU is a random variable with the uniform distribution on the interval 0; 1ð Þ. The
jitter improved the image, which no longer exhibits granulation, and we can better
see where the larger concentrations of dots are. The use of jitter becomes even more
important for highly discrete data.

The scatter plot shown in Figure 2.15 tells us that many pixels have high values
both inRed and inGreen. There is also a largegroup of pixelswith approximately 50%
of red and a small amount of green and then another group of pixels with approxi-
mately 50% of green and a small amount of red. There are no pixels with a very large
value in one color and a low value in the other color, which is why the top left corner
and the bottom right corner are both empty. &

2.5 PROBABILITY AND PROBABILITY DISTRIBUTIONS

2.5.1 Probability and Its Properties

In statistics, we typically assume that there is some randomness in the process we are
trying to describe. For example, when tossing a coin, the outcome is considered
random, and onewould expect to obtain heads or tailswith the same probability of 0.5.
On the other hand, a physicist may say that there is nothing random about tossing a
coin. Assuming full knowledge about the force applied to the coin, one should be able
to calculate the coin trajectory as well as its spin, and ultimately predict heads or tails.
However, it is usually not practical to collect that type of detailed information about
the coin toss, and the assumption of 50–50 chances for heads or tails is regarded as
sufficient, given lack of additional information. In general, one can say that random-
ness is a way of dealing with insufficient information. This would explain why, for a

Figure 2.15 A scatter plot of color intensities from the Eye Tracking image shown in Figure 2.14. A small

amount of random jitter was added to each dot.
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given process, one can build many models depending on the available information.
Also, the more information we have, the more likely we are to reduce the randomness
in our model.

In order to calculate a probability of an event, we need to assume a certain
probabilistic model, which involves a description of basic random events we are
dealing with and a specification of their probabilities. For example, when assuming
50–50 chances for heads or tails, we are saying that each of the two events, heads and
tails, has the same probability of 0.5.We can call this simple model a fair-coin model.
Assuming this model, one can then calculate the probability of getting 45 tails and 55
heads in 100 tosses of the coin.

In statistics, we use this information in order to deal with an inverse problem. That
is, let’s assumewe observe 45 tails and 55 heads in 100 tosses of a coin, but we do not
know if the coin is fair with the same chances of heads or tails. Statistics would tell us,
with certain confidence, what the probabilities are for heads or tails in one toss. It
would also tell us if it is reasonable to assume the same probability of 0.5 for both
events. If you think we can safely conclude, based on these 100 tosses, that the coin is
fair, you are correct. What would be your answer if you observed 450 tails in 1000
tosses? If you are not sure, you can continue reading about the tools that will allow you
to do the calculations needed to answer this question.

Before we introduce a formal definition of probability, we need to define a sample
space as follows.

Definition 2.5. A sample space is the set of all possible outcomes of interest in a given
situation under consideration.

The outcomes in a sample space are mutually exclusive, that is, only one outcome can
occur in a given situation under consideration. For example, when a coin is tossed
three times, the outcome is a three-element sequence of heads and tails.Whenwe take
10 measurements, the outcome is a sequence of 10 numbers.

Definition 2.6. An event is a subset of a sample space.

When a coin is tossed three times, observing heads in the first toss is an event
consisting of four outcomes: H;H;Hð Þ, H;H; Tð Þ, H; T ;Hð Þ, and H; T ; Tð Þ, whereH
stands for heads and T stands for tails. In a different example, when we take 10
measurements on a continuous scale, we can define an event that all of those
measurements are between 20 and 25 units.

Definition 2.7. Probability is a function assigning a number between 0 and 1 to all
events in a sample space such that these two conditions are fulfilled:

1. The probability of thewhole sample space is always 1, which acknowledges the
fact that one of the outcomes always has to happen.

2. For a set of mutually exclusive events Ai, we have P
Sk

i¼1 Ai

$ %
¼
Pk

i¼1 P Aið Þ,
where k is the number of events, which may also be infinity.
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We can say that probability behaves like the area of a geometric object on a plane. The
sample space can be thought of as a rectanglewith an area equal to 1, and all events as
subsets of that square. Many properties of probability can be better understood
through such geometric representation. Figure 2.16 discussed below shows an
example of such representation called a Venn diagram.

When the sample space is finite, we often try to construct it so that all outcomes are
equally likely. In this way, the calculation of probability is reduced to the task of
counting the number of cases, such as permutations, combinations, and other
combinatorial calculations. More on these rudimentary topics in probability can be
found in most books on the fundamentals of statistics such as Devore (2004) or
Mendenhall et al. (2006).

Definition 2.8. For any two events A and B, where P Bð Þ > 0, the conditional
probability of A given that B has occurred is defined by

P A Bjð Þ ¼
P A \ Bð Þ
P Bð Þ : ð2:6Þ

Without any information aboutB, wewould use the unconditional probabilityP Að Þ as
a description of the probability of A. However, once we find out that B has happened,
we should use the conditional probabilityP A Bjð Þ to describe the probability ofA. One
can think of the conditional probability as probability defined on the subset B as the
whole sample space, and consequently, we consider only that part of A that also
belongs to B as shown in Figure 2.16.

IfA and B are disjoint events, then P A Bjð Þ ¼ 0, which means that A cannot happen
ifB has already occurred. A different concept is that of independence of events, which
can be defined as follows.

Definition 2.9. Two events A and B are independent if and only if
P A \ Bð Þ ¼ P Að Þ 'P Bð Þ.

When P Bð Þ > 0, the events A and B are independent if and only if P A Bjð Þ ¼ P Að Þ,
which means that the probability of A does not change once we find out that B has
occurred. Some people confuse independent events with disjoint events, but the two

Figure 2.16 AVenn diagram showing two intersecting events. The probabilityP A Bjð Þ equalsP A \ Bð Þ as
a fraction of P Bð Þ.
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concepts are very different. If the events A and B are both independent and disjoint,
then 0 ¼ P A Bjð Þ ¼ P Að Þ, which means that this can happen only for an uninteresting
case when one of the sets has probability zero.

The event thatB has not occurred is denoted as a complement setBc ¼ S \B, where
S is the whole sample space. When P Bcð Þ > 0, the events A and B are independent if
and only if P A Bcjð Þ ¼ P Að Þ, which means that knowing that B has not occurred also
does not change the probability of A happening. We can say that knowing whether B
has occurred or not is not helpful in predicting A. The following theorem is often
useful for calculating conditional probabilities.

Theorem 2.1 (Bayes’ Theorem). Let A1; . . . ;Ak be a set of mutually exclusive

events such that P Aið Þ > 0 for i ¼ 1; . . . ; k and
Sk

i¼1 Ai is equal to the whole sample
space. For any event B such that P Bð Þ > 0, we have

P Ai Bjð Þ ¼ P Ai \ Bð Þ
P Bð Þ ¼ P B Aijð Þ 'P Aið Þ

Pk
j¼1 P B Aj

&&! "
'P Aj

! " for i ¼ 1; . . . ; k: ð2:7Þ

This theorem is often used to calculate the probabilities P Ai Bjð Þ, when we know
the conditional probabilities P B Aijð Þ. The following example illustrates such an
application.

Example 2.6 Medical imaging is often used to diagnose a disease. Consider a
diagnostic method based onmagnetic resonance imaging (MRI), which was tested on
a large sample of patients having a particular disease. This method confirmed the
disease in 99% of cases of the disease. Consider a randomly chosen person from the
general population, and define A as the event that the person has the disease and B as
the event that the person tested positive. Based on the above testing, we say that the
probabilityP B Ajð Þ can be estimated as 0.99. This probability is called the sensitivity
of the diagnostic method. The high sensitivity may seem like a proof of the test’s
good performance. However, we also need to know how the test would perform on
peoplewithout the disease. So, theMRI diagnosticmethodwas also tested on a large
sample of people not having the disease. Based on the results, the probability
P Bc Acjð Þ of testing negative for a healthy person was estimated as 0.9. This
probability is called the specificity of the diagnostic method. Again, this may seem
like a well performing method.

In practice, when using MRI on a patient, we do not know if the patient has the
disease, sowe are interested in calculating the probabilityP A Bjð Þ that a person testing
positive has the disease. In order to apply Bayes’ theorem, we also need to knowP Að Þ,
that is, the prevalence of the disease in the general population. In our example, it turns
out that approximately 0.1% of the population has the disease, that is, P Að Þ ¼ 0:001.
Under these assumptions, the probabilityP A Bjð Þ can be calculated as 0.0098,which is
surprisingly low (see Problem 2.4). The key to understanding why this happens is to
consider all people not having the disease. They constitute 99.9% of the general
population, and about 10% of themmay test positive. On the other hand, only 0.1% of
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all people have the disease, which is a very small fraction (approximately 1%) of all
people testing positive. This explainswhymost people testing positive do not have the
disease. Table 2.2 shows some other interesting scenarios on how the probability
P A Bjð Þ that a person with positive test result has the disease depends on sensitivity,
specificity, and disease prevalence. &

2.5.2 Probability Distributions

We can now precisely define a random variable as a function assigning a number to
each outcome in the sample space S, that is, X : S!R, where R is the set of real
numbers. A value of the random variable is called a realization of X. For example,
when a coin is tossed three times, define X as the number of times we observe
heads. For each possible outcome, that is, a three-element sequence of heads and
tails, we can count the number of heads. This will be the value of the random
variable X.

Each random variable defines a probability measure on the set of real numbers R.
For each subsetA ( R, we defineP Að Þ ¼ PS X$1 Að Þð Þ, wherePS 'ð Þ is the probability
defined on the sample space S and X$1 Að Þ is the set of those outcomes in S that are
assigned a value belonging to the setA (note that X$1 'ð Þ is the inverse function). This
probability measure is called the probability distribution of X. Continuing our
example with X being the number of heads in three tosses, and taking A consisting
of one number, say A ¼ 2f g, we obtain P Að Þ ¼ PS H;H; Tð Þ;ð H; T ;Hð Þ; T ;H;Hð ÞÞ,
which is equal to 3/8. This probability is more conveniently denoted by P X ¼ 2ð Þ.

In scientific applications, it is often impractical to list all possible events leading to
a given value of X. For example, let X be the reflectance of a ceramic tile as measured
in the spectral wavelength band between 400 and 410mm. The random variableXwill
be subject to variability due to many factors such as the condition of the instrument,
the process followed by the instrument operator, and so on. It would be difficult to
describe all possible events that can happen during such measurements. For all
practical purposes, it is sufficient to deal with the probability distribution ofX without
explicitly defining sample space and probability on it.

Table 2.2 Examples of Probabilities of Disease if Tested Positive as a Function of
Sensitivity, Specificity, and Disease Prevalence

Disease
Prevalence P Að Þ

Sensitivity
P B Ajð Þ

Specificity
P Bc Acjð Þ

Probability of
Disease if Tested
Positive P A Bjð Þ

0.5 0.9 0.9 0.9
0.01 0.99 0.9 0.0909
0.001 0.99 0.9 0.0098
0.001 0.99 0.99 0.0902
0.001 0.99 0.999 0.4977
0.001 0.99 0.9999 0.9083
0.001 0.99 0.99999 0.9900
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Wenowneed to introduce somemathematical tools in order to describe probability
distributions. It is convenient to distinguish two types of distributions: discrete
distributions for discrete random variables, and continuous distributions for continu-
ous random variables.

Definition 2.10. A random variable is discrete when all of its possible values can be
counted using whole numbers.

Definition 2.11. A random variable is continuous when all of its possible values
consist of an interval or a union of intervals on the real line R.

A discrete probability distribution is described by a probability mass function pðxÞ ¼
P X ¼ xð Þ defined for each possible value x of the random variable X. For example, if
X is the number of heads in three tosses,

p xð Þ ¼
1=8 for x ¼ 0 or 3;

3=8 for x ¼ 1 or 2:

(

ð2:8Þ

Property 2.1 A function defined on a discrete setD is a probabilitymass function of a
certain distribution if and only if pðxÞ ) 0 and

P
x2DpðxÞ ¼ 1.

The set D in the above definition is the set of all possible values of X. Examples of
some useful discrete distributions are shown in Appendix A.

A continuous probability distribution is described by a probability density function
f xð Þ such that for any two numbers a and b with a & b

P a & X & bð Þ ¼
ðb

a

f xð Þdx: ð2:9Þ

An example of a probability density function is plotted in Figure 2.17 as a bold bell-
shaped curve. This is a density function of a normal distribution that approximates the
distribution of data from two different samples. Each samplewas generated randomly
from the normal distribution. For the sample size of n ¼ 40 in the left panel, the
sampling variability is fairly large, and the histogram is not verywell approximated by
the density function. For the large sample size of n ¼ 400, the approximation is much
better, and it gets even better with larger samples. One can think of a density function
as an idealized histogram for a very large or infinite sample size.

Property 2.2 A function f : R!R is a probability density function of a certain
distribution if and only if f ðxÞ ) 0 and

Ð1
$1 f ðxÞdx ¼ 1.

Examples of some useful continuous distributions and their density functions are
shown in Appendix A. For continuous random variables, P X ¼ xð Þ is always equal
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to zero, so a probability mass function would not be useful for describing such
distributions.

Anotherway to describe anydistribution (including a discrete or continuous one) is
to use a cumulative distribution function (CDF) defined as

F xð Þ ¼ P X & xð Þ: ð2:10Þ

For any continuous distribution, the derivative of the CDF is equal to the density
function, that is, F0 xð Þ ¼ f xð Þ for any point x such that the derivative F0 xð Þ exists.

We can calculate probabilities of events associated with a given random variable X
with the help of the CDF.Often,we also need to solve a reverse problem, that is, to find
x such that F xð Þ is equal to a given probability.

Definition 2.12. Let p be a number between 0 and 1. The 100pð Þth percentile of the
distribution defined by F xð Þ is a number Zp such that p ¼ F

!
Zp
"
.

Often, it is convenient to define the upper percentile as follows.

Definition 2.13. Let p be a number between 0 and 1. The 100pð Þth upper percentile of
the distribution defined by F xð Þ is a number tp such that p ¼ 1$F tp

! "
.

It is easy to see that the 100pð Þth percentile Zp is equal to the 100 1$pð Þð Þth upper
percentile t1$p of the same distribution. For continuous distributions, the percentileZp
exists for any value p 2 0; 1ð Þ. Tables of percentiles for some important statistical
distributions can usually be found in statistical textbooks. These days, one can often
obtain percentiles from computer software, but we still provide some percentile
values in Appendix A for added convenience. Appendix A shows the notation used
throughout this book for percentiles of a wide range of distributions.

Even though a distribution is precisely defined by its cumulative distribution
function or by a density or mass function (for continuous or discrete distributions,
respectively), it is often beneficial to characterize distributions by using single
numbers or parameters. Some important characteristics are the first and the third
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Figure 2.17 Histograms of two samples approximated by the normal density function describing the

model from which the data were generated.
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quartile (the 25th and 75th percentiles, respectively) and the median (the 50th
percentile). Other characteristics of distributions are defined in the next section.

2.5.3 Expected Value and Moments

The expected or mean value of a random variable X is defined as

E Xð Þ ¼

ð1

$1

x ' f xð Þdx if X is continuous;

P
x2D x ' pðxÞ if X is discrete:

8
>>><

>>>:
ð2:11Þ

The expected value describes an average outcome based on a theoretical distribu-
tion. It is different from the sample mean x calculated from data. If data are generated
from the distribution of X, the sample mean x should be close to E Xð Þ and it will get
closer, on average, as the sample size increases. The expected value E Xð Þ is often
denoted by m, but a subtlety here is that m should be considered as a parameter, while
E Xð Þ is an operation on the distribution of X that produces a number.

Based on the linear property of integrals and summations, one can show (see
Problem 2.5) that for any constants a and b

E aX þ bYð Þ ¼ aE Xð Þ þ bE Yð Þ: ð2:12Þ

For any natural number k, the kth moment of X is defined as the expectation of Xk

E Xk
! "

¼

ð1

$1

xk ' f xð Þdx if X is continuous;

P
x2D xk ' pðxÞ if X is discrete;

8
>>><

>>>:
ð2:13Þ

and the central moments are defined as moments centered around the mean, that is,

E X$E Xð Þð Þk
h i

. The mean value is interpreted as a position parameter or a “central”

point, because it is an average of possiblevalues ofXweighted by their probabilities or
by density. The second central moment, called variance, is denoted by

Var Xð Þ ¼ E X$E Xð Þð Þ2
h i

¼ E X2
! "

$ E Xð Þ½ +2: ð2:14Þ

The variance measures variability around the mean value, while the noncentral

moment E X2ð Þ measures variability of X around zero. By using property (2.12), one
can show that for any constants a and b

Var aX þ bð Þ ¼ a2 Var Xð Þ; ð2:15Þ

which means that the variance is not affected by a shift (adding a constant). This
makes sense because a simple shift does not impact variability. Since the variance is
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expressed in the squared units of X, it is convenient to introduce the concept of
standard deviation defined as the square root of variance and denoted by

StDev Xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Xð Þ

p
: ð2:16Þ

The standard deviation is a measure of variability expressed in the units of X, and its
interpretation is further explained in Section 2.5. From equation (2.15), we obtain

StDev aX þ bð Þ ¼ aj ' StDev Xð Þ;j ð2:17Þ

which means that multiplying X by a positive constant results in the same multipli-
cation of the standard deviation. The standard deviation is often denoted by s, but
again we have a subtlety here, where s should be thought of as a parameter, while
StDev Xð Þ is an operation on the distribution of X that produces a number.

The standard deviation as a parameter is often considered a scale parameter. We
can use the standard deviation s and the mean (expected value) m ¼ E Xð Þ to
standardize X, that is, we define the standardized variable Z ¼ X$mð Þ=s. It is easy
to see that E Zð Þ ¼ 0 and Var Zð Þ ¼ 1. Since X$mð Þ and s are in the same units, the
variable Z has no units.

2.5.4 Joint Distributions and Independence

Consider two random variables X and Y . We can study their relationship by
considering a random vector X; Yð Þ. This random vector can also be treated as a
random point X; Yð Þ on the plane R2. Assume that we observe a large number of
values, or realizations, of X; Yð Þ. Each realization or data point can be plotted in the
system of x and y coordinates as a point. Figure 2.18a shows a scatter plot of such
points as an example. The relationship between X and Y is fully described by the joint

Figure 2.18 Panel (a) shows a scatter plot of (x, y) values generated as realizations of a random vector (X,

Y) with the joint density function shown in panel (b).
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distribution of these variables on the plane R2. The joint distribution, in turn, can be
fully described by the cumulative bivariate distribution function defined as

F x; yð Þ ¼ P X & x and Y & yð Þ: ð2:18Þ

For a continuous bivariate distribution, there exists a bivariate density function f ' ; 'ð Þ
such that

P X;Yð Þ 2 Að Þ ¼
ðð

A

f s; tð Þds dt for any A ( R2: ð2:19Þ

In particular, we have this property of the cumulative distribution function

F x; yð Þ ¼
ðy

$1

ðx

$1

f s; tð Þds dt: ð2:20Þ

Figure 2.18b shows a density function of the form f s; tð Þ ¼ f1 sð Þf2 tð Þ, where f1 is
the density function of the normal distribution N 20; 2ð Þ with the mean of 20 and
standard deviation of 2, and f2 is the density function ofN 20; 6ð Þ (see Appendix A for
the specific formula). The points in Figure 2.18a are values or realizations generated
from the distribution defined by f s; tð Þ. The higher concentration of points around the
center 20; 20ð Þ corresponds to the higher value of the joint density function shown in
Figure 2.18b. The range of x coordinates is smaller than the one for the y coordinates
because of the smaller standard deviation in the x direction as seen in the elongated
shape of the density in panel (b).

In the context of the bivariate distribution of X; Yð Þ, the distributions ofX and Y are
called marginal distributions. For a continuous bivariate distribution of X; Yð Þ, the
marginal density function of one of the variables, let’s say X, can be calculated by
“summing up” the probabilities associated with the other variable, say Y, that is,

fX xð Þ ¼
ð1

$1

f x; yð Þdy: ð2:21Þ

As another example, define a bivariate density function

f0 x; yð Þ ¼
0:5 if $1 & y þ x & 1 and$1 & y$x & 1;

0 otherwise;

(

ð2:22Þ

which is positive inside of a rotated square shown in Figure 2.19b.
Themarginal distributions are obtained by “projecting” the bivariate density on the

x or y axes, respectively. This is best understood by projecting the points in
Figure 2.19a on one of the axes. Figure 2.20a shows a histogram of projections of
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those points onto the x-axis. Figure 2.20b shows a theoretical distribution ofX derived
from (2.21) and (2.22) and given by the formula

fX xð Þ ¼
1$jxj if jxj & 1;

0 otherwise:

(

ð2:23Þ

When dealing with a bivariate distribution of X; Yð Þ, we might be interested in
knowing the distribution of Y given an observed value of X ¼ x, which represents a
new piece of information. That distribution is called a conditional distribution of Y
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Figure 2.19 Panel (a) shows a scatter plot of (x, y) values generated as realizations of a random vector (X,

Y) with the joint density function equal to 0.5 inside of the rotated square shown in panel (b) and zero outside
of the square.

x

F
re

qu
en

cy

1.00.50.0–0.5–1.0

0 
   

   
   

   
   

 5
0 

   
   

   
   

  1
00

   
   

   
   

   
15

0

(a)

1.00.50.0–0.5–1.0

0.
0 

   
   

 0
.2

   
   

  0
.4

   
   

   
0.

6 
   

   
 0

.8
   

   
   

1.
0

x

D
en

si
ty

(b)

Figure 2.20 Panel (a) shows a histogram of projections of points from Figure 2.19a onto the x-axis. Panel

(b) shows a theoretical distribution of the projection on the x-axis, that is, the marginal distribution of X.
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given X ¼ x. While values of the random vector X; Yð Þ lie on the plane R2, the
conditional distribution of Y given X ¼ x is concentrated on the subset of the plane,
namely, vertical line crossing x-axis at x.

For a continuous bivariate distribution of X; Yð Þ, the conditional probability
density function of Y given X ¼ x is defined as

fY jX yjxð Þ ¼ f x; yð Þ
fX xð Þ for$1 < y < 1; ð2:24Þ

where fX is the marginal density function defined in (2.21) and x is any value such
that fX xð Þ > 0.

Intuitively, the conditional distribution is obtained by taking a cross section of the
distribution of X; Yð Þ, such as the one depicted in Figure 2.19b, along the line X ¼ x.
Dividing by fX xð Þ in formula (2.24) reflects the fact that the conditional distribution is
a probability measure defined on a smaller space determined by X ¼ x. This also
makes the resulting function a density function, but it does not change the shape of the
function.

Consider the bivariate density function f0 x; yð Þ defined by (2.22). From
Figure 2.19b, we can see that that for any xj & 1j , f0 x; yð Þ as a function of y is
positive and constant on the interval $ 1$ xjj Þ; 1$ xjj +ð½ and zero outside this interval.
Therefore, for any xj & 1j , the conditional distribution ofY givenX ¼ x is the uniform
distribution concentrated on the interval $ 1$ xjj Þ; 1$ xjj +ð½ . Since the length of this
interval is 2 1$ xjj Þð , the conditional density function is given by the formula

fY jX yjxð Þ ¼

(
1= 2 1$ xjj Þð Þ if $ 1$ xjj Þ & y & 1$ xj;jðð
0 otherwise: ð2:25Þ

This formula can also be deriveddirectly fromdefinition (2.24) and formulas (2.22)
and (2.23). Notice that in this example, the conditional distribution of Y depends on
the observed value X ¼ x. This information changes the range of possible values
of Y from the general range $1; 1½ +, without any knowledge of X, to the narrower
range $ 1$ xjj Þ; 1$ xjj +ð½ when the value of X ¼ x is already known. This means
that Y is dependent on X.

We now extend the definition of independence from random events to random
variables.

Definition 2.14. The random variables X and Y are called independent when the
events associated with those variables are independent, that is, for any sets A;B ( R

P X 2 A and Y 2 Bð Þ ¼ P X 2 Að Þ 'P Y 2 Bð Þ: ð2:26Þ

For a continuous bivariate distribution of X; Yð Þ,X andY are independent if and only if

f x; yð Þ ¼ fX xð ÞfY yð Þ for all pairs of x and y values: ð2:27Þ
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As expected, independence of random variables is closely related to the condi-
tional distributions. For a continuous bivariate distribution of X; Yð Þ, X and Y are
independent if and only if

fY jX yjxð Þ ¼ fY yð Þ for all pairs of x and y values such that fX xð Þ > 0: ð2:28Þ

Wecan say thatX and Y are independent if and only if information contained inX is
not helpful in predicting Y. For example, the random variables X and Y with the joint
distribution shown in Figure 2.19b are not independent because the conditional
distribution shown in formula (2.25) depends on x, as we discussed previously. In
Figure 2.18b, we depicted the joint distribution of two independent variables X and Y.
We can imagine that although the cross sections of the surface taken at various values
of x are different, smaller for x farther from the mean value of 20, they have the same
bell shape and after normalizing by themarginal density f1 xð Þ, they all are identical to
f2 yð Þ, the marginal density function of Y.

2.5.5 Covariance and Correlation

In order to capture an important property of the joint distribution, it is useful to define
covariance of the random variables X and Y as

Cov X; Yð Þ ¼ E X$E Xð Þð Þ Y$E Yð Þð Þ½ +: ð2:29Þ

With some algebra, one can show that

Cov X; Yð Þ ¼ E XYð Þ$E Xð ÞE Yð Þ: ð2:30Þ

Using equation (2.12), one can show that for any constants a and b

Cov aX þ bY; Zð Þ ¼ a Cov X; Zð Þ þ b Cov Y ; Zð Þ ð2:31Þ

for any randomvariable Z, whichmeans that the covariance is linear with respect to its
first argument. From symmetry, the same property holds for the second argument of
the covariance. Since Var Xð Þ ¼ Cov X;Xð Þ, we obtain

Var aX þ bYð Þ ¼ a2 Var Xð Þ þ b2 Var Yð Þ þ 2abCov X; Yð Þ: ð2:32Þ

Let us now take Y , 1, that is, a random variable equal to a constant 1. Then
Y ¼ E Yð Þ and Var Yð Þ ¼ 0. We can also see from (2.29) that the covariance of a
constant variable Ywith an arbitrary randomvariableZ is zero, that is, Cov Y ; Zð Þ ¼ 0.
We can now write formula (2.31) as

Cov aX þ b; Zð Þ ¼ a Cov X; Zð Þ; ð2:33Þ

whichmeans that the covariance is not affected by a shift ofX (adding a constant), but
it is affected by the scale, that is, when X is multiplied by a constant. In the sameway,
we could obtain property (2.15) as a special case of (2.32).
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The covariance Cov X; Yð Þmeasures a degree of linear association between X and
Y. Unfortunately, that measure is distorted by the impact of a scale change. To make
themeasure scale independent, we introduce the correlation coefficient defined by the
covariance scaled by the standard deviations of the variables as follows:

Corr X; Yð Þ ¼ Cov X; Yð Þ
StDev Xð ÞStDev Yð Þ

; ð2:34Þ

where StDev Xð Þ > 0 and StDev Yð Þ > 0. It can be proven that Corr X; Yð Þj & 1j , and
the equality holds if and only if there exist constants a 6¼ 0 and b such that
Y ¼ aX þ b with probability 1, which means that X and Y are perfectly collinear.
The correlation coefficient Corr X; Yð Þ is often denoted by rX;Y or simply r.

Definition 2.15. The random variables X and Y are called uncorrelated when
Corr X; Yð Þ ¼ 0.

From (2.32), we conclude that the random variables X and Y are uncorrelated, if and
only if

Var X þ Yð Þ ¼ Var Xð Þ þ Var Yð Þ: ð2:35Þ

From (2.30), we conclude that the random variables X and Y are uncorrelated, if and
only if

E XYð Þ ¼ E Xð ÞE Yð Þ: ð2:36Þ

When two random variables are independent, they are also uncorrelated. However,
in general, the reverse implication is not true. We have already discussed the random
variables X and Ywith the joint distribution shown in Figure 2.19 as being dependent.
One can show that they are also uncorrelated. Another example of uncorrelated
dependent variables is shown in Figure 2.21, whereY clearly depends onX, but not in a
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Figure 2.21 An example of uncorrelated and dependent random variables X and Y. The joint density

function of the randomvariablesX and Y is equal to a positive constantwithin theU-shaped area shown here

and is equal to zero outside of that area.
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linear fashion. In both cases, the lack of correlation can be concluded from the
following property (see Problem 2.10 for an outline of the proof).

Property 2.3 If the joint distribution ofX andY is symmetric with respect to a vertical
or horizontal straight line, and the correlation Corr X; Yð Þ exists, then Corr X; Yð Þ ¼ 0.

2.6 RULES OF TWO AND THREE SIGMA

In Section 2.2, we introduced the sample standard deviation as a measure of sample
variability. In Section 2.4, we discussed the population standard deviation s as a
measure of variability in a randomvariable, sayX, wheres ¼ StDev Xð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Xð Þ

p
.

We now want to provide interpretation of the standard deviation s by describing
what the knowledge of s can tell us about the variability in X. We will start by
assuming that X follows the normal (Gaussian) distribution N m; sð Þ defined in
Appendix A. The normal distribution is the most important distribution in proba-
bility and statistics, because data distributions and some theoretical distributions are
often well approximated by the normal distribution. The reasons for that will be
discussed in Section 2.7.

Property 2.4 If X follows the normal (Gaussian) distribution, then for any
constants a 6¼ 0 and b, the variable aX þ b also follows the normal distribution.
(See Problem 2.11 for a hint on the proof.)

We standardize X by defining Z ¼ X$mð Þ=s. It is easy to see (from (2.12) and (2.15))
thatE Zð Þ ¼ 0 andVar Zð Þ ¼ 1. FromProperty 2.4, the standardized variable Z has the
normal distribution N 0; 1ð Þ, which is called the standard normal distribution.

P X$mj & ksj Þ ¼ P m$ks & X & m þ ksð Þ ¼ P $k & Z & kð Þð

¼ F kð Þ$F $kð Þ ¼ 2F kð Þ$1; ð2:37Þ

where k > 0 and F is the CDF of the standard normal distribution. For some specific
values of k, we get

P m$s & X & m þ sð Þ ¼ P $1 & Z & 1ð Þ - 0:68; ð2:38Þ

P m$2s & X & m þ 2sð Þ ¼ P $2 & Z & 2ð Þ - 0:95; ð2:39Þ

P m$3s & X & m þ 3sð Þ ¼ P $3 & Z & 3ð Þ - 0:997: ð2:40Þ

The properties (2.38), (2.39), and (2.40) are called the one-, two-, and three-sigma
rules, respectively, and are illustrated in Figure 2.22. Since many distributions are well
approximated by the normal distribution, these rules are widely used, especially for a
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quick and intuitive understanding of the amount of variability associated with a given
value of the standard deviation s. For example, the two-sigma rule tells us that appro-
ximately 95% of the distribution lies within two standard deviations from the mean.

Even though the approximation by the normal distribution works quite well in
many contexts, it would be good to know the significance of s in other types of
distributions. The following theorem addresses this issue in a general context.

Theorem 2.2 (Chebyshev’s Inequality). For a random variableXwith a finitemean
m and standard deviation s, we have

P m$ks < X < m þ ksð Þ ) 1$
1

k2
; ð2:41Þ

where k > 0 is an arbitrary constant.
The proof can be found in Ross (2002). When applying (2.41) with k ¼ 2, we can

see that at least 75% of the distribution lies within two standard deviations from the
mean, compared to the 95% based on normality.With k ¼ 3, we obtain 8=9 or at least
88.8% of the distribution being within three standard deviations from the mean,
compared to the 99.7% based on normality.

2.7 SAMPLING DISTRIBUTIONS AND THE LAWS OF LARGE
NUMBERS

In Section 2.2, we discussed a sample x1; x2; . . . ; xn of n measurements or
observations as a set of specific numbers. However, before the observations are
collected, there is uncertainty about their values. Also, if another set of observations
were collected from the same unchanged process, the values would be somewhat
different due to natural variability. This is why we often treat observations as
random variables, so that we can study their properties in repeated sampling. For
example, if we want to measure reflectance of a given surface as a single number
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Figure 2.22 One-, two-, and three-sigma rules shown as areas under the normal density curve.
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(let’s say, in a narrow spectral band), it is convenient to consider this measurement
as a random variable, say X. Each time the measurement is taken, we may get a
somewhat different number, which will be regarded as a (random) value of that
variable. If we measure that surface three times, we can introduce three random
variables X1;X2; and X3 representing the three measurements. Each time we repeat
the experiment, we will obtain three numbers as values of those three variables.
It often makes sense to assume that the measurements are independent, that is, a
measurement does not change the process under investigation, and the subsequent
measurements are not impacted by the previous ones.

Definition 2.16. The random variables X1;X2; . . . ;Xn are said to form a (simple)
random sample, if they are independent, and each has the same distribution. They are
called i.i.d. (independent, identically distributed) random variables.

For each sample, we can calculate a statistic, such as the sample mean, which can be
treated as a random variable X, since its values will vary in repeated samples. The
distribution ofX is called its sampling distribution in order to emphasize the fact that it
describes the behavior of X over repeated samples.

Consider a random sample X1;X2; . . . ;Xn from an arbitrary distribution G with a
finite mean m. The law of large numbers tells us that X approaches m as n tends to
infinity. Technical details about this convergence can be found in Ross (2002) and
Bickel and Doksum (2001). The convergence means that we can draw conclusions
about the population (represented by the distribution G) based on the sample
X1;X2; . . . ;Xn, and there is a benefit from having larger samples. For very large n,
the mean X will be very close to m. Another far-reaching consequence can be
concluded from the following construction. Let A be an arbitrary probabilistic event
with a certain probability P Að Þ. The eventA could be “obtaining heads in a single toss
of a coin.” Consider repeated independent trials (coin tosses), where the event A can
happen with probability P Að Þ. For the ith trial, define Yi as equal to 1 when A happens
and 0 otherwise. Note thatP Yi ¼ 1ð Þ ¼ P Að Þ ¼ E Yið Þ ¼ m. The samplemean Y is the
relative frequency of the event A in n trials (fraction of heads in n tosses). The law of
large numbers tells us that the fraction of trials whenA happens (fraction of heads) in n
trials approaches the probability P Að Þ of the event (heads) as n tends to infinity. This
may seem intuitively obvious, but it is good to have a confirmation of this fact as a
basis for this interpretation of probability.

The law of large numbers tells us that X approaches m as n tends to infinity, but it
does not tell us how fast it is approaching. This informationwould be very useful from
a practical point of view, so that we know the consequences of using a specific sample
size n. From properties (2.15) and (2.35), one can show that

StDev X
! "

¼ sffiffiffi
n

p ; ð2:42Þ

where s ¼ StDev Xið Þ; i ¼ 1; . . . ; n. This means that we can standardize X by
defining Zn ¼ X$m

! "
= s=

ffiffiffi
n

p
ð Þ ¼

ffiffiffi
n

p
X$m
! "

=s, such that Var Znð Þ ¼ 1. We
know that X$m

! "
converges to 0. When it is multiplied by

ffiffiffi
n

p
, it no longer converges
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to 0, nor does it go to infinity (since Var Znð Þ ¼ 1). We could say that
ffiffiffi
n

p
is just the

right multiplier to make Zn “stable.” For example, if we used the multiplier na,
then na X$m

! "
=s would approach infinity for a > 0:5, and it would approach 0 for

a < 0:5.
If the random sample X1;X2; . . . ;Xn comes from the normal distribution N m; sð Þ,

the distribution of Z is standard normal N 0; 1ð Þ (see Property 2.4). This allows us to
tell how close X is to m with the probability given by

P jX$mj < k
sffiffiffi
n

p
) *

¼ P Zj < kj Þ ¼ 2F kð Þ$1:ð ð2:43Þ

When the distribution G of the sample is not normal, the distribution of Z often is
not easy to calculate, and it also depends on n. Fortunately, the following theorem
allows an approximation of the distribution of Z for large n.

Theorem 2.3 (TheCentral Limit Theorem,CLT). LetX1;X2; . . . be a sequence of
independent, identically distributed randomvariables, each having a finitemeanm and
standard deviation s. Then the distribution of Z approaches the standard normal
distribution as n tends to infinity, that is,

lim
n!1

P
X$m
s=

ffiffiffi
n

p < k

) *
¼ F kð Þ: ð2:44Þ

The proof can be found in Ross (2002).
The CLTallows us to use equation (2.43) as an approximation in cases of samples

from non-normal distributions. Various sources give some rules of thumb (e.g.,
n ) 30) as to how large n is needed for the normal approximation. This could be
potentially misleading. The precision of the normal approximation depends on the
shape of the Xi’s distribution. For example, the convergence is generally slower for
nonsymmetric distributions. Figure 2.23 shows an example of the density functions of
Z, when the distribution of Xi’s is chi-squared with one degree of freedom and n is
equal to 3, 10, and 30, respectively. The density of the standard normal distribution is
also shown for comparison. The CLT approximation using (2.44) can be better
assessed based on Figure 2.24, where the CDFs of the same distributions are shown.
Precision of the normal approximation is further discussed in Chapter 3.

The CLT explains why real data often follow the normal distribution (approxi-
mately). Many characteristics are sums of a large number of small independent
factors. For example, height in a large population depends on influences of particular
genes, elements in the diet, and other factors. Hence, the height distribution is
typically well approximated by the normal distribution. Another example is when we
take multiple measurements of the same object. The measurement error usually
depends on many independent small factors (environmental conditions, gauge
conditions, operators’ impact, etc.) that add up to the final result. Again, the
measurement error is typically well approximated by the normal distribution.
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2.8 SKEWNESS AND KURTOSIS1

The first two moments characterize the location and variability in a distribution. In
order to characterize the shape of a distribution, it is convenient to consider the
standardized variable Z ¼ X$mð Þ=s. Since the first two moments of Z are already
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Figure 2.23 The density functions of Z, when the distribution of Xi’s is chi-squared with one degree of

freedom and n is equal to 3, 10, and 30, respectively. The solid line is the density of the standard normal

distribution intended as the approximation.
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1 This section is more technical and is not needed in the remaining part of this book.
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determined (E Zð Þ ¼ 0 andVar Zð Þ ¼ 1), wewill use higher ordermoments in order to
elicit the information about the distribution shape.

The lack of symmetry around the mean value in a distribution, that is, skewness, is
measured by the coefficient of skewness defined as

g1 ¼ E Z3
! "

¼
E X$E Xð Þð Þ3
h i

Var Xð Þ½ +3=2
: ð2:45Þ

For any symmetric distribution, g1 ¼ 0. The fourth moment of Z is defined as
kurtosis of X, that is,

Kurt Xð Þ ¼ E Z4
! "

¼
E X$E Xð Þð Þ4
h i

Var Xð Þ½ +2
: ð2:46Þ

For a normal distribution, Kurt Xð Þ ¼ 3, which is why an excess kurtosis is often
defined as g2 ¼ Kurt Xð Þ$3. Since for a normal (Gaussian) distribution, g1 ¼ 0 and
g2 ¼ 0, the skewness and kurtosis are sometimes used for checking normality.
This approach is utilized in independent component analysis, an advanced multi-
variatemethod.A lack of symmetry in a distribution is fairly easy to recognize, but the
interpretation of kurtosis is much less obvious. This is why we will detail more
information about kurtosis and some related terminology.

A positive value of g2 indicates a super-Gaussian distribution (also called
leptokurtic), which is often characterized by “fat tails,” that is, the density function
decreases slowly for large x values. A negative value of g2 indicates a sub-Gaussian
distribution (also called platykurtic), which is often characterized by “thin tails,” that
is, the density function decreases rapidly for large x values. The kurtosis is also
described as a measure of “peakedness” of a distribution at the center E Xð Þ. These
interpretations are true only to some extent. We will now discuss a different
interpretation that clarifies the matter.

SinceZ is a standardized variable,we haveVar Zð Þ ¼ E Z2ð Þ ¼ 1, and itmight be of
interest to know how far Z2 is from 1. This can be measured by the mean square
E Z2$1ð Þ2, which is equal to E Z4ð Þ$1 ¼ Kurt Xð Þ$1. We can also write

Kurt Xð Þ ¼ E Z2$1
! "2 þ 1: ð2:47Þ

If Z2 is close to 1 (i.e., X is concentrated around m$s or m þ s), then Kurt Xð Þ is
small. If Z2 , 1 (which happens for the Bernoulli distribution with only two possible
values, each with the same probability p ¼ 0:5), then Kurt Xð Þ ¼ 1, which is its
smallest possible value (i.e., the excess kurtosis g2 is always at least $2). If Z2 is far
from1, thenKurt Xð Þ is large. ThevariableZ2 can be far from1when it is concentrated
around 0 (high “peakedness”) or concentrated on very large values (“fat tails” in the
sense of large probabilities for X much larger than m þ s in units of s). Hence, in
general, one of these conditions is sufficient to produce large kurtosis, but both of them

SKEWNESS AND KURTOSIS 45



give an even larger kurtosis. At the same time, the “peakedness” has small direct
impact on the kurtosis because values close to 0 can never be really far from 1.
The impact of “peakedness” is indirect. Sincewe always have E Z2ð Þ ¼ 1, values of Z
close to 0 allow some other Z values to be very large (and create “fat tails” in the sense
described above).

Example 2.7 Consider the family of exponential power distributions defined in
Appendix A. Its excess kurtosis is given by the formula

g2 ¼
G 5=að ÞG 1=að Þ

G 3=að Þ2
$3; ð2:48Þ

where a> 0 is the shape parameter. Figure 2.25 shows g2 as a function of aon the
interval 1; 10½ +. The valuea¼ 1 corresponds to the Laplace distribution with g2 ¼ 3,
the value a¼ 2 corresponds to the normal distribution with g2 ¼ 0, and with a
approaching infinity, the exponential power distribution approaches the uniform
distribution having g2 ¼ $1:2. When aapproaches 0, the excess kurtosis g2 ap-
proaches infinity. The exponential power distributions witha< 2 are super-Gaussian
with “fat tails,” while those with a> 2 are sub-Gaussian with “thin tails.” We
illustrate this point in Figure 2.26, where we show densities of the exponential power
distributions with a¼ 1 (Laplace), a¼ 2 (normal), and a¼ 10.

Example 2.8 The interpretation of kurtosis as an indication of “fat” versus “thin”
tails is not always as clear-cut as shown in Example 2.7. As discussed earlier, a sub-
Gaussian distribution is often associated with “thin tails,” but here we construct a
sub-Gaussian distributionwith “fat tails.”ConsiderX following a chi-squared random
variable with n degrees of freedom. The excess kurtosis of X is equal to 12=n, so it is
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Figure 2.25 Excess kurtosis g2 as a function of the shape parameter 1 & a& 10 for the exponential power
distribution.
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considered super-Gaussian with “fat tails.” We define a new variable Y ¼ D X þ að Þ,
where a is a positive constant and D is a random variable independent of X such that
P D ¼ 1ð Þ ¼ P D ¼ $1ð Þ ¼ 0:5. The density of the Y variable is symmetric with
respect to zero, and it consists of two symmetric shapes of the density of the chi-
squared distribution with a gap in between (zero density on the interval $a; að Þ). We
call this distribution double chi-squared. Figure 2.27 shows an example of such
density for n ¼ 4 and a ¼ 0:41. If we move the two pieces of the density function
farther apart (by increasing a), its general shape does not change. This means that the
density of Y has tails that are “fatter” than those of the normal density. However, for
a ¼ 0:41, one can calculate that g2 ¼ 0. This tells us that the double chi-squared
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distribution shown in Figure 2.27 is an example of a “fat-tailed” distribution with the
kurtosis equal to that of the Gaussian (normal) distribution.

Figure 2.28 shows how the excess kurtosis g2 of Y depends on a for n ¼ 4. Clearly,
the distribution becomes highly sub-Gaussian for large a. See Problem 2.12 for
directions on how to perform the calculations for this example. &

The excess kurtosis is sometimes used to measure how far a distribution is from the
normal distribution. This can be potentially misleading. The double chi-squared
distribution introduced in the above example shows an example of a distribution with
g2 ¼ 0 (for a - 0:41), which is far from normal. The density function of that
distribution is shown in Figure 2.27.

The construction used in Example 2.8 is more general and can be applied to many
other distributions. For example, we can take any symmetric distribution and modify
it to become a highly sub-Gaussian distribution. Notice that any random variableW
with a distribution symmetric around zero can be represented as DX, where D is a
random variable independent of X such that P D ¼ 1ð Þ ¼ P D ¼ $1ð Þ ¼ 0:5 and X
describes the distribution of W on the positive numbers. Specifically, we can take
X ¼ W jj . We now define a new variable

Y ¼ D X þ að Þ; ð2:49Þ

where a > 0. The distribution of Y consists of two symmetric halves with the
distribution of the same shape as that of X. With increasing a, the two halves move
farther apart. As a tends to infinity, the distribution ofY becomes highly sub-Gaussian,
approaching the most extreme case of g2 ¼ $2 as shown by the following property
(see Problem 2.13 for a sketch of the proof).

Property 2.5 For the excess kurtosis g2 of Y defined by (2.49), we have
lima!1 g2 ¼ $2.
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Figure 2.28 The excess kurtosis g2 of Y ¼ D X þ að Þ as a function of a, where X is a chi-squared random

variable with four degrees of freedom and D is a random variable independent of X such that
P D ¼ 1ð Þ ¼ P D ¼ $1ð Þ ¼ 0:5.
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PROBLEMS

2.1. For the five observations of the Output Power variable in Example 2.1, find the
90th percentile calculated by a linear extrapolation using formula (2.4).

2.2. Prove that the deviations from the mean, defined as di ¼ xi$x, have the
property that they sum up to zero, that is,

Pn
i¼1 di ¼ 0.

2.3. Consider n observations xi; i ¼ 1; . . . ; n, and their linear transformations
defined as yi ¼ axi þ b for i ¼ 1; . . . ; n. Prove that s2y ¼ a2s2x and sy ¼ ajsxj .

2.4. In the context of Example 2.6, develop a formula for the probability of having
the disease if testing positive as a function of sensitivity, specificity, and disease
prevalence. Verify the numbers shown in Table 2.2.

2.5. Prove that for any constants a and b and random variables X and Y, we have
(formula (2.12))

E aX þ bYð Þ ¼ aE Xð Þ þ bE Yð Þ:

2.6. Prove formula (2.15).

2.7. Prove that for any constants a and b and random variables X, Y, and Z, we have
(formula (2.31))

Cov aX þ bY; Zð Þ ¼ a Cov X; Zð Þ þ b Cov Y ; Zð Þ:

2.8. Prove that for any constants a and b and random variables X and Y, we have
(formula (2.32))

Var aX þ bYð Þ ¼ a2 Var Xð Þ þ b2 Var Yð Þ þ 2ab Cov X; Yð Þ:

2.9. Prove formula (2.33).

2.10. . Prove Property 2.3.Hint: Assume that the joint distribution is symmetric with
respect to the line x ¼ m. Define

d þ x; yð Þ ¼
1 for x > m;

0 otherwise;

(

d$ x; yð Þ ¼
1 for x < m;

0 otherwise:

(

From the symmetry assumption, we have

E d þ X; Yð Þ X$mð Þ Y$E Yð Þð Þ½ + ¼ $E d$ X; Yð Þ X$mð Þ Y$E Yð Þð Þ½ +:
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Since

Cov X; Yð Þ ¼ E d þ X; Yð Þ X$mð Þ Y$E Yð Þð Þ½ + þ E d$ X;Yð Þ X$mð Þ Y$E Yð Þð Þ½ +;

we have Cov X; Yð Þ ¼ 0.

2.11. Let X be a random variable following the normal (Gaussian) distribution
N m; sð Þ defined in Appendix A. Show that for any constants a 6¼ 0 and b, the
variable aX þ b also follows the normal distribution (and the distribution is
N am þ b; ajsj Þð ). Hint: Find the CDF of aX þ b from definition and perform
integration by substitution.

2.12. . Consider the random variable X following a chi-squared distribution with n
degrees of freedom. As in Section 2.8, define Y ¼ D X þ að Þ, where a is a
positive constant and D is a random variable independent of X such that
P D ¼ 1ð Þ ¼ P D ¼ $1ð Þ ¼ 0:5. Find the formula for the kurtosis g2 of Y as it
depends on a and n. Confirm that g2 ¼ 0 for n ¼ 4 and a - 0:41. Confirm the

plots obtained in Figures 2.27 and 2.28. Hint: E Yk
! "

¼ E Dk
! "

E X$að Þk
h i

¼

E X$að Þk
h i

for k even and E Yk
! "

¼ E Dk
! "

E X$að Þk
h i

¼ 0 for k odd because

E Dk
! "

¼ 1 for k even and E Dk
! "

¼ 0 for k odd. The formula for the moments

of the chi-squared distribution can be found in Appendix A.

2.13. . Prove Property 2.5. Hint: Clearly, E Yð Þ ¼ 0. Show that E Yk
! "

¼
E X þ að Þk
h i

for k even. Then show that E X þ að Þ4
h i

and

E X þ að Þ2
h in o 2

are four-degree polynomials with respect to a, having the

coefficient 1 by the term a4. This leads to lima!1 Kurt Xð Þ ¼ 1.
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