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programs (in Python), and recipes for handling experimental errors and
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further background material for advanced readers who want to understand
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are compiled in a handy section for easy reference.
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Preface

This book is written as a guide for the presentation of experimental data
including a consistent treatment of experimental errors and inaccuracies. It
is meant for experimentalists in physics, astronomy, chemistry, life sciences
and engineering. However, it can be equally useful for theoreticians who
produce simulation data: they are often confronted with statistical data anal-
ysis for which the same methods apply as for the analysis of experimental
data. The emphasis in this book is on the determination of best estimates
for the values and inaccuracies of parameters in a theory, given experimental
data. This is the problem area encountered by most physical scientists and
engineers. The problem area of experimental design and hypothesis testing –
excellently covered by many textbooks – is only touched on but not treated
in this book.

The text can be used in education on error analysis, either in conjunction
with experimental classes or in separate courses on data analysis and pre-
sentation. It is written in such a way – by including examples and exercises
– that most students will be able to acquire the necessary knowledge from
self study as well. The book is also meant to be kept for later reference in
practical applications. For this purpose a set of “data sheets” and a number
of useful computer programs are included.

This book consists of parts. Part I contains the main body of the text. It
treats the most common statistical distributions for experimental errors and
emphasizes the error processing needed to arrive at a correct evaluation of
the accuracy of a reported result. It also pays attention to the correct report-
ing of physical data with their units. The last chapter considers the inference
of knowledge from data from a Bayesian point of view, hopefully induc-
ing the reader to sit back and think. The material in Part I is kept practical,
without much discussion of the theoretical background on which the vari-
ous types of analysis are based. This will not at all satisfy the eager student
who has sufficient background in mathematics and who wishes to grasp a
fuller understanding of the principles involved. Part II is to satisfy the curi-
ous: it contains several Appendices that explain various issues in more detail
and provide derivations of the equations quoted in Part I. The Appendices in
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Part II obviously require more mathematical skills (in particular in the field
of linear algebra) than Part I. Part III contains Python code examples and Part
IV provides answers to exercises. Finally, Part V contains practical informa-
tion in the form of a number of “data sheets” which provide reference data
in a compact form.

Throughout the book computer programs are included to facilitate the
computations needed for applications. There are several professional soft-
ware packages available for statistical data analysis. In the context of an
educational effort, I strongly advise against the use of a specialized “black-
box” software package that can be easily misused to produce ill-understood
results. A “black-box” computer program should never be a magic substitute
for a method that is not understood by the user! If a software package is to
be used, it should provide general mathematical and graphical tools, prefer-
ably in an interactive way using an interpreter rather than a compiler. The
commercial packages MATHEMATICA, MATLAB and MATHCAD are suitable
for this purpose. However, most readers of this book will not have access
to any or all of these packages, or – if they have temporary access through
their institution – may not be able to continue access at a later point in time.
Therefore for this book the choice was made to use the generally available,
actively developing, open-source interpretative language PYTHON. With its
array-handling and scientific extensions NUMPY and SCIPY the capabilities
of this language come close to those of the commercial packages. Software
related to this book, including a Python module plotsvg.py providing
easy plotting routines, can be found on www.hjcb.nl/.

This book is the successor of the Dutch textbook Goed meten met fouten
(Berendsen, 1997) that has been used in courses at the departments of physics
and chemistry of the University of Groningen since 1997. The author is
indebted to Emile Apol, A. van der Pol and Ruud Scheek for corrections
and suggestions. Comments from readers are welcome to author@hjcb.nl.
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1 Introduction

It is impossible to measure physical quantities without errors. In most cases
errors result from deviations and inaccuracies caused by the measuring appa-
ratus or from the inaccurate reading of the displaying device, but also with
optimal instruments and digital displays there are always fluctuations in
the measured data. Ultimately there is random thermal noise affecting all
quantities that are determined at a finite temperature. Any experimentally
determined quantity therefore has a certain inaccuracy. If the experiment
were to be repeated, the result would be (slightly) different. One could say
that the result of a particular experiment is no more than a random sample
from a probability distribution. When reporting the result of an experiment,
it is important to also report the extent of the uncertainty, e.g. in terms of
the best estimate of some measure of the width of the probability distribu-
tion. When experimental data are processed and conclusions are drawn from
them, knowledge of the experimental uncertainties is essential to assess the
reliability of the conclusion.

Ideally, you should specify the probability distribution from which the
reported experimental value is supposed to be a random sample. The prob-
lem is that you have only one experiment; even if your experiment consists
of many observations of which you report the average, you have only one
average to report. So you have only one sample of the reported item and you
could naively conclude that you have no knowledge at all about the underly-
ing probability distribution of that sample. Fortunately, there is the science of
statistics that tells us differently. When your experiment consists of a series
of repeated observations of a variable x, with outcomes x1, x2, . . . , xn, and
you report the result of the total experiment as the average of the xi’s, statis-
tics tells you how to estimate certain properties of the probability distribution
of which the reported result is supposed to be a random sample. Thus you can
estimate the mean of the distribution or – if you prefer – the most probable
value of the distribution, which then is the result of your measurement. You
can also estimate the width of the distribution, which indicates the random
uncertainty in the result.

The result of an experiment is generally not equal to a directly measured
quantity, but is derived from measured quantities by some functional relation.

3



4 INTRODUCTION

For example, the area of a rectangle is the product of the measured length and
width of two sides. Each measurement has its estimated value and random
error and these errors propagate through the functional relation (here a prod-
uct) to the final result. The contributing errors must be properly combined to
one error estimate in the result.

The purpose of this book is to indicate how one can arrive at the best
estimates of both the value(s) and the random error(s) in the result, based
on the measurements from which the result is derived. In order to maintain
its usefulness as a practical guide, the main part of this book simply states
the equations and procedures, without proper derivations. Thus the practical
applicant is not bothered by unnecessary detail. However, several appendices
are included that provide further details and give a proper background in
statistics with derivations of the equations used. For further reading many
textbooks are available.1

Chapter 2 describes the proper presentation of results of measurements
with their accuracies and with their units. Chapter 3 classifies the various
types of error and describes how contributing errors will propagate and com-
bine into a more complex result. Chapter 4 describes a number of common
probability distributions from which experimental errors may be sampled. In
Chapter 5 it is shown how the characteristics of a data series can be defined
and then be used to arrive at estimates of the best value and accuracy of the
result. Chapter 6 is concerned with simple graphic treatment of data, while
Chapter 7 treats the more accurate least-squares fitting of model parameters
to experimental data. Chapter 8, finally, discusses the philosophical basis
of statistical methods, confronting traditional hypothesis testing with the
more intuitive but powerful Bayesian method to determine the probability
distribution of model parameters.

1 Most textbooks aim at a wider audience and are therefore less useful for physical scientists
and engineers. For the latter interest group see Bevington and Robinson (2003), Taylor
(1997), Barlow (1989) and Petruccelli et al. (1999).



2 The presentation of physical quantities
with their inaccuracies

This chapter is about the presentation of experimental results. When the
value of a physical quantity is reported, the uncertainty in the value must be
properly reported too, and it must be clear to the reader what kind of uncer-
tainty is meant and how it has been estimated. Given the uncertainty, the
value must be reported with the proper number of digits. But the quantity
also has a unit that must be reported according to international standards.
Thus this chapter is about reporting your results: this is the last thing you
do, but we’ll make it the first chapter before more serious matters require
attention.

2.1 How to report a series of measurements
In most cases you derive a result on the basis of a series of (similar) mea-
surements. In general you do not report all individual outcomes of the
measurements, but you report the best estimates of the quantity you wish
to “measure,” based on the experimental data and on the model you use to
derive the required quantity from the data. In fact, you use a data reduction
method. In a publication you are required to be explicit about the method
used to derive the end result from the data. However, in certain cases you
may also choose to report details of the data themselves (preferably in an
appendix or deposited as “additional material”); this enables the reader to
check your results or apply alternative data reduction methods.

List all data, a histogram or percentiles

The fullest report of your experimental data is a list or table of all data.
Almost1 equivalent is the report of a cumulative distribution of the data (see
Section 5.1 on page 54). Somewhat less complete is reporting a histogram
after collecting data in a limited number of intervals, called bins. Much less

1 Not quite, because one loses information on possible sequential correlation between data
points.
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Table 2.1 Thirty observations, numbered in increasing order.

1 6.61 6 7.70 11 8.35 16 8.67 21 9.17 26 9.75
2 7.19 7 7.78 12 8.49 17 9.00 22 9.38 27 10.06
3 7.22 8 7.79 13 8.61 18 9.08 23 9.64 28 10.09
4 7.29 9 8.10 14 8.62 19 9.15 24 9.70 29 11.28
5 7.55 10 8.19 15 8.65 20 9.16 25 9.72 30 11.39

complete is to report certain percentiles of the cumulative distribution, usu-
ally the 0, 25%, 50%, 75% and 100% values (i.e., the full range, the median
and the first and third quartiles). This is done in a box-and-whisker display.
See the example below.

List properties of the data set

The methods above are rank-based reports: they follow from ranking the
data in a sequence. You can also report properties of the set of data, such as
the number of observations, their average, the mean squared deviation from
the average or the root of that number, the correlation between successive
observations, possible outliers, etc. Note that we do not use the names mean,
variance, standard deviation, which we reserve for properties of probabil-
ity distributions, not data sets. Use of these terms may cause confusion; for
example, the best estimate for the variance of the parent probability distri-
bution – of which the data set is supposed to be a random sample – is not
equal to the mean squared deviation from the average, but slightly larger
(n/(n − 1)×). See Section 5.3 on page 58.

Example: 30 observations

Suppose you measure a quantity x and you have observed 30 samples with
the results as given in Table 2.1. Figure 2.1 shows the cumulative distribution
function of these data and Fig. 2.2 shows the same, but plotted on a “proba-
bility scale” which should produce a straight line for normal-distributed data.
A histogram using six equidistant bins is shown in Fig. 2.3. It is clear that
this sampling is rather unevenly distributed.

These numbers and cumulative distributions were generated with Python
code 2.1 on page 171
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Figure 2.1 The cumulative distribution function of thirty observations. The vertical
scale represents the cumulative percentage of the total.

Figure 2.2 The cumulative distribution function of thirty observations. The verti-
cal scale represents the cumulative percentage of the total on a probability scale,
designed to produce straight lines for normal distributions.
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Figure 2.3 A histogram of thirty observations. The data have been gathered in six
equidistant bins. The vertical scale gives the number of observations in each bin.

The histogram of Fig. 2.3 was generated with Python code 2.2 on page 171

The properties of the data set you can report are:

(i) number of observations: n = 30
(ii) average: m = 8.78
(iii) mean squared deviation from average: msd = 1.28
(iv) root-mean-square deviation from average: rmsd = 1.13

The properties are available as array methods or functions. See Python
code 2.3 on page 171

Other rank-based properties of the data set are values that exceed a given
fraction of the data, such as the median (at 50%), the first and third quartile
(at 25 and 75%) or the p-th percentile. The latter is a value xp such that p%
of the data has a value ≤ xp and (100 − p)% has a value > xp.2 The total
range is the interval between the minimum and maximum values. Figure 2.4
shows the data as a box-and-whisker display of the total range (the whisker)
and the quartiles (the box).

A simple program to determine a series of percentiles is Python code 2.4 on
page 172

2 There may be an ambiguity here. The p-th percentile may be exactly one of the data values,
e.g. the median equals the 5th value out of a set of 9. In general, the percentile will fall in a
range between two values, e.g. the median lies between the 5th and the 6th value out of a
set of 10 values. In that case linear interpolation is used.
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6 7 8 9 10 11 12

nr 1 8 15 16 23 30! !!! ! !!! !! ! !!!!! !!!!! ! !!!! !! !!

Figure 2.4 A box-and-whisker display of the total range, the median and the first
and third quartile of thirty observations. Note that the median falls between nr 15
and nr 16 (15 observations on both sides); the average between the two values is
taken.

2.2 How to represent numbers
Decimal separator: comma or period?

In the English language and in all “computer languages” (and among others
also in China, Israel and Switzerland) the decimal point is used as separator
between the integer and fractional parts of a real decimal number. In many
other languages (all other European languages, Russian and related lan-
guages) the decimal comma is used instead. Be consistent and adhere to what
your language requires! In order to avoid confusion, scientists are strongly
advised not to use periods or commas to divide long numbers into groups of
three digits, like 300,000 (English) or 300.000 (e.g. French). Instead, use a
space (or even better, if your text editor allows it, a thin space) to separate
groups of three digits: 300 000.3

Significant figures

The end result of a measurement must be presented with as many digits as are
compatible with the accuracy of the result. Also when a number ends with
zeros! These are the significant figures of the result. However, intermediate
results in a calculation should be expressed with a higher precision in order
to prevent accumulation of rounding errors. Always indicate the accuracy of
the end result! If the accuracy is not explicitly given, it is assumed that the
error in the last digit is ±0.5.

3 This is the IUPAC recommendation, see http://old.iupac.org/reports/provisional/guidelines.
html#printing
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Examples, for the English language

(i) 1.65 ± 0.05
(ii) 2.500 ± 0.003
(iii) 35 600 ± 200: better as (3.56 ± 0.02) × 104

(iv) 5.627 ± 0.036 is allowed, but makes sense only when the inaccuracy
itself is known with sufficient accuracy. If not, this value should be
written as 5.63 ± 0.04.

(v) Avogadro’s number is known as (6.022 141 79 ± 0.000 000 30) × 1023

mol−1 (CODATA 2006). The notation 6.022 141 79(30)× 1023 mol−1

is a commonly accepted abbreviation.
(vi) 2.5 means 2.50 ± 0.05
(vii) 2.50 means 2.500 ± 0.005
(viii) In older literature one sometimes finds a subscript 5, indicating an inac-

curacy of about one quarter in the last decimal: 2.35 = 2.35 ± 0.03,
but this is not recommended.

When inaccuracies must be rounded, then do this in a conservative
manner: when in doubt, round up rather than down. For example, if a statis-
tical calculation yields an inaccuracy of 0.2476, then round this to 0.3 rather
than 0.2, unless the statistics of your measurement warrants the expression
in two decimals (0.25). See Section 5.5 on page 60. Be aware of the fact
that calculators know nothing about statistics and generally suggest a totally
unrealistic precision.

2.3 How to express inaccuracies
There are many ways to express the (in)accuracy of a result. When you report
an inaccuracy it must be absolutely clear which kind of inaccuracy you mean.
In general, when no further indication is given, it is assumed that the quoted
number represents the standard deviation or root-mean-square error of the
estimated probability distribution.

Absolute and relative errors

You can indicate inaccuracies as absolute, with the same dimension as the
reported quantity, or as a dimensionless relative value. Absolute inaccuracies
are often given as numbers in parentheses, relating to the last decimal(s) of
the quantity itself.

Examples

(i) 2.52 ± 0.02
(ii) 2.52 ± 1%
(iii) 2.52(2)
(iv) NA = 6.022 141 79(30) × 1023 mol−1
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Using probability distributions

If the degree of knowledge you have about the reported quantity θ can be
expressed as a probability distribution of that quantity, you can report one
or more confidence intervals. This is usually the case if a Bayesian analy-
sis has been made (see Chapter 8). In cases where the estimated probability
distribution deviates significantly from a Gaussian shape and the variance or
standard deviation may be a meaningless or uninformative quantity, a confi-
dence interval is the best way to report the accuracy of a quantity. One then
gives the Bayesian estimate for the quantity as the expectation (mean) over
the distribution, with e.g. a 90 percent confidence interval. That interval is
given by two values; the probability that the quantity is less than the lower
boundary is 0.05 and the probability that it exceeds the higher boundary is
also 0.05. For the reader’s information it is advised to also give the number n
of independent experiments on which the estimate is based.

There are several possibilities to express the estimated value θ̂ :

(i) the mean or expectation over the probability distribution E[θ ]=∫
θ p(θ) dθ ,

(ii) the median, i.e., the value for which the cumulative distribution (see
Section 4.2 on page 29) reaches 50 percent. The probability that the real
value is smaller than the median equals the probability that it is larger,

(iii) the mode or most probable value, which marks the maximum of the
probability distribution.

These estimates are similar and in general their difference is insignificant,
being much less than the standard deviation. For symmetric distributions they
are all equal. In any case be explicit as to the kind of estimate you report.

Examples

(i) In a simulation you “observe” the occurrence of a certain event (e.g. a
conformational change of a protein molecule) that is irreversible on the
attainable time scale. Your theory predicts that the event occurs with con-
stant probability k"t in any small time interval "t. You observe seven
such events (occurring at t1, t2, . . . , t7) and apply a Bayesian analysis
(see Chapter 8, page 120) to derive a probability distribution for k. The
expectation of the rate constant is E[k] = 7/(t1 + t2 +· · · t7) = 1.0 ns−1.
This distribution p(k), with cumulative distribution P(k) (see Fig. 2.5)
has the following properties (given in too many decimals):
• The mean equals 1.00; this is the best estimate k̂.
• The median equals 0.95.
• The mode is 0.86.
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Figure 2.5 The Bayesian probability distribution for the rate k of an exponential
decay process, based on seven lifetime observations.

• The standard deviation, i.e., the square root of the expectation of the

squared deviation from the mean: σ̂ =
√

E[(k − k̂)2] = 0.38. Just
to see how well the standard deviation describes the width of the dis-
tribution: for a normal distribution 68% of the cumulative probability
lies in the interval (k̂ − σ̂ , k̂ + σ̂ ); for the Bayesian distribution of
this example 69% is in the range (1 − 0.38, 1 + 0.38). So the central
region of the distribution is much like normal and the use of the stan-
dard deviation really makes sense in that range. But the tails are quite
different!

• 90% confidence levels: k(P = 0.05) = 0.47; k(P = 0.95) = 1.69.
This means that there is a 90% probability that the value of k lies
between 0.5 and 1.7.

In this case you can report all “experimental” values t1, t2, . . . , t7, allow-
ing the reader to draw her/his own conclusions. The result can be
reported in various ways. The simplest is k̂ = 1.0 ± 0.4, but that says
nothing about the kind of distribution. It is better to give in addition a
confidence interval and the number of observations, e.g.:

90% Bayes confidence interval = (0.5, 1.7); n = 7.

If you wish to be exhaustive, give the full probability distribution as in
Fig. 2.5.

(ii) You measure the velocity of particles in a particle beam by time-of-flight
determinations of 100 individual particles. Each velocity value is a sam-
ple from an unknown distribution. You want to determine two properties
of the beam: the mean and the standard deviation of the one-dimensional
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(forward) velocity distribution of all particles in the beam. This kind of
problem is treated in Section 5.2 on page 57. Your set of 100 measure-
ments is characterized by an average ⟨v⟩ of 1053 m/s and a mean square
deviation from the average ⟨("v)2⟩ of 2530 m2/s2. Here, "v = v − ⟨v⟩.
For each property you wish to give the best estimate and its standard
error. You may report:
• mean velocity: 1053 ± 5 m/s,
• s.d. of velocity distribution: 50 ± 4 m/s.

Realizing that you do not know beforehand what the variance of the
distribution is, you may apply Student’s t-distribution (see Section 5.4
on page 59) and report:

• mean velocity: 1053 m/s; 90% t-distr. confidence interval = (1045,
1061) m/s, ν = 99.

In this case with a large number of degrees of freedom, reporting a
t-distribution confidence interval is hardly meaningful, as the difference
with a normal distribution is negligible. Reporting the standard error is
much better.

2.4 Reporting units
SI units

Physical quantities not only have a numerical value with inaccuracy, but also
a unit. Always include the proper unit in the correct notation when you report
a physical quantity. There are international agreements on units and notation.
The agreed system of units is the “Système International d’Unités” (SI).4 The
SI units are derived from the SI base units m, kg, s, A, K, mol, cd (see data
sheet UNITS on page 215). You should make it a habit to adhere strictly to
these units, even if you are often confronted with non-SI units in the literature
(dominantly originating from the USA). So, kJ/mol and not kcal/mol, nm (or
pm) and not Å, N and not kgf, Pa and not psi.

Non-SI units

Some non-SI units are allowed, such as the minute (min), hour (h), day (d),
degree (◦), minute angle (’), second angle (”), liter (L = dm3), metric ton
(t = 1000 kg)) and astronomical unit (ua = 1.495 978 70×1011 m). Chemists
use the liter a lot: note that its symbol is upper case L, not (as is still quite
common) lower case l.5 Thus a milliliter is mL, not ml. The concentration
unit mol/L is allowed next to the SI unit mol/m3, but the symbol M for molar

4 The SI system was established in 1960 by the CGPM (Conférence Générale des Poids et
Measures), an intergovernmental treaty organization.

5 This is the CGPM recommendation since 1979.
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(= mol/L) is now obsolete. Note that mol is written with lower case m and
without an e as in mole. A mole is the English name for the quantity that has
the unit mol. Some other non-SI units are not officially allowed, but often
used within restricted contexts, such as the nautical mile (= 1852 m), knot
(nautical mile/h), are (100 m2), hectare (104 m2), ångström (Å = 10−10 m),
barn (b = 10−28 m2) and bar (105 Pa). Use only official notations; not sec
but s, not gr but g, not micron but µm. Use the prefixes as tabulated in the
data sheet DATA:UNITS on page 215, preferably as powers that are multiples
of 3. Be careful with capitalization: not m for Mega, not g for Giga. Finally,
do not use confusing notations for more complex units, such as two slashes:
not kg/m/s or kg/m s, but kg m−1 s−1.

Typographical conventions

There are also agreed typographical conventions, which should be adhered to
not only in scientific manuscripts, but even in informal reports. With modern
text editors there is no excuse not to use roman, italic or bold type when
required. The rules are simple:

• italic type for scalar quantities and variables,
• roman type for units and prefixes (mind capitalization),
• italic boldface for a vector or matrix quantity,
• sans-serif bold italic for tensors,
• roman type for chemical elements and other descriptive terms, including

mathematical constants, functions and operators.

Examples

(i) The input voltage Vin = 25.2 mV,
(ii) The molar volume Vm = 22.4 L/mol,
(iii) The force on the i-th particle Fi = 15.5 pN,
(iv) The symbol for nitrogen is N, the nitrogen molecule is N2,
(v) A nitrogen oxide mixture NOx with x = 1.8,
(vi) e = 2.718 . . . ; π = 3.14 . . .,
(vii) F = ma = − grad V ,
(viii) The surviving fraction of the k-th species, f surv

k (t) = exp(−t/τk).

2.5 Graphical presentation of experimental data
Experimental results are often presented in graphical form. The expectation
or mean is given as the position (x, y) of (the center of) a symbol in a plot.
The usual representation of inaccuracies in x and/or y is an error bar with
a total length of twice the standard error. While both x and y values may
be subject to experimental errors, very often one of the values (usually x)
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Table 2.2 Concentration of a
reactant as a function of time. The
inaccuracy is given as the
estimated standard error.

time t/s conc. c/mmol L−1 ± s.d.

20 75 ± 4
40 43 ± 3
60 26 ± 3
80 16 ± 3

100 10 ± 2
120 5 ± 2
140 3.5 ± 1.0
160 1.8 ± 1.0
180 1.6 ± 1.0

Figure 2.6 A linear plot of concentration of a reactant versus time, with error bars
representing ± the standard error. The data are given in Table 2.2.

is so accurate that it makes no sense to plot an error bar. Figures 2.6 and
2.7 give examples of such a graphical representation, using the data given in
Table 2.2. The reason to use a logarithmic scale for the concentration is that
an expected exponential decay with time would show up as a straight line.

The linear plot can hardly show the small standard deviations of the last
three points; on the logarithmic plot the s.d. on the small values show as much
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Figure 2.7 A logarithmic plot of the same data.

larger and asymmetric error bars. Note that the error bars on the last two
points extend below the lower limit (1 mmol/L) of the logarithmic scale and
therefore appear too short on the graph. Negative ordinate values (which may
occur as a result of random errors) cannot be shown at all on a logarithmic
scale.

Some authors use “whiskers” marking the ends of the error bars in order
to make them more visible, but this does not add any useful information to
the whiskerless error bars.

A scientifically acceptable graph should indicate which variables are plot-
ted on the horizontal and vertical axes and what units the numbers represent.
It is acceptable is to put the units in parentheses: time t (s), but it is advisable
to use the notation time t/s as in Figs. 2.6 and 2.7; this notation indicates
a dimensionless quantity represented by the numbers along the axes. Both
notations are acceptable as long as the notation is consistent throughout a
publication. Don’t use more than one forward slash: Epot/kJ mol−1 is OK,
but Epot/kJ/mol is not!

Of course there are several plotting programs to realize fancy graphics
on a computer, but in many cases a quick sketch by hand on graph paper
suffices to get a crude idea of a functional relationship and the importance of
inaccuracies.

See Python code 2.5 on page 172 to produce Fig. 2.7 with a logarithmic scale.

Summary In this chapter you have seen how experimental
results are properly presented in a report or publication.
A proper presentation gives numerical values with as many
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significant digits as is warranted by the precision of the value,
it includes an unequivocal report of the (in)accuracy of the
value, it includes the proper unit in which the result is expressed
and it uses the conventional typography for variables, numbers,
units and prefixes. Experimental results are always presented
with an error estimate and it must be made explicit what the
reported inaccuracy means and how the error estimate has been
obtained.

Exercises

2.1 Correct the following notations:
(a) l = 3128 ± 20 cm,
(b) c = 0.01532 mol/L ±0.1 mmol/L,
(c) κ = 2.52 × 102 A m−2/V m−1,
(d) k/L mol−1/s = 3571 ± 2%,
(e) g = 2 ± 0.03.

2.2 Convert the following quantities to SI units or units allowed within the SI
system (see data sheet UNITS on page 215):
(a) a pressure of 1.30 mm Hg,
(b) a pressure of 33.5 psi,
(c) a concentration of 2.3 mM (millimolar),
(d) an interatomic distance of 1.45 Å,
(e) an activation energy of 5.73 kcal/mol,
(f) a daily energy requirement of 2000 calories,
(g) a force of 125 lbf,
(h) an (absorbed) radiation dose of 20 mrad,
(i) a fuel consumption of 3.4 (US) gallon per 100 mile,
(j) a dipole moment of 1.85 debye,
(k) a polarizability of 1.440 Å3. Note that polarizability α in rational-

ized SI units is the ratio of induced dipole moment (in Cm) and
electric field (in V/m). In unrationalized units the polarizability is
α′ = α/(4πε0), expressed in units of volume.



3 Errors: classification and propagation

There are errors and uncertainties. The latter are unavoidable; eventually it is
the omnipresent thermal noise that causes the results of measurements to be
imprecise. After trying to identify and correct avoidable errors, this chapter
will concentrate on the propagation and combination of uncertainties in
composite functional relations.

3.1 Classification of errors
There are several types of error in experimental outcomes:

(i) (accidental, stupid or intended) mistakes
(ii) systematic deviations
(iii) random errors or uncertainties

The first type we shall ignore. Accidental mistakes can be avoided by care-
ful checking and double checking. Stupid mistakes are accidental errors that
have been overlooked. Intended mistakes (e.g. selecting data that suit your
purpose) purposely mislead the reader and belong to the category of scientific
crimes.

Systematic errors

Systematic errors have a non-random character and distort the result of a
measurement. They result from erroneous calibration or just from a lack of
proper calibration of a measuring instrument, from careless measurements
(uncorrected parallax, uncorrected zero-point deviations, time measurements
uncorrected for reaction time, etc.), from impurities in materials, or from
causes the experimenter is not aware of. The latter are certainly the most
dangerous type of error; such errors are likely to show up when results are
compared to those of other experimentalists at other laboratories. Therefore
independent corroboration of experimental results is required before a critical
experiment (e.g. one that overthrows an accepted theory) can be trusted.

18
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Random errors or uncertainties

Random errors are unpredictable by their very nature. They can be caused
by the limited precision of instrumental readings, but are ultimately due to
physical noise, i.e. by natural fluctuations due to thermal motions or to the
random timing of single events. Since such errors are unavoidable and unpre-
dictable, the word “error” does not convey the proper meaning and we prefer
to use the term uncertainty for the possible random deviation of a measured
result from its true value.

If a measurement is repeated many times, the results will show a certain
spread around an average value, from which the estimated inaccuracy in
the average can be determined. The probability distribution, from which the
measured values are random samples, is supposed to obey certain statistical
relations, from which rules to process the uncertainties can be derived. In
the case of a single measurement one should estimate the uncertainty, based
on knowledge of the measuring instrument. For example, a length read on a
ruler will be accurate to ±0.2 mm; a length read on a vernier caliper will be
accurate to ±0.05 mm. Chemists reading a liquid level on a buret or gradu-
ated cylinder can estimate volumes with a precision of ±0.3 scale divisions.
Be aware of the precision of digital instruments: they usually display more
digits than warranted by their precision. The precision of reliable commercial
instruments is generally indicated by the manufacturer, sometimes as an indi-
vidual calibration report. Often the maximum error is given, which can have
a (partly) systematic character and which exceeds the standard deviation.

Know where the errors are

As experimentalist you should develop a realistic feeling for the errors inher-
ent in your experiments. Thus you should be able to focus attention on the
most critical parts and balance the accuracy of the various contributing fac-
tors. Suppose you are a chemist who performs a titration by adding fluid from
a syringe and weighs the syringe before and after the titration. How accu-
rate should your (digital) weight measurement be? If the end of a titration is
marked by one drop of fluid (say, 10 mg), it suffices to use a 3-decimal bal-
ance (measuring to ±1 mg). Using a better balance wastes time and money!
If you are a physicist measuring time-dependent fluorescence following a
1 ns light pulse, it suffices to analyze the emission in 100 ps intervals. Using
higher resolution wastes time and money!

3.2 Error propagation
Propagation through functions

In general the required end result of a series of measurements is a func-
tion of one or more measured quantities. For example, if you measure the
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length l and width w of a rectangular plane object, both the circumference
C = 2(l + w) and the area A = lw are (simple) functions of l and w. Assume
the deviations in l and w are independent of each other with standard uncer-
tainties "l and "w, respectively, what then is the standard uncertainty in
C or in A? A somewhat more complicated relation is the determination of
the change in standard Gibbs function "G0 for an equilibrium reaction with
measured equilibrium constant K:

"G0 = −RT ln K, (3.1)

where R is the gas constant and T the absolute temperature. What is the
standard uncertainty in "G0 given the standard uncertainty in K? And if the
equilibrium constant K of a dimerization reaction 2A ! A2 is determined
by measuring concentrations [A] and [A2]:

K = [A2]
[A]2 , (3.2)

how can we determine the standard uncertainty in K given those in [A] and
[A2], assuming the deviations of [A] and [A2] to be independent? How will
the latter be modified if the deviations are not independent, e.g. if we measure
both the total concentration [A] + 2[A2] and [A2] independently?

What we need to establish is the propagation of uncertainties. The clue is
differentiation:

If the standard uncertainty in x equals σx, then the standard uncertainty σf
in f (x) equals

σf =
∣∣∣∣
df
dx

∣∣∣∣ σx. (3.3)

Example

Consider the example of Equation (3.1) above. You have measured K =
305 ± 5 at T = 300 K, which yields "G0 = 14.268 kJ/mol. The standard
uncertainty σ"G in "G now becomes (RT/K)σK = 41 J/mol. The result you
write as "G0 = 14.27 ± 0.04 kJ/mol.

Combination of independent terms

If the uncertainty in a result (e.g. the sum of two variables) is composed of
uncertainties in two or more independent measured quantities, these uncer-
tainties must be combined in an appropriate way. Simple addition of standard
uncertainties cannot be correct: the deviations due to different independent
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Table 3.1 Propagation of standard uncertainties in combined
quantities or functions.

f = x + y or f = x − y σ 2
f = σ 2

x + σ 2
y

f = xy or f = x/y (σf /f )2 = (σx/x)2 + (σy/y)2

f = xyn or f = x/yn (σf /f )2 = (σx/x)2 + n2(σy/y)2

f = ln x σf = σx/x
f = ex σf = fσx

sources can be either + or − and will often partly compensate each other.
The correct way to “add up” uncertainties is to take the square root of the
sum of the squares of the individual uncertainties. More specifically, this
applies to standard deviations σ :

If f = x + y, then σ 2
f = σ 2

x + σ 2
y , (3.4)

i.e., independent uncertainties add up quadratically. Why this is so is
explained in Appendix A1 on page 135. In general, when f is a function
of x, y, z, . . .;

σ 2
f =

(
∂f
∂x

)2

σ 2
x +

(
∂f
∂y

)2

σ 2
y + · · · (3.5)

From (3.5) it follows immediately that for additions and subtractions the
absolute uncertainties add up quadratically, while for multiplications and
divisions the relative uncertainties add up quadratically. Examples of (3.5)
are given in Table 3.1, valid for independent contributions.

Example 1

Consider the example of (3.2). What is the s.d. in K = [A2]/[A]2 when the
deviations in [A] and [A2] are independent? From the x/yn rule in Table 3.1
it follows that

(σK

K

)2
=

(
σ[A2]
[A2]

)2

+ 4
(

σ[A]
[A]

)2

.

Suppose you have measured [A2] = 0.010 ± 0.001 mol/L and [A] = 0.100 ±
0.004 mol/L. Then the relative s.d. of K becomes

√
0.12 + 4.0.042 = 0.13,

resulting in K = 1.0 ± 0.1 L/mol.
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Example 2

Consider again the example of (3.2). What is the s.d. in K if the deviations
in the total concentration [A] + 2[A2] and in [A2] are independent? Rename
the independent variables:

x = [A] + 2[A2]; y = [A2],

so that

K = y
(x − 2y)2 .

Apply the general rule (3.5), which yields

σ 2
K = (x − 2y)−6(4y2σ 2

x + (x + 2y)2σ 2
y
)
.

Suppose you have measured the dimer concentration y = 0.010 ± 0.001 mol/L
and the total concentration of A x = 0.120±0.005 mol/L. Then the variance
of K becomes

σ 2
K = 400σ 2

x + 19600σ 2
y = 0.030.

So the s.d. becomes
√

0.030 = 0.17, resulting in K = 1.0 ± 0.2 L/mol.

Combination of dependent terms: covariances

When uncertainties are not independent of each other, the covariances
between x and y play a role (see Appendix A1 for details):

σ 2
f =

(
∂f
∂x

)2

σ 2
x +

(
∂f
∂y

)2

σ 2
y + 2

∂f
∂x

∂f
∂y

cov (x, y) + · · · (3.6)

See Appendix A1 on page 135 for the definition of the covariance between x
and y: cov (x, y).

Systematic errors due to random deviations

When the function f (x) has an appreciable curvature (second derivative) in
the region of x over which the uncertainty of x spreads, a systematic deviation
in f will occur: the expected value E[ f (x)] does not equal f (E[x]). This effect
is generally in practice not very important. Appendix A2 on page 138 gives
details.
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Monte Carlo methods

There are cases where you can’t express an explicit functional relation
between a result and the factors that contribute to the result. For example,
given a large number of observations of temperature, pressure, composition,
etc., you predict tomorrow’s weather using a forecasting model. Knowing
the uncertainties of the input data, how uncertain will be the prediction? In a
deterministic model (as opposed to a stochastic model) there is a functional
relationship between input data and result, but it is complicated and implicit,
with lots of correlations and interdependencies. The propagation of uncer-
tainties is related to the sensitivity of the result for variations in each of the
input data.

Here the computer comes to the rescue. When the number of input param-
eters is relatively small, numerical values for the derivatives, as required in
(3.6), can be obtained by making a small step (preferably in both directions)
for each input parameter. For a large number of input data this may not work.
You may then find the uncertainty in the result by choosing many input com-
binations, randomly chosen from the (known) uncertainty distributions of the
inputs. The computed output values will be samples of the uncertainty dis-
tribution you are looking for. Methods that use random numbers to generate
results are in general called Monte Carlo methods.1

A simple example will make this clear. You are a chemist who wishes to
determine the equilibrium constant of the association reaction in solution

A + B ! AB.

For this purpose you dissolve 5.0 ± 0.2 mmol of substance A in 100 ± 1 mL
solvent and 10.0 ± 0.2 mmol B in 100 ± 1 mL solvent; then you mix the two
solutions. You determine the concentration x of AB spectroscopically (AB
has an absorption band in a spectral region where neither A nor B absorbs)
and find x = 5.00 ± 0.35 mmol/L. The uncertainties given are all stan-
dard deviations of supposedly normal distributions. What is the value of the
equilibrium constant K and what is its standard uncertainty?

The equilibrium constant is given by

K = [AB]
[A][B] , (3.7)

1 Monte Carlo methods can be applied in many fields, notably in statistics, in statistical
mechanics and in mathematics to compute multidimensional definite integrals. They are
used to generate samples from a given multidimensional distribution. Often a random step
is followed by an acceptance criterion, allowing an efficient biased random search that
concentrates on the “important” regions of the explored multidimensional space. See
Hammersley and Handscomb (1964); for applications in molecular simulation see Frenkel
and Smit (2002).
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where [A] is the concentration of A, etc. Hence

K = x
(a/(V1 + V2) − x)(b/(V1 + V2) − x)

, (3.8)

where a is the amount of A originally dissolved in volume V1, b the amount
of B dissolved in V2 and x the measured concentration of AB. Of course it is
quite feasible to determine K with its uncertainty from the data using the stan-
dard method based on (3.5), but it is easier to use a Monte Carlo approach.
This is done by generating a large number n (e.g. n = 1000) of normally dis-
tributed values for each of the input variables a, b, V1, V2, x, using the given
values for mean and standard deviation (each input variable is now an array
of length n) and applying (3.8) to the arrays. The output K is an array of
samples representing the probability distribution of K. Doing this we find

K = (5.6 ± 0.6) L/mol. (3.9)

The cumulative distribution of K is given on a probability scale in Fig. 3.1 (on
a probability scale a normal distribution shows as a straight line; see page 39

Figure 3.1 The cumulative probability distribution function of the Monte Carlo-
generated result of (3.8), using 1000 samples.
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for further explanation). You see that the distribution is fairly normal between
µ±σ , but deviates from normal beyond µ± 2σ . This is due to the nonlinear
relation between K and the input variables. Thus the Monte Carlo method
has advantages: distortions of the resulting distribution due to nonlinearity
are immediately apparent and so are systematic errors due to nonlinearity.
The latter are visible as a difference between the mean of the distribution and
the value computed directly from the input values without added noise.

See Python code 3.1 on page 173 for the generation of Monte Carlo samples
and figures for this example.

Summary This chapter distinguished between systematic and
random errors, the latter leading to uncertainties in the results.
Random errors add up quadratically in sums or differences (i.e.,
the uncertainty in the result is the square root of the sum of
squares of the contributing terms). Relative random errors add
up quadratically in products or quotients. Table 3.1 gives more
functional relations. In general, an error in x propagates in a
function f (x) through multiplication by the derivative ∂f /∂x,
see (3.3) and (3.5). When input errors are correlated, their
covariances also play a role. When the functional relation is
strongly nonlinear, random errors may cause systematic devi-
ations. To investigate error propagation in complex cases it is
advantageous to use Monte Carlo methods: generate a large
number of samples of the results by randomly selecting the input
parameters from appropriate probability distributions.

Exercises

3.1 Perform the following operations and give the result with standard devi-
ation. The standard deviations of quantities are indicated by ±; they are
independent of each other.
(a) 15.000/(5.0 ± 0.1)

(b) (30.0 ± 0.9)/(5.0 ± 0.2)

(c) log10(1000 ± 2)

(d) (20.0 ± 0.3) exp[−(2.00 ± 0.01)]
3.2 The half-life time τ1/2 of a first-order chemical reaction is determined at

four different temperatures. The temperatures are accurate; the standard
uncertainties in τ1/2 are indicated:
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Temperature (◦C) half-life τ1/2 (s)

510 2000 ± 100
540 600 ± 40
570 240 ± 20
600 90 ± 10

Determine the rate constant k (what unit?) and its standard uncertainty, as
well as ln k and its standard uncertainty, at every temperature. Now plot ln k
with error bars versus the reciprocal absolute temperature. Also, plot k with
appropriate error bars on a logarithmic scale versus the reciprocal absolute
temperature. Compare the two plots.

3.3 Suppose you determine the acceleration of gravity g by measuring the
oscillation period T of a pendulum with length l. The value of g follows
from

g = 4π2l/T2.

You measure T = 2.007 ± 0.002 s and l = 1.000 ± 0.002 m. Determine g
and its standard uncertainty.

3.4 The Gibbs activation function for a chemical reaction "G‡ follows from
the rate constant k according to Eyring’s equation

k = (kBT/h) exp(−"G‡/RT).

Here kB is Boltzmann’s constant, h is Planck’s constant and R the gas con-
stant (see the data sheet PHYSICAL CONSTANTS on page 209, or use the
Python module physcon.py).
(a) If the rate constant k has an uncertainty of 10%, what is the resulting

uncertainty in "G‡?
(b) Discuss how an uncertainty in the temperature propagates into "G‡.
(c) If "G‡ = 30 kJ/mol and T = 300 K, how large is the uncertainty in

"G‡ as a result of an uncertainty of 5 ◦C in the temperature?

3.5 (this exercise relates to Appendix A2 on page 138)
Generate an array with 1000 samples of the volume of spheres, of which the
radii are samples of a normal distribution with mean 1.0 mm and standard
deviation 0.1 mm. Compare the mean of the distribution with the volume of
a sphere with radius 1.0 mm and discuss whether the latter is a biased result.
Discuss the significance of the bias. Plot the cumulative volume distribution
on a probability scale.
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Every measurement is in fact a random sample from a probability distri-
bution. In order to make a judgment on the accuracy of an experimental
result we must know something about the underlying probability distribu-
tion. This chapter treats the properties of probability distributions and gives
details about the most common distributions. The most important distribu-
tion of all is the normal distribution, not in the least because the central
limit theorem tells us that it is the limiting distribution for the sum of many
random disturbances.

4.1 Introduction
Every measurement xi of a quantity x can be considered to be a random
sample from a probability distribution p(x) of x. In order to be able to analyze
random deviations in measured quantities we must know something about the
underlying probability distribution, from which the measurement is supposed
to be a random sample.

If x can only assume discrete values x = k, k = 1, . . . , n then p(k) forms
a discrete probability distribution and p(k) (often called the probability mass
function, pmf) indicates the probability that an arbitrary sample has the value
k. If x is a continuous variable, then p(x) is a continuous function of x: the
probability density function, pdf. The meaning of p(x) is: the probability that
a sample xi occurs in the interval (x, x + dx) equals p(x) dx.

Probability density functions (or probability mass functions) are defined
on a domain of possible values the random variable can assume. The func-
tion value itself is a non-negative real number. The integral over the domain
(or the sum in the case of a discrete distribution) equals 1, i.e., the pdf
(or pmf) is normalized. In general pdf’s can be multidimensional, i.e., a
function of one, two or more variables. Thus the joint pdf p(x, y) means
that the probability of finding a sample xi in the interval (x, x + dx) and
of finding a sample yi in the interval (y, y + dy) is given by p(x, y) dx dy.
If a pdf p(x, y) is integrated over one variable, say y, the resulting pdf
is called the marginal pdf of x; multiplied by dx it is the probability of

27
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finding xi in the interval (x, x + dx) irrespective of the value of y. Proba-
bilities can also be defined under a restrictive condition, e.g. p(x|y) is the
conditional probability of finding x, given the value of y. The conditional
probability makes sense only when x and y are somehow related to each
other: if they are independent of each other, p(x|y) obviously does not depend
on y:

p(x|y) = p(x) (x, y independent). (4.1)

The following relations hold:

p(x, y) = p(x)p(y|x) = p(y)p(x|y), (4.2)

p(x, y) = p(x)p(y) (x, y independent), (4.3)

where p(x) and p(y) are the marginal distributions:

p(x) =
∫

p(x, y) dy, (4.4)

p(y) =
∫

p(x, y) dx. (4.5)

The integrations are carried out over the full domains of the variables
y and x.

A summary of the properties of one- and two-dimensional probabil-
ity functions is given on the data sheet PROBABILITY DISTRIBUTIONS on
page 211.

In this chapter we consider the properties of a few common one-
dimensional probability distributions: the binomial distribution, the Poisson
distribution, the normal distribution and a few others. The first two are dis-
crete distributions, the latter is a continuous distribution. In the following
chapter on page 53 we consider how, given a series of measured samples,
we can derive the best estimates of properties of the underlying probability
distribution. The real distribution can never be precisely determined because
that would require an infinite number of samples.

We shall also change notation and denote the pdf’s with f (x) rather
than p(x). The reason is that the probability functions we consider in
this chapter are based on counting the frequencies of occurrences of the
possible outcomes given the statistical process that produces the samples.
This is in contrast to more general interpretations of probabilities p(x),
which may include probabilities based on beliefs or best estimates consid-
ering all knowledge we have. Chapter 8 on page 111 elaborates on this
point.
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4.2 Properties of probability distributions
Normalization

Both continuous probability density functions f (x) and discrete probability
mass functions f (k) are normalized, i.e., the sum of all probabilities (over the
possible domain of sample values1) is equal to 1:

∫ ∞

−∞
f (x) dx = 1; (4.6)

n∑

k=1

f (k) = 1. (4.7)

For the continuous density function f (x) we have assumed that the domain of
possible x-values comprises all real numbers, i.e., the interval ⟨−∞, +∞⟩,
but there are also density functions with a different domain, such as [0, 1] or
[0, +∞⟩. Probabilities are never negative: f (k) ≥ 0; f (x) ≥ 0.

Expectation, mean and variance

The expectation of a function g(x) of x over the probability density function
f (x) (sometimes called the expected value) E[g] of g(x) is defined as

E[g] =
∫ ∞

−∞
g(x)f (x) dx, (4.8)

or, in the discrete case:

E[g] =
n∑

k=1

g(k)f (k). (4.9)

We use the notation E[ ] to indicate that E is a functional, i.e., a function
of a function. Thus the mean of x, usually indicated by µ, is equal to the
expectation of x itself over the density function:

µ = E[x] =
∫ ∞

−∞
xf (x) dx, (4.10)

1 The domain is the set of possible values of k or x; the range of a series of samples is the
difference between the largest and the smallest value occurring in the data set. An interval
is a set of values between a lower and an upper limit; one indicates the interval limits by
[ or ] if the limit itself is included and by ⟨ or ⟩ if the limit is not included. Normal brackets
( or ) may be used when the distinction is irrelevant.
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or, in the discrete case:

µ = E[k] =
n∑

k=1

kf (k). (4.11)

The variance σ 2 of a probability distribution is the expectation of the squared
deviation from the mean:

σ 2 = E[(x − µ)2] =
∫ ∞

−∞
(x − µ)2f (x) dx, (4.12)

or, in the discrete case:

σ 2 = E[(k − µ)2] =
n∑

k=1

(k − µ)2f (k). (4.13)

The square root of σ 2 is called the standard deviation (s.d.) σ . Alterna-
tively the s.d. is called the ‘rms (root-mean-square) deviation’. The s.d. of
the uncertainty distribution of an experimental result is called the standard
uncertainty or standard error or r.m.s. error.

Moments and central moments

These are the most important averages over probability distributions. They
are related to the first and second moment of the distribution. The n-th
moment µn of a distribution is defined as

µn = E[xn]. (4.14)

It is often more useful to employ the central moments which are defined with
respect to the mean of the distribution. The n-th central moment is

µc
n = E[(x − µ)n]. (4.15)

The second central moment is the variance. The third central moment,
expressed in units of σ 3, is called the skewness and the fourth central moment
(in units σ 4) is the kurtosis. Since the kurtosis of a normal distribution equals
3 (see Section 4.5), the excess is defined as the deviation from the kurtosis of
a normal distribution:2

skewness = E[(x − µ)3/σ 3] (4.16)

kurtosis = E[(x − µ)4/σ 4] (4.17)

excess = kurtosis − 3. (4.18)

2 Some books use the name kurtosis or coefficient of kurtosis for what we have defined as
excess.
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Cumulative distribution function

The cumulative distribution function (cdf) F(x) gives the probability that a
value x is not exceeded:

F(x) =
∫ x

−∞
f (x′) dx′, (4.19)

or, in the discrete case:

F(k) =
k∑

l=1

f (l). (4.20)

Note that the value f (k) is included in the cumulative sum F(k). The function
1 − F(x) is called the survival function (sf), indicating the probability that x
is exceeded:

sf (x) = 1 − F(x) =
∫ ∞

x
f (x′) dx′, (4.21)

or, in the discrete case:

sf (k) = 1 − F(k) =
n∑

l=k+1

f (l). (4.22)

From these definitions it is clear that

f (x) = dF(x)
dx

(4.23)

f (k) = F(k) − F(k − 1). (4.24)

The function F is monotonically increasing, with a value in the interval [0, 1].
Cumulative distribution functions F and their inverse functions F−1 are nec-
essary to determine confidence intervals and confidence limits. For example,
the probability that x lies between x1 = F−1(0.25), i.e., F(x1) = 0.25, and
x2 = F−1(0.75), i.e., F(x2) = 0.75, is 50%. The values of x that will be
exceeded with a probability of 1% is equal to F−1(0.99), i.e., F(x) = 0.99.
The value F−1(0.5), i.e., the value of x for which F(x) = 0.5, is the median
of the distribution; F−1(0.25) and F−1(0.75) are the first and third quartiles
of the distributions. Similarly one may define deciles and percentiles. The
q-th quantile equals x if F(x) = q.

Characteristic function

Every probability density function f (x) has associated with it a characteristic
function +(t), which is defined as

+(t) def= E[eitx] =
∫ ∞

−∞
eitxf (x) dx. (4.25)
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The characteristic function is mathematically helpful to analyze probability
functions. For example, its series expansion in t generates moments of the
distribution. For the usual statistical data treatment you will not require the
characteristic function. Interested readers, however, who are not unfamiliar
with Fourier transforms, may consult Appendix A3 on page 141 for further
details.

A word on nomenclature

The word probability distribution is often used in a general sense, meaning
any kind of discrete or continuous probability function. However, sometimes
the term distribution function is specifically meant to indicate the cumu-
lative distribution function F(x), in contrast to the continuous probability
density function f (x) or the discrete probability mass function f (k). To avoid
confusion, it is recommended that the modifier “cumulative” is included
in this case. Instead of “probability distribution” you should use the term
“probability density function” when the latter is meant.

Numerical values of distribution functions

Statistical tables generally give both the density functions and the cumula-
tive functions. They can – among others – be found in Beyer (1991), in
Abramowitz and Stegun (1964), and in the Handbook of Chemistry and
Physics (CRC Handbook, each year). Values can more easily and more accu-
rately be extracted from computer packages. The Python extension SciPy
offers a package “stats” with more than 80 continuous and 12 discrete distri-
butions; for each one can invoke the probability density function (pdf), the
cumulative distribution function (cdf), the survival function (sf), the percent-
point function (ppf, inverse of cdf) and the isf (inverse survival function).
Random variates (rvs) and common statistical properties can be obtained
from each distribution as well.

4.3 The binomial distribution
Definition and properties

Suppose you measure a binary quantity, i.e. a quantity that can assume either
one of two values (e.g. 0 or 1, false or true) and every measurement has
a probability p to be 1 (or true), then the probability f (k; n) that out of n
measurements exactly k have the outcome 1, equals

f (k; n) =
(

n
k

)
pk(1 − p)n−k. (4.26)
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Here (
n
k

)
= n!

k!(n − k)! (4.27)

is the binomial coefficient “n over k” indicating the number of ways k objects
can be chosen from a set of n objects. The random process to choose one
possibilities out of two, with probability p, is called a Bernouilli trial. Some
important properties of the binomial distribution are:

mean: µ = E[k] = pn, (4.28)

variance: σ 2 = E[(k − µ)2] = p(1 − p)n, (4.29)

s.d.: σ =
√

p(1 − p)n. (4.30)

Appendix A4 explains why.

Variance proportional to number

The variance is proportional to the total number of observations n (called the
sample size). Therefore the relative standard uncertainty is inversely propor-
tional to the square root of the sample size. This is an important rule of thumb
to remember: for a 100 times larger sample size the relative uncertainty
becomes 10 times smaller. You can buy accuracy by doing more experiments.

Note that for small p the standard deviation is approximately equal to the
square root of the mean number of observed events pn. If you have observed
100 events that only seldom occur, the s.d. in the observed number is 10, or
10%; if you have observed 1000 events, the s.d. is 32 or 3.2%. If you want
to gain a factor of 10 in accuracy, your observation time must be 100 times
longer.

Examples

Here are a few examples of binomial distributions. Figure 4.1 shows the
probability of obtaining k heads in 10 coin tosses, assuming the probability
of obtaining a head in each throw is 0.5. Figure 4.2 shows the probability
of obtaining k times a “six” in 60 throws of a perfect dice. You see that
the distribution tends to become symmetrical for larger numbers, even if the
probability for a single event is far from the symmetrical 0.5.

Figure 4.3 relates to “extra-sensory perception” (ESP) experiments para-
psychologists used to perform to investigate the possibility of telepathy.3

3 This is a case where scientists would demand a very high significance level in order to even
consider positive experimental outcomes. Previous experimenters have fallen into all the
statistical pitfalls you can think of. See Gardner (1957).
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Figure 4.1 The probability of obtaining k heads in 10 coin tosses.

Figure 4.2 The probability of obtaining k faces “6” in 60 throws of a dice.

The “sender” sequentially selects cards from a well-mixed pack of “Zener
cards,” which contains an equal number of five types of card (each with a
simple figure: square, circle, cross, star, wavy lines) and concentrates for a
moment on the figure; the “receiver” notes which card he thinks has been
drawn, without being able to see the card. One such experiment involves 25
cards. Assuming that telepathy does not exist, the probability of a correct
guess is 0.2 and on average 5 cards will be guessed correctly. The probabil-
ity of guessing more than k cards correctly is the binomial survival function
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Table 4.1 The binomial survival function
1 − F(k), giving the probability that more
than k Zener cards are guessed correctly
out of 25 trials.

≥(k + 1) >k survival 1 − F(k)

12 11 0.001 540
11 10 0.005 555
10 9 0.017 332

9 8 0.046 774
8 7 0.109 123
7 6 0.219 965

Figure 4.3 The “survival”, i.e. the probability of guessing more than k cards
correctly out of 25 trials. There are five different cards which are randomly
presented.

(sf), which is 1 minus the cumulative distribution function (cdf). The exact
meaning of the cdf and sf is:

cdf : F(x) : Prob{k ≤ x} = F(x); (4.31)

sf : 1 − F(x) : Prob{k > x} = 1 − F(x). (4.32)

The survival function is given for some relevant values in Table 4.1 and in
Fig. 4.3.
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See Python code 4.1 on page 173 for codes to generate the functions and
figures of this section.

From binomial to multinomial

When a random choice is made not among two possibilities, but among a
number m possibilities, the statistics is that of a multinomial distribution. For
example, an opinion poll asks which choice a voter will make among the
five parties that figure in an election. Or, a certain sequence of amino acids
in a protein can be classified as either α−helix, β−sheet or random coil. Or,
you gather random variables in n distinct bins. The details of the multinomial
distribution can be found in Appendix A4.

4.4 The Poisson distribution
You will encounter the Poisson distribution whenever you are counting num-
bers, such as a number of objects in a small volume of a homogeneous
suspension (e.g. bacteria under a microscope or fish in a representative vol-
ume in a lake), or a number of photons detected in a given time interval "t
with a “single photon counter,” or the number of gamma quanta counted in a
given time interval originating from the radioactive decay of unstable nuclei.

If µ is the average number of events that can be expected, then the
probability f (k) of counting exactly k events is given by the Poisson
distribution:

f (k) = µke−µ/k! (4.33)

The Poisson distribution is a limiting case of the binomial distribution
(p → 0); for large k the Poisson distribution itself approaches a normal
distribution. Details are given in Appendix A4.

The Poisson mass distribution is normalized. The mean and variance are
given by:

E[k] = µ, (4.34)

σ 2 = E[(k − µ)2] = µ. (4.35)

The most important property of the Poisson distribution is that the standard
deviation σ equals the square root of the mean µ. For example, a mea-
surement counting 10 000 photons has a s.d. of 100, i.e. an uncertainty of
1 percent. When the number of events is sufficiently large (say, >20) then
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Figure 4.4 The probability that exactly k events are observed in a given time interval,
when the events arrive randomly with an average of 3 per time interval.

the Poisson distribution is almost equal to the normal distribution with mean
µ and s.d.

√
µ.

Figure 4.4 shows the probability f (k) of observing k events when the mean
number µ = 3. For example, a specialized hospital ward admits on the aver-
age 3 urgent patients per day; f (k) is the probability that on a given day k
patients arrive, assuming the patients arrive randomly. See Exercise 4.6.

4.5 The normal distribution
See data sheet NORMAL DISTRIBUTION on page 205.

The Gauss function

The pdf of the normal distribution is known mathematically as a Gauss
function:

f (x) = 1

σ
√

2π
exp

[
− (x − µ)2

2σ 2

]
. (4.36)

The mean is µ, the variance is σ 2 and the s.d. is σ . The normal distribution
is usually indicated by N(µ, σ ). When we make the substitution

z = x − µ

σ
, (4.37)
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Figure 4.5 The standardized normal probability density function (pdf) f (z); z =
(x − µ)/σ , with µ being the mean and σ the standard deviation of the random
variable x.

the standardized normal distribution is obtained, indicated by N(0, 1). Its
density distribution is

f (z) = 1√
2π

exp
[
− z2

2

]
. (4.38)

Figure 4.5 gives the standardized normal pdf. On the horizontal axis the
reduced coordinate (x − µ)/σ is given. Thus the value 0 corresponds with
x = µ and the value 1 with x = µ + σ . The grey area gives the (integrated)
probability that x lies between the values µ − σ and µ + σ ; this follows
from the cumulative distribution function F(z) and the probability equals
F(1) − F(−1) = 1 − 2F(−1) = 0.6826 (68%).

Figure 4.6 gives the cumulative distribution function (cdf)

F(z) =
∫ z

−∞
f (z′) dz, (4.39)

which expresses the probability that a sample from the normal distribution
is not larger than z. The survival function (sf) 1 − F(z), expressing the
probability that a normal variate exceeds the value z, is also given.
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Figure 4.6 The standardized normal cumulative probability distribution function
(pdf) F(z); z = (x − µ)/σ , with µ being the mean and σ the standard deviation of
the random variable x. The dashed curve is the survival function (sf) 1 − F(z).

Relation of cdf to error function

The function F(z) can be expressed in terms of the error function erf (z),
which is a mathematical function defined as:4

erf (x) def= 2√
π

∫ x

0
exp(−t2) dt. (4.40)

Its complement is the complementary error function erfc:

erfc (x) = 1 − erf (x). (4.41)

The relation is:

F(x) = 1
2

erfc
(
−x/

√
2
)

for x < 0; (4.42)

= 1
2

[
1 + erf (x/

√
2)

]
for x ≥ 0. (4.43)

Probability scales

In order to judge whether a distribution is approximately normal, it is conve-
nient to plot the cdf on a scale designed to produce a straight line in case of

4 See, for example, Abramowitz and Stegun (1964).
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Figure 4.7 The cumulative distribution function (cdf) of a normal distribution
N(6, 2), i.e. µ = 5; σ = 2 is plotted on a “probability scale” (drawn line). Dashed
line: N(4, 1).

normal distributions. Graph paper with appropriate divisions along the ordi-
nate is commercially available (probability paper; print-yourself files can be
downloaded from www.hjcb.nl/). With adequate computer software you can
let the computer make the plots, rather than plotting by hand on paper. The
plotting package plotsvg allows one to plot functions and cumulative dis-
tributions on a probability scale and such plots are often used in this book.
Figure 4.7 plots two perfect normal distributions N(6, 2) and N(4, 1) on a
probability scale: of course these are perfect straight lines. One can read the
mean value and the standard deviation from such plots.

Significant deviations

Table 4.2 gives the probability that a sample x lies in a given interval and
the probability that x exceeds a given value (the survival function 1 − F(z)).
You see that deviations of more than 2σ don’t occur very often; deviations
of more than 3σ are very rare. So if you find deviations of more than 3σ
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Table 4.2 Probability that a sample from a normal
distribution occurs in the interval (µ − ", µ + ")

and the probability that a sample value exceeds
µ + " (or, equivalently, is smaller than µ − "),
for various values of ".

deviation " Probability Probability
in units σ in (µ − ", µ + ") >µ + "

0.6745 50% 25%
1 68.3% 15.9%
1.5 86.6% 6.68%
2 95.45% 2.28%
2.5 98.76% 0.62%
3 99.73% 0.135%
4 99.993 66% 0.003 17%
5 99.999 943% 0.000 029%

in an experiment, you may safely conclude that is it improbable that such a
deviation occurs by chance and designate the deviation as significant. Some
researchers prefer to set the significance limit at 2.5σ or even at 2σ ; what is
best depends on the purpose (i.e. on the consequences of the decision taken
on the basis of the measurement) and on the taste of the researcher. Of course
the criterium used should always be made specific.

You should be especially careful when you consider the significance of
one out of a series of experiments. It is not at all significant (on the contrary,
it is quite likely with a probability of more than 70%) that at least one out
of 100 independent measurements deviates more than 2.5σ ; if you wish to
maintain a significance level of e.g. 5% on the whole series of experiments,
you should insist on a deviation of 3.5σ for at least 1 out of 100 results.
Selecting the “significant” experiments and disregarding the “insignificant”
ones, is a scientific crime. See pages 3 and 4 of the data sheet NORMAL

DISTRIBUTION on page 205.

4.6 The central limit theorem
Of the various types of probability distributions the normal distribution is by
far the most common in practice. The reason for this is that random fluctua-
tions that are a result of the sum of many independent random components,
tend to be distributed normally, independent of the type of distribution sam-
pled by each component. This is the famous central limit theorem. The mean
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or variance of the distribution of the sum equals the sum of the means or
variances of the distribution of each of the contributing components: More
precisely:

Let xi, i = 1 . . . n be a set of random variables with arbitrary probability
distribution with finite mean mi and variance σ 2

i . Then for large n the ran-
dom sum variable x = x1 + · · · + xn tends to sample a normal distribution
N(m, σ ), with

m =
n∑

i=1

mi, (4.44)

σ 2 =
n∑

i=1

σ 2
i . (4.45)

The theorem should be used with caution: if the distribution functions of
contributing components have a non-existing (infinite) variance, the central
limit theorem breaks down. Heavily skewed distributions may give problems
as well. Appendix A5 on page 148 gives details.

Although the central limit theorem is very important and powerful, it
is not a general justification for the assumption of normality of underly-
ing probability distributions. Relatively small deviations are often normally
distributed. This is not always true for larger deviations, for example in quan-
tities like a concentration or an intensity that can only be positive. Be aware
that in such cases non-normal, skewed, distributions are likely to occur.

4.7 Other distributions
There are many other probability distributions. Some are described shortly in
this section; others we shall encounter later in this book: they are important
for the assessment of confidence intervals for the properties derived from
data series.

Log-normal distribution

The log-normal distribution is a normal distribution of log x instead of x. It is
of course only defined for x > 0. This distribution is especially appropriate
for variables that can never be negative, such as a concentration, a length,
a volume, a time interval, etc.

The standard form for the density distribution function, as available in
Python through the SciPy function stats.lognorm.pdf, is

fst(x, s) = 1

sx
√

2π
exp

[

−1
2

(
ln x

s

)2
]

, (4.46)
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Figure 4.8 The probability density function (pdf) of log-normal distributions
f (x; µ, σ ), see (4.47), for various values of µ. The value of σ = 1 for all curves.

but a more convenient form is

f (x; µ, σ ) = 1
µ

fst

(
x
µ

,
s
µ

)
. (4.47)

In this form f (x; µ, σ ) approaches the normal density function N(µ, σ )
when µ/σ becomes larger. Figure 4.8 shows examples of the log-normal pdf
with various µ, but all with the same σ = 1. For µ = 10σ the shape of the
curve is virtually indistinguishable from the normal pdf.

The Lorentz distribution: undefined variance

A somewhat unusual distribution, but one with special interest, is the Lorentz
distribution, also known by the name Cauchy distribution:

f (x; µ, w) = 1
πw

[

1 +
(

x − µ

w

)2
]−1

, (4.48)

where µ is the mean and w is a width parameter. At x = µ ± w the function
is at half its maximum height. A measure for the width is the FWHH (full
width at half height), equal to 2w. This distribution may arise from spec-
troscopic experiments: the frequency distribution of emitted quanta from a
sharp lifetime-limited excited state has a Lorentzian shape. The Lorentzian
shape also arises in another context: Student’s t-distribution for one degree
of freedom (see data sheet STUDENT’S T-DISTRIBUTION on page 213).
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Figure 4.9 The probability density function (pdf) of the Lorentz distribution (drawn
lines) f (x; 0, 1), see (4.48), compared with a normal distribution (broken lines) at
the same maximum height of the pdf, i.e. the same slope of the cdf at the median
(σ = √

π/2). Left: pdf, right: cdf on a probability scale.

The cumulative distribution is

F(x) = 1
2

+ 1
π

arctan
x
w

. (4.49)

The problem with this distribution is that it has an infinite variance. Thus
it makes no sense to estimate its variance from an actual data set. For dis-
tributions like this, including other distributions with wide tails, one should
use robust methods (see Section 5.7 on page 63) to assess the accuracy of the
mean of a series of measured samples.

Figure 4.9 depicts the Lorentz distribution, together with a normal
distribution fitted with the same maximum of the pdf.

Lifetime and exponential distributions

Special types of distribution arise from considering lifetime distributions.
For example, consider a large batch of incandescent lamps, all new from the
factory. At time t = 0 you switch them all on and note the moment each lamp
fails. The fraction of lamps that fails between t and t + "t (or equivalently,
the fraction that has a lifetime between t and t +"t) is f (t)"t (for small "t),
where f (t) is the probability density function for the lifetime distribution. The
cumulative distribution function F(t) =

∫ t
0 f (t′) dt′ is the fraction that failed

up to time t, and the survival function 1 − F(t) is the fraction that survives
at time t (i.e., the fraction that has not (yet) failed). Another example is the
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lifetime distribution of individuals in a population. Consider a large number
of individuals and set for each t = 0 at birth; f (t)"t is the fraction with life
span between t and t + "t; F(t) is the fraction with life span ≤ t; 1 − F(t) is
the fraction that survives at time t. An example from the molecular sciences is
the time dependence of fluorescent intensity (emitted radiation quanta) after
a fluorescent molecule has been excited by a short laser pulse at t = 0; f (t)
is the normalized time-dependent intensity.

The hazard function

The lifetime probability density or its cumulative distribution function
describes the lifetime statistics, but does not describe the basic cause of death
or failure. More basic is the hazard function (also called the failure rate func-
tion) h(t). The hazard function is the probability density that a member of the
population with age t will fail (die, drop out). In other words, the probabil-
ity that a member fails in a small time interval "t around t equals h(t)"t.
Because only a fraction 1 − F(t) is present in the population at time t, the
following relation holds:

h(t) = f (t)
1 − F(t)

. (4.50)

From this relation, and using the fact that f is the derivative of F, we can
solve for the lifetime density function:

f (t) = h(t) exp
[
−

∫ t

0
h(t′) dt′

]
. (4.51)

The exponential distribution

Several distribution functions result from various choices of h(t). By far the
simplest choice, which describes quite common phenomena in physics or
chemistry such as radioactive decay and first-order chemical reactions, is

h(t) = k (constant), (4.52)

called the rate constant. Its meaning is the relative fraction of the population
members (e.g. number of radioactive nuclei n, concentration of reactant c,
etc.) that disappear per unit of time

dn
dt

= −kn, (4.53)

dc
dt

= −kc. (4.54)
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Figure 4.10 The distribution functions (pdf and cdf) of three Weibull distributions
with c = 0.5, 1, 2. For c = 1 the exponential distribution is obtained.

It now follows from (4.51) that

f (t) = ke−kt (4.55)

and
F(t) = 1 − e−kt. (4.56)

This is an exponential distribution. The exponential distribution (c = 1) is
depicted in Fig. 4.10

Population statistics

For the purpose of population statistics, e.g. for human population dynamics
or for failure analysis, various general forms for the hazard functions have
been proposed, leading to more general probability density functions for pop-
ulations. The Weibull distribution5 is a generalized form of the exponential
distribution: the hazard function has the form

h(t) = ctc−1. (4.57)

Here c sets the time dependence of the failure rate; c = 1 recovers the expo-
nential pdf, c < 1 means a higher initial rate (like a high infant mortality)
and c > 1 means a higher failure rate at older age. The corresponding pdf is

f (t) = ctc−1 exp[−tc] (4.58)

5 A valuable source for information on distributions is the on-line NIST/SEMATECH
e-Handbook of Statistical Methods on www.itl.nist.gov/div898/handbook.
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and the cumulative distribution (cdf) is

F(t) = 1 − exp[−tc]. (4.59)

Additional location (translating t) and scale (scaling t) parameters may
be included. Figure 4.10 gives a few examples of Weibull distributions,
including the exponential distribution.

See for the generation of Weibull distribution functions Python code 4.2 on
page 174.

Chi-squared distribution

This is the distribution of the sum χ2 of the squares of a number of normally
distributed variables. The χ2-distribution is used to obtain confidence inter-
vals for predicted values when the s.d. of the data is known. See Section 7.4
on page 95 and the data sheet CHI-SQUARED DISTRIBUTION on page 199.

Student’s t-distribution

This is the distribution of the ratio of a normally distributed variable and a
χ2-distributed variable. The t-distribution is used to assess confidence inter-
vals for the mean, given a series of normally distributed data, when the s.d.
of the distribution is not known beforehand. See Section 5.4 on page 59, the
second example of Section 8.4 on page 115 and the data sheet STUDENT’S

T-DISTRIBUTION on page 213.

F-distribution

This is the distribution of the ratio of two χ2-distributed variables. The
F-ratio is the ratio between two mean sum of squares (i.e., the sum of square
deviations of a set of samples with respect to their average or with respect
to a predicted value, divided by the number of degrees of freedom ν). The
F-distribution (named by Snedecor) is the cumulative distribution function
of the F-ratio Fν1,ν2 for the case that both sets of samples come from dis-
tributions with the same variance. It is usual to take the ratio as the largest
value divided by the smallest value; if Fν1,ν2 exceeds the 99 percent level,
the probability that both sets of samples come from the same distribution is
less than 1 percent. The equation for Fν1,ν2 and a short table are given in data
sheet F-DISTRIBUTION on page 201.

The F-distribution is useful in linear regression (see Chapter 7) in order
to assess the relevance of the model that is fitted to the data. It compares the
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variance in the data as explained by the model with the remaining variance of
the data with respect to the model; the cumulative probability of the F-ratio
then indicates whether the model contributes significantly to the explanation
of the data variance.

The use in regression is a special case of the general “analysis of vari-
ance” (ANOVA), which is widely used in the assessments of the influence of
external factors on a normally distributed variable. Such assessments belong
to the statistical domain of experimental or factorial design: the analysis of
the influence of a designed external factor. As this book concentrates on the
processing of data to estimate probability distributions of parameters, the sta-
tistical treatment of experimental design falls outside of its scope.6 However,
in order to give some insight into the use of F-distributions, a simple one-way
ANOVA example is given below.

A group of patients, randomly selected from a homogeneous population,
is treated with a drug, while another group, randomly selected from the same
population, is treated with a placebo. The groups are compared by mea-
suring an objective test value and a statistical test is performed to assess
the probability that the drug treatment has been effective. The assessment is
phrased in terms of the probability that the null hypothesis H0 = “the drug
has no influence” is true. One computes two types of mean squared averaged
deviations: first of the averages of each group with respect to the global aver-
age (“between-groups variance” or mean of the “regression sum of squares”
SSR) and second of the values within each group with respect to the average
of that group, added over all groups (“within-group variance” or mean of
“error sum of squares” SSE). Each sum of squares is divided by the number
of degrees of freedom ν, i.e., the number of samples minus the number of
adjustable parameters. For the “between-groups variance” ν1 = k − 1 when
there are k groups; for the “within-group variance” ν = n − k. In this exam-
ple there are two groups: k = 2, one control group with n1 observations and
average µ1, and one treated group with n2 observations and average µ2. The
overall average of n = n1 + n2 observations yi is µ. The F-ratio is

F1,n−2 = SSR/1
SSE/(n − 2)

, (4.60)

where

SSR = n1(µ1 − µ)2 + n2(µ2 − µ)2; (4.61)

SSE =
n1∑

i=1

(yi − µ1)
2 +

n∑

i=n1+1

(yi − µ2)
2. (4.62)

6 There are many books covering factorial design, e.g. Walpole et al. (2007).
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The F-test – in fact, the value 1 − F(F1,n−2) – now tells you what the prob-
ability is that at least this ratio would be found if your null-hypothesis were
true. If this value is small (say, less than 0.01), you may conclude that the
treatment has a significant effect.

Example

Imagine that you are a physician and you want to test a new drug for treating
patients with high blood pressure. You select a group of ten patients with
high blood pressure who do not (yet) receive treatment and who all have
agreed to participate in your trial. You design a standard way to determine
the blood pressure (e.g. the average of systolic pressures at 9 am on five
consecutive days) and define the test value e.g. as the blood pressure after two
weeks of treatment minus the value before treatment. Then you select five
patients randomly to form the “treatment group”; the remaining five patients
form the control group. The treatment group receives the drug treatment and
the control group receives an indistinguishable placebo. You will accept the
treatment as effective when the null hypothesis is rejected at a 95 percent
confidence level.7 The outcome of the experiment (the test values in mm Hg)
is as follows:

treatment group: −21, −2, −15, +3, −22
control group: −8, +2, +10, −1, −4

The treatment group has an average of −11.5 and the control group has an
average of −0.2. This looks like a positive result, but if you evaluate the
appropriate sums you obtain:

SSR = 314; SSE = 698; F1,8 = [314/1]/[698/8] = 3.59; F(3.59) = 0.91.

This means that there is a 9 percent probability that the null hypothesis (“the
treatment has no effect”) is true and a 91 percent probability that the alterna-
tive hypothesis (“the treatment is effective”) is true. So, although the result
suggests that the treatment is effective, you cannot come to that conclusion

7 It is important that you define all experimental details and the statistical methods to be used
before you do the experiment without changing your methods during or after the
experiment. The selection of patients and the performance of the measurements must be
completely unbiased. In a serious experiment neither the patient nor the physician who
performs the measurements is allowed to know which of the patients receive the treatment
(a double-blind experiment). A serious experiment should involve a much larger group and
include safeguards when intolerable side effects occur or when the treatment appears to be
so effective that it would be ethically unacceptable to deprive the control group from the
benefits of treatment. A serious hospital or research organization will set rules for such
experiments on humans and establish an ethical approval committee. A serious journal will
evaluate the quality of the experiment before publishing the results.
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when you adhere to your preset 95 percent confidence level! What you have
to do, of course, is to repeat your experiment with a (much) larger number of
patients.

Summary You now have distinguished probability density dis-
tributions, cumulative probability distributions and survival
functions. You know what the expectation of a function over a
given distribution is and you know how the mean, the variance,
the standard deviation, the skewness and the kurtosis of a dis-
tribution are defined. The binomial distribution is the simplest
discrete distribution; it is suitable to describe the random pick-
ing of one out of two unequal possibilities. Random picking of
one out of several possibilities is described by the multinomial
distribution. Random picking of an event on a continuous scale,
as the time at which an impulse or photon is observed, leads
to the Poisson distribution. In the limit of many events the lat-
ter leads to a continuous Gaussian or normal distribution. The
normal distribution is quite common; it emerges when a devi-
ation is composed of many independent random contributions,
irrespective of the individual distributions for each of the con-
tributions (the central limit theorem). Some other distributions
play a role in special applications; lifetime distributions are an
important subclass. Distributions that have infinite variance,
such as the Lorentz distribution, may cause trouble because
common rules do not apply. The chi-square, Student’s t- and
Snedecor’s F-distributions play a role in the evaluation of data
series.

Exercises

4.1 In a lottery 5 percent of the tickets will produce a prize. If you buy ten
tickets, what is the probability that you obtain no prize, 1 prize, 2 prizes,
. . .? Assume that there are so many tickets and prizes that the probability
of obtaining a prize does not depend on the number of prizes you already
have (this is called: a lottery with replacement).

4.2 When it is known that one measurement x has a probability of exceed-
ing a given value xm of 1 percent what then is the probability that at
least one measurement in a series of 20 independent measurements will
exceed xm?

4.3 There will be elections where voters can elect one of two presidential can-
didates. You want to perform an opinion poll and predict the outcome
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with a standard uncertainty of 1 percent. You expect roughly equal votes
for either candidate. Assume that you are able to obtain the opinion of
an unbiased random selection of voters, how many people do you have to
select (what should be your sample size)?

4.4 You observe n independent events, each of which can have an outcome of
0 or 1. You count k0 zeros and k1 ones (k0 + k1 = n).
(a) What is your best estimate of the probability that a one appears?

(b) Give an estimate for the standard uncertainty in k0.

(c) What is the standard uncertainty in k1?

(d) You are finally interested in the ratio r = k1/k0. What is the standard
uncertainty in r?

4.5 Show that the Poisson function 4.33 is normalized.

4.6 (a) With the hospital example of Fig. 4.4: assume each patient occupies
a bed for one day and the ward has seven beds. When more than
seven patients arrive, the excess is transported to another hospital.
How many beds are occupied on average?

(b) How many patients per day are transported on average?

(c) If an unoccupied bed costs $ 300 per day and transporting one patient
costs $ 1500, financially optimize the number of beds. How many
patients per day are transported in the optimized case?

4.7 (a) A photosensitive device produces one electrical impulse for every
absorbed photon, but also produces impulses when there is no light
(the “dark current”). The number of impulses counted in 1 s is 100
without radiation and 900 with radiation. How large is the relative
standard uncertainty in the measured radiation intensity?

(b) How large will be the relative standard uncertainty in the measured
radiation intensity when the measurement (with and without radiation)
is repeated 100 times?

4.8 What is the probability that a sample from a normally distributed quantity
lies in the interval [µ − 0.1σ , µ + 0.1σ ]?

4.9 (See the data sheet NORMAL DISTRIBUTION on page 205)
Using the approximation for large x mentioned on page 2 of the data sheet
NORMAL DISTRIBUTION, determine the probability that the value x = 6σ
is exceeded. Is this approximation valid for this case?

4.10 The central limit theorem has a useful application: By adding 12 random
numbers r, which are uniformly distributed over the interval [0, 1⟩, and
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subtracting 6 from the sum, you obtain in a good approximation a sample
from a normal distribution with µ = 0 and σ = 1:

x = ∑12
i=1 ri − 6

(a) Show that ⟨x2⟩ = 1.
(b) Generate a list of 100 normally distributed numbers by this method.
(c) Plot the cdf of this list on a “probability” scale.

4.11 Compute the mean and variance of the exponential distribution.

4.12 Refer to the example on page 49. In a similar trial the following results
were obtained:

treatment group: −6, 2, −8, −7, −12
control group: 5, −1, 3, −4, 0

Compute the F-ratio and the corresponding cumulative probability using
the F-distribution. What conclusions would you derive from this F-test?



5 Processing of experimental data

This chapter is about the processing of data in its simplest form: given a
number of similar observations xi = µ+ϵi of an unknown quantity µ, yielding
values that only differ in their random fluctuations ϵi, how can you make
the best estimate µ̂ of the true µ? And how can you best estimate the
accuracy of µ̂, i.e., how large do you expect the deviation of µ̂ from the true
µ to be? Each observation is a sample from an underlying distribution; how
can you characterize that distribution? If you have reasons to assume that
the underlying distribution is normal, how do you estimate its mean and
variance and how do you assess the relative accuracy of those parameters?
And how do you proceed if you don’t wish to make any assumptions about
the underlying distribution?

Suppose you have a number of similar observations xi, differing only in devi-
ations of random character. Assume for the time being that the probability
distribution of those random deviations is a normal distribution, character-
ized by a mean µ and a standard deviation σ or variance σ 2. Although you
don’t know the real distribution function because your data set is limited
(and these data are only samples from the distribution), it is possible to make
estimates of µ and σ . Such estimates are often indicated by a hat over the
symbol: µ̂, σ̂ . What you really want to know is the best estimate for the true
value (e.g. the mean) and the uncertainty in that estimate. In practice you can
use the estimated variance of the distribution to derive the uncertainty in the
mean.

In this chapter we shall first look at the distribution function of the data
(Section 5.1) and then indicate how the properties of the data (Section 5.2)
lead to estimation of the properties of the distribution function (Section 5.3).
The uncertainties in the estimates are discussed for the mean in Section 5.4
and for the variance in Section 5.5. Section 5.6 considers the case that
individual data have different statistical weights. Finally, Section 5.7 treats
some methods that are robust against dependency on the exact shape of the
underlying distribution.

53



54 PROCESSING OF EXPERIMENTAL DATA

5.1 The distribution function of a data series
In order to get an impression of the distribution of the data it is useful to plot
the data in a histogram. This is done by first sorting the data in increasing
order and subsequently grouping the data in predetermined intervals. A plot
of the number of observations in each interval, e.g. as bars, versus the central
values of the intervals is called a histogram.

Be careful with computer programs that generate fancy histograms. For
example, if you display a perspective view using three-dimensional bars, the
point of view may be chosen such that certain bars appear relatively larger
than they are. Horizontal lines may appear as having positive or negative
slopes, and the reader may be misled by the graph. The same happens when
icons are used instead of lines or bars, e.g. an oil barrel to indicate the volume
of oil production: a barrel that is twice as large gives the impression of an
increase much larger than a factor of two. It is naive to use fancy displays for
esthetical reasons if they produce misleading results; it is a scientific crime
to purposely construct misleading displays.1

Let us use the example “Thirty Observations” given in Chapter 2 on
page 6. The data, already sorted, are given in Table 2.1 on page 6 and a
histogram is shown in Fig. 2.3.

A histogram is an approximation to the probability density function that is
sampled by the data. When the number of observations is limited, as in the
present example of thirty observations, a histogram is quite noisy and it is
difficult to judge the probability density function from a fit to the histogram.
It is then much better to display the cumulative distribution of the data. This
is quite similar to the cumulative distribution function F(x) of a continuous
probability distribution, as described in the previous chapter (see page 31),
except that the data are now discrete. For a set of n values x1, . . . , xn, the
cumulative distribution Fn(x) is defined as

Fn(x) = 1
n

n∑

i=1

I(xi ≤ x), (5.1)

where I(condition) is the indicator function, defined as equal to 1 when con-
dition is true and equal to 0 otherwise. Thus Fn(x) is equal to the fraction of
all samples xi for which xi ≤ x. So, between xi−1 and xi the function is equal
to (i − 1)/n, but it jumps to i/n for x = xi. See Fig. 5.1.

For a series of measurements with equal weight, the cumulative distribu-
tion is constructed by plotting the sequence number in an ordered series of
data x1 ≤ x2 ≤ . . . ≤ xn versus the value of x.

The definition (5.1) assumes that all data points have equal statistical
weights. This is often not the case. For example, the data may have been

1 There is nothing new in misleading your readers. For examples, see Huff (1973).
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1/n

2/n

3/n
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1 − 1/n

1 − 2/n

x1 x2 x3 xn−2 xn−1xn

- - -

Figure 5.1 Detailed aspects of the cumulative distribution function of a set of
discrete data x1, . . . , xn.

gathered in bins before analysis (resulting in a histogram) and the individ-
ual original data are not available anymore. In that case we have, instead
of n points each with statistical weight 1/n, n bins each with a given sta-
tistical weight wi. The latter is the number of observations within the i-th
bin, preferably relative to the total number of observations, so that the total
weight equals 1.

Figure 5.2 is an example of such a histogram. The data are the distribution
of the height of men and women in the Netherlands in the age group 20–29,
averaged over the years 1998, 1999 and 2000. The data are available from
official statistical sources2 but only in the form of percentages in bins of
5 cm width. The bin with midpoint 180 cm accumulates the rounded heights
178–182, i.e., all heights between 177.5 and 182.5 cm. The corresponding
bar in the histogram should be centered at the midpoint value.

The definition of the cumulative distribution of the data is now slightly
different from (5.1), as each point must be scaled according to its weight wi:

Fn(x) =
∑n

i=1 wiI(xi ≤ x)∑n
i=1 wi

. (5.2)

The data should be plotted with the “jumps” located at the midpoints of the
bins. The left panel of Fig. 5.3 plots the population–height data of Fig. 5.2
as a cumulative distribution. The staircase curve, of course, is an approx-
imation to the exact cumulative length distribution. The dots in this figure
denote the points at which this approximate curve coincides with the exact

2 http://statline.cbs.nl/StatWeb/publications.
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Figure 5.2 Histograms of the height distribution of men (light gray) and women
(dark gray) in the age group 20–29 in the Netherlands, averaged over the years
1998, 1999 and 2000. The data have been gathered in bins of 5 cm width.

Figure 5.3 The cumulative probability distribution of the data of Fig. 5.2. Left: lin-
ear scale; right: probability scale. The dots indicate the values where the cumulative
function is exact.

cumulative distribution. These points are located at the boundaries between
bins. Thus, if you want to fit a theoretical distribution function to the exper-
imental data, the theoretical curve should match these points as closely as
possible.
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The right panel of Fig. 5.3 plots the same data on a probability scale (see
page 39). A normal distribution should give a straight line. It is obvious from
this plot that the distribution of the data is very nearly normal.

5.2 The average and the mean squared deviation
of a data series

In this book we denote averages over a data series with ⟨. . .⟩ (e.g. ⟨x⟩).3 In
order to estimate the properties of the probability distribution from which the
data are samples, the following averages are needed:

(i) The average ⟨x⟩ of a series of equivalent (i.e., equally probable)
independent samples xi, i = 1, . . . , n is given by

⟨x⟩ = 1
n

n∑

i=1

xi. (5.3)

See Section 5.6 for the handling of data series with unequal statistical
weights.

(ii) The mean squared deviation (msd) from the average is defined as

⟨("x)2⟩ = 1
n

n∑

i=1

("xi)
2, (5.4)

where "xi is the deviation of the average:

"xi = xi − ⟨x⟩. (5.5)

The root of the msd, which is naturally called the root-mean-squared
deviation (rms deviation or rmsd), is a measure for the spread of the data
around the average.

In order to determine the msd, you must pass through the data twice: first
to determine ⟨x⟩ and subsequently to determine ⟨("x)2⟩. This can be avoided
by using the following identity (see Exercise 5.2):

⟨("x)2⟩ = ⟨x2⟩ − ⟨x⟩2, (5.6)

where

⟨x2⟩ = 1
n

n∑

i=1

x2
i . (5.7)

3 Often averages are denoted with a bar over the variable, e.g. x; this symbol we shall reserve
for averages over time. The expectation (see page 29) is also an average, e.g. over a
probability density function; this kind of average is usually named the mean. In the
literature the term mean is often also employed for averages over data series.
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Note: If the xi’s are large numbers with a relatively small spread, (5.6) could
give inaccurate results by truncation errors, especially on a computer with
single-precision arithmetic. Therefore the general use of (5.6) is not recom-
mended. The remedy is to subtract from all x values a constant which is close
to ⟨x⟩, e.g. the first value of the series. The computed average must of course
be corrected for this shift.

5.3 Estimates for mean and variance
The averages ⟨x⟩ and ⟨("x)2⟩ are simple properties of the data set. We wish
to use those to estimate the mean and variance (and hence also the standard
deviation) of the underlying probability distribution of which the data are
supposed to be independent random samples.

For the mean µ the answer is simple: the best estimate µ̂ for the mean of
the underlying distribution is the average of the data themselves:

µ̂ = ⟨x⟩. (5.8)

It is easy to show that this choice for µ̂ minimizes the total squared deviation
from µ̂:

n∑

i=1

(xi − µ̂)2minimal. (5.9)

For the variance the choice is less straightforward. The best estimate σ̂ 2 for
the variance of the underlying distribution is slightly larger than the mean
squared deviation of the average of the data:

σ̂ 2 = n
n − 1

⟨("x)2⟩ = 1
n − 1

n∑

i=1

(xi − ⟨x⟩)2. (5.10)

The best estimate for the standard deviation (s.d.) of the underlying
distribution is the square root of σ̂ 2:

σ̂ =
√

σ̂ 2. (5.11)

The reason that the factor n/(n−1) figures in (5.10) is that ⟨x⟩ is not exactly
equal to the mean of the distribution, but is itself correlated with the data.
One could loosely say that one data point has been “used” to compute the
average, so that only n − 1 points provide new data to compute the variance.
For a derivation of this term see Appendix A6 on page 151. The equation for
σ̂ 2 is only valid when the data are independent samples (which we assumed
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to be the case). When the data are correlated, σ̂ 2 is even larger. As you can
see, the factor n/(n − 1) is not very important when n is large.4

5.4 Accuracy of mean and Student’s t-distribution
The accuracy of the mean does not equal σ , but it does follow from the
value of σ . The more data points are available, the more accurately the aver-
age of the measured values will represent the true mean of the underlying
distribution. The average ⟨x⟩ is itself also a sample from a probability distri-
bution; we could recover that distribution if we could repeat the whole series
of measurements a larger number of times. When many series of n indepen-
dent measurements had been performed, the variance of the average would
be given by

σ 2
⟨x⟩ = σ 2/n. (5.12)

See Appendix A7 for the derivation of this equation. Thus the estimate σ̂⟨x⟩
of the standard deviation of the average ⟨x⟩ (also called the standard error or
rms error of ⟨x⟩) is:

σ̂⟨x⟩ = σ̂√
n

=
√

⟨("x)2⟩
n − 1

. (5.13)

Also this equation is only valid when the statistical deviations in all measured
values are independent. If they are not independent, the individual fluctua-
tions will not add quadratically and the standard error will become larger.
It is as if the number of independent points is less than n. For the common
case that dependencies in a series of measurements result from correlation
between successive points it is possible to define a correlation length nc. The
equations then remain valid, but the number of data points n must sometimes
be replaced by the effective number n/nc. For example, in (5.10) n/(n − 1)
must be replaced by n/(n − nc), making the estimate of the variation some-
what larger. But the standard inaccuracy in the sample mean becomes

√
nc

times larger, as n in (5.12) must be replaced by n/nc. See Appendices A6 on
page 151 and A7 on page 154 for more details.

When the measurements are samples from a normal distribution, one
might well expect that the quantity

t = ⟨x⟩ − µ

σ̂/
√

n
(5.14)

4 Note that calculators with statistical functions often let you choose between a σ based on n
and a σ based on n − 1. The former gives the rmsd of the data set and the latter gives the
best estimate of the standard deviation of the underlying probability distribution.
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will be a sample from the standard normal distribution N(0, 1). This, how-
ever, is not the case because σ̂ is not exactly equal to the true σ of the
distribution; there is also a spread in σ̂ itself. If this is taken into account,
then one finds that t is a sample from a distribution called the Student’s
t-distribution.5 For details see the data sheet STUDENT’S T-DISTRIBUTION

on page 213. For a derivation in a Bayesian context see the second example
in Section 8.4 on page 115.

In the limit of large numbers of data points the t-distribution equals a
normal distribution, but for small numbers the t-distribution is broader. The
t-distribution has as parameter the number of degrees of freedom ν = n − 1,
one less than the number of (independent) data points. One data point has
already been “used” to determine the average, just as in the case of the
estimation of σ , see (5.10). It is clear that it is only possible to say any-
thing about the accuracy of the mean when at least two data points are
available.

When the t-distribution is used, one can best give a confidence interval,
e.g. the lower and upper limits between which the true mean is expected
to lie with a probability of 50% (or 80%, 90%, 95%, 99%, . . . , your
choice!).

5.5 Accuracy of variance
Finally we give an indication for the accuracy of σ̂ : if the measurements
are independent and the deviations are random samples from a normal dis-
tribution, then the relative standard inaccuracy of σ̂ equals 1/

√
2(n − 1).

Appendix A7 on page 154 gives more details. The same applies to the rel-
ative standard inaccuracy in the computed standard error of the mean. For
example, if you find for the estimated mean of a series of 10 measurements
and its estimated inaccuracy 5.367 ± 0.253 than you should report this as
5.4 ± 0.3 because the relative inaccuracy of the number 0.253 equals 1/

√
18

or 24% (=0.06) (insufficiently accurate for two significant digits). Had these
numbers been the result of 100 independent measurements, then the proper
report would have been 5.37 ± 0.25. Table 5.1 gives the relative s.d. as a per-
centage of σ̂ for various numbers n of independent data points. The same
relative inaccuracy also applies to the s.d. of the mean, as calculated by
(5.13).

While the accuracy of the standard deviation is usually not very large, the
estimated skewness or excess is often hardly significant. For near-Gaussian
distributions these estimates with their s.d. are

5 See Gosset (1908). “Student” was the pseudonym of the English statistician W. S. Gosset
(b. 1876).
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Table 5.1 Relative inaccuracy (s.d.) of the estimated
standard deviation σ̂ of a distribution based on a series
of n independent samples.

n s.d.(σ̂ ) n s.d.(σ̂ ) n s.d.(σ̂ )

% % %

2 70 10 24 50 10.1
3 50 15 19 60 9.2
4 41 20 16 70 8.5
5 35 25 14 80 8.0
6 32 30 13 90 7.5
7 29 35 12 100 7.1
8 27 40 11 150 5.8
9 25 45 11 200 5.0

skewness = 1
n

n∑

i=1

(xi

σ̂

)3
±

√
15
n

, (5.15)

excess = 1
n

n∑

i=1

(xi

σ̂

)4
− 3 ±

√
96
n

. (5.16)

5.6 Handling data with unequal weights
Until this point we have assumed that all data points have the same statistical
weight, i.e., that they are all samples from the same probability distribution.
But it is quite common that one measurement is more accurate than another;
in such cases the more accurate measurement must get a larger weight in the
statistical analysis (e.g. in the determination of the mean) than a less accu-
rate measurement. This may happen when the same quantity is determined
in different ways, yielding several values with their individual uncertainty
estimates, and the best estimate for the mean is required. Unequal weights
must also be given to histogram data that result from adding observations in
bins: it is obvious that each bin (central) value xi must be multiplied by the
number of observations in that bin ni in order to obtain the proper mean over
all observations:

⟨x⟩ =
∑

i nixi∑
i ni

. (5.17)

In general, the best estimate µ̂ for the mean of the underlying distribution
is the weighted average defined as
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⟨x⟩ = 1
w

n∑

i=1

wixi; w =
n∑

i=1

wi, (5.18)

where the weight factors wi are proportional to 1/σ 2
i . Only proportionality is

needed because the sum is divided by the total weight. Why this is the correct
way of averaging is explained in Appendix A8 on page 158.

This type of averaging does not only apply to x but to any quantity that is
to be averaged, e.g.

⟨x2⟩ = 1
w

n∑

i=1

wix2
i ; w =

n∑

i=1

wi, (5.19)

or, in general,

⟨ f (x)⟩ = 1
w

n∑

i=1

wi f (xi); w =
n∑

i=1

wi. (5.20)

Accuracy of the estimated mean

When the mean of a data series has been estimated by weighted averaging of
xi ± σi, then the estimate for the standard inaccuracy of the estimated mean
is given by

σ̂⟨x⟩ =
(

n∑

i=1

1

σ 2
i

)−1/2

. (5.21)

Why this is so is also explained in Appendix A8. Using this formula we
assume that the values of σ 2

i are reliable; we have not used the value of
⟨("x)2⟩ for the estimation of σ̂⟨x⟩. Whether the observed spread in the mea-
sured values will be statistically acceptable (i.e., compatible with the known
σ 2

i ), can be tested with a chi-squared test. The chi-squared test will be fully
treated in Section 7.4 on page 95 (see also the data sheet chi-squared dis-
tribution on page 199), but here we already make superficial use of it. For
this case the number of degrees of freedom equals n − 1 and χ2 is defined as

χ2 =
n∑

i=1

(xi − ⟨x⟩)2

σ 2
i

= ⟨("x)2⟩
σ̂ 2

⟨x⟩
. (5.22)

Note that ⟨("x)2⟩ must have been determined by weighted averaging accord-
ing to (5.20). In the last term we have used (5.21). The value of χ2 should
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be in the neighborhood of the number of degrees of freedom n − 1. How
much it can reasonably deviate from this value is given by the cumulative chi-
squared distribution (see page 2 of the data sheet chi-squared distribution
on page 199).

If the σi’s are not accurately known and the number of observations is
sufficiently large, it is possible to use ⟨("x)2⟩ for the determination of σ̂⟨x⟩.
In that case assume that χ2 = n − 1, so that

σ̂ 2
⟨x⟩ = ⟨("x)2⟩

n − 1
. (5.23)

This equation – as expected – also applies to the case of independent samples
of equal weight, and is therefore equivalent to (5.13) on page 59.

Which choice of method you make is up to you. When your individual
variance estimations are unreliable, choose the latter method. To be on the
safe side, you may also choose the largest of the two uncertainties from the
two methods.

5.7 Robust estimates
Estimates of parameters like standard deviation and standard error, as have
been treated in the previous sections, are quite sensitive to outliers in the
data. The reason for this is the use of squared deviations; an outlier con-
tributes rather heavily to a sum of squares. When a deviation is so large that
its occurrence in the data set is rather unlikely, one may eliminate such an
observation (see below). Some of the methods treated in the previous sections
are only valid for normally distributed data, such as the confidence intervals
determined by Student’s t method. In modern statistics robust methods have
been developed to handle data series in such a way that outliers play a lesser
role and the results depend less strongly on the type of distribution function
of the data. These robust methods are based on the ranking order of the data
(‘rank-based methods’). In this book we give only a brief summary of these
methods and refer for further details to the literature (Petruccelli et al., 1999;
Birkes and Dodge, 1993; Huber and Ronchetti, 2009).

Elimination of outliers

It may happen that a particular measured value falls outside the expected
range of values. This may be due to a random fluctuation, but it can also be
the result of an experimental error or mistake. It is warranted to eliminate
such a data point from the data series before further processing. A reason-
able, and often used, criterion is that the deviation exceeds 2.5 σ . Don’t
apply such elimination more than once in a data series. Prudence is required,
because the choice whether or not to eliminate a data point may be influenced
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by subjective considerations if the particular measurement does or does not
suit your purposes. Of course, rather than elimination, it is much better to
repeat the measurement: a possible error or mistake can then be identified.
If repeated measurements also show significant deviations from the expected
value, you may be on the track of an interesting phenomenon worth further
investigation.

The 2.5 σ criterion is rather arbitrary and many researchers prefer a limit
of 3 σ . The criterion should be chosen such that the random occurrence of
a value beyond the chosen limit is an unlikely event, e.g. with a probability
of less than 5%. But with such a criterion the limiting value depends on the
number of data points in the data series: the probability – given a normal
distribution – that a single point deviates more than 2.5 σ is a bit over 1%;
the probability that at least one point in a series of 20 data points deviates
more than 2.5 σ exceeds 20%. The first case is unlikely, but the second case
may easily occur by random sampling. In the table on page 2 of the data
sheet NORMAL DISTRIBUTION on page 205 the probability is tabulated that
at least one data point out of n points falls outside the range (µ − d, µ + d)
(a two-sided criterion), for various values of d/σ ; on page 4 the probability
is tabulated that at least one data point exceeds the value µ + d (a one-sided
criterion). If you choose a 5% limit for this one-sided probability, you see
that for less than 10 data points 2.5 σ is a good choice; for 10 to 50 points
3 σ is better and for 50 to several hundred points 3.5 σ is the best choice.

Rank-based estimates

The estimated mean of a distribution is usually taken as equal to the average
of the measured values. When you have a good reason to assume a symmetric
underlying probability distribution, but no good reason to assume a normal
distribution, you can also take the median of the measured values. For a large
number of points the result is the same, but for a small number of points the
median is less sensitive to outliers than the average. The median has the
property that the number of positive and negative deviations are equal; in
order to obtain the median only the sign of the deviations is used.

Sign-based confidence intervals

A sign-based estimate of a confidence interval is obtained from the binomial
distribution of the number of positive signs of the possible deviations. Sup-
pose you have five measurements, sorted in ascending order: x1, x2, x3, x4,
x5. As estimate for the mean µ̂ you take the median x3. Now consider the
probability that the µ < x1. In that case the deviations would have the signs
+++++ and the binomial probability of obtaining five pluses when each
sign has a 50% chance of being plus, is
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p(µ < x1) = 2−5
(

5
5

)
= 1/32 (5.24)

(see Section 4.3). The same probability is obtained when µ > x5, so the inter-
val (x1, x5) has a confidence level of 30/32 = 94%. When µ lies between
x2 and x4, the deviations have the sign −−+++ or −−−++; the binomial
probability that this happens is:

p(x2 < µ < x4) = 2−5
(

5
3

)
+ 2−5

(
5
2

)
= 20/32 = 62%. (5.25)

Because only a small number of discrete values are available, the interval for
a preset confidence level of, say, 90%, cannot be given. The method is robust,
but also quite inaccurate. If there is an indication that the data points are
samples from a normal distribution, the “classical” parameter estimates are
much better. In order to keep in line with the classical report of the standard
deviation, an alternative robust estimate of the “standard deviation” can be
obtained by abstracting the 68% confidence interval from an analysis of the
cumulative distribution function (see Section 5.1 on page 54).6

The bootstrap method

Finally a few words about another distribution-free method, the bootstrap,
designed to obtain an approximate probability distribution (a “sampling dis-
tribution”) of an estimated mean on the basis of a data series, without any
assumption about the probability distribution from which the data are sam-
pled. The method originates from 1979, see Efron and Tibshirani (1993). The
method is simple but can only be realized by using a computer.

Assume you have a data series of n independent samples of equal weight
from an unknown distribution. The average of this series is a good estimate
for the mean of the distribution. You wish to generate a number of such aver-
ages to produce a sampling distribution of the mean; this gives you details
on the accuracy of the estimated mean. Unfortunately, this is only possible
if you could produce many new sets of measurements, which would each
freshly sample the data distribution. But you don’t have more new data, so
you must rely on the n samples you already have. Now generate a large num-
ber (say, 3000) of series, each consisting of n “measurements,” each drawn
randomly from the n original data, but with replacement, i.e., without chang-
ing the probability of drawing a particular value. From each series determine
the average. The collection of all 3000 averages so obtained approximates

6 The deviation d for which the interval (µ − d, µ + d) equals the 68 percent confidence
interval is strictly not a standard deviation and it does not imply the validity of other
confidence intervals derived from normal distributions. It should be checked if this value
equals the best estimate of the standard deviation within its error limits.
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Figure 5.4 Histogram of the bootstrap distribution of the mean of three data values
−1, 0 and 1 (plotted ordinates ×1/27). Drawn line: Student’s t-distribution for
two degrees of freedom; dashed line: normal distribution with “classical” standard
deviation. All distributions have been scaled to yield the same maximum.

the true sampling distribution you would have obtained from 3000 sets of
fresh measurements.

For a small number of measurements it is possible to generate all pos-
sible series (there are nn of those), but for more than five data points this
runs out of hand. For illustrative purposes Fig. 5.4 gives the bootstrap dis-
tribution for three data points with values −1, 0 and 1: there are seven
possible averages. In the same figure the Student’s t-distribution is given for
the same three measured values (i.e., for two degrees of freedom), for which
µ̂ = 0 and σ̂ = 1. The “classical” standard uncertainty of the mean equals
σ̂/

√
3 = 0.577; the s.d. of the bootstrap distribution is

√
2/3 = 0.471.

The latter is also the standard uncertainty of the mean using the biased
estimator:

√
⟨("x)2⟩/

√
3. Also the normal distribution with σ = 0.577

is given. We see that for this symmetric case the normal distribution and
the bootstrap distribution agree well; the t-distribution has broader flanks.
If you only have three values and no good reason to assume normality of
the underlying distribution, there is no good reason to apply the Student’s
t-distribution.

The term “bootstrap” now becomes meaningful: A bootstrap method is
a method to obtain something new from nothing, which in principle is
impossible, such as lifting yourself off the ground by pulling your boot-
straps. Have we gained anything new by applying the bootstrap method?
No! The bootstrap produces an array of averages of n samples taken from
a given distribution: a sum of n δ-functions at the original data points. The



5.7 ROBUST ESTIMATES 67

distribution function of these averages can be computed by methods treated
in Appendix A5; its mean and standard deviation are completely determined
by the original data. In fact, the mean of the bootstrap distribution equals the
mean of the original data and the s.d. of the bootstrap distribution equals the
rmsd

√
⟨("x)2⟩ of the original data divided by

√
n. This equals the biased

estimate of the standard uncertainty in the mean; we know that the unbi-
ased estimate rmsd divided by

√
n − 1 is better. A bootstrap distribution with

unbiased s.d. can be obtained by adding n − 1 rather than n samples from the
original data.

So it seems that the bootstrap method is rather meaningless. It is mean-
ingless, indeed, for obtaining a best estimate for the mean and its standard
uncertainty. It is not meaningless, however, for obtaining confidence inter-
vals for a given confidence level. But you should always be aware of the
fact that the bootstrap distribution does not extend beyond the minimum and
maximum data value, while the underlying probability distribution may well
have tails extending (far) beyond those values. Confidence limits derived
from the tails of the bootstrap distribution may well be unrealistically narrow
and could lead to erroneous conclusions. See Exercise 5.6 for a comparison
of various estimates.

A program that will generate an array with averages from random samples
taken from a given dataset is Python code 5.1 on page 175.

A program report to analyze a data set is Python code 5.2 on page 176.
Given a set of independent data, it produces a graph of the cumulative
distribution (on a probability scale) and a graph with data points and standard
deviations (if given); it prints properties of the data (including skewness and
excess) and identifies outliers. In addition it performs functions explained in
Chapter 7: drift analysis with significance tests and a chi-squared analysis if
standard deviations are given. Look for updates on www.hjcb.nl.

Summary You are now able to make a clear distinction
between the distribution of measured data xi and the (unknown)
underlying distribution from which the data are supposed to be
random samples. Properties of your measured data are num-
ber n, average ⟨x⟩, mean squared deviation (msd) ⟨("x)2⟩, and
root-mean-squared deviation (rmsd)

√
⟨("x)2⟩, but also rank-

based properties such as range, median and various percentiles.
From these properties you can derive best estimates µ̂, σ̂ for the
parameters of the underlying distribution: mean and standard
deviation. An important quantity is the inaccuracy of the esti-
mated mean σ⟨x⟩ (the s.d. of the sampling mean), which equals
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σ̂/
√

n. You are aware of the fact that all these formulas are valid
for a set of n independent samples; if samples are correlated,
the estimated variance becomes somewhat (((n−1)/(n−nc))×)
larger and the standard inaccuracy in the sample mean becomes
considerably (nc×) larger, where nc is a correlation length. You
know how to handle your data if the data points have unequal
statistical weights: in all kinds of averaging, the values to be
averaged are multiplied by their weight wi/w, where w is the
total weight.

You can express results in terms of confidence intervals.
These can be one-sided or double-sided. For example, a 90 per-
cent double-sided confidence interval gives the estimated range
from the 5th to the 95th percentile of the underlying distribution.
For normally distributed variables, the confidence intervals fol-
low from the normal distribution if you know σ beforehand, or
from Student’s t-distribution if you don’t. An alternative deter-
mination of confidence intervals for the sampling mean is to
construct a bootstrap distribution based on your data itself. You
are aware of the pitfalls of this “distribution-free” method.

Finally, if you have a set of data and a good prior estimate of
the inaccuracy of each data point, you can use the chi-squared
distribution to assess whether the spread in the measured data
is compatible with the a-priori inaccuracies. If the spread is
improbably large, there is probably an error source that you
overlooked.

Exercises

5.1 Could the data given in Table 2.1 on page 6 be sampled from a normal
distribution? If so, estimate µ̂ and σ̂ by drawing a straight line through the
cumulative distribution function of Fig. Figure 2.1.

5.2 Prove (5.6).

5.3 If you subtract a constant from all values of x and then compute the msd
using (5.6), is a further correction still required?

5.4 Generate 1000 normally distributed variables with mean c and s.d. 1.
Compare the rmsd computed by both (5.4) and (5.6). Vary the constant c
(e.g. 1.e6, 1.e7, 1.e8, 1.e9).

5.5 (refer to Table 5.1 on page 61)
A series of n independent measurements of a physical quantity yields an
average of 75.325 78 and a mean squared deviation of 25.643 06. Report,
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with the correct number of digits, your best estimates of the mean and stan-
dard deviation of the underlying probability distribution, for two cases: (a)
n = 15, (b) n = 200.

5.6 You live in Germany and want to calibrate the speedometer of your car. On
a quiet, mostly straight and level Autobahn section you keep your speed as
accurate as possible at 130 km/hr on your speedometer. Your companion
measures with a stopwatch the time between passing two kilometer marks
that are exactly 1 km apart. She finds the following nine intervals (in s):7

7 These numbers are from a real experiment.

29.04, 29.02, 29.24, 28.89, 29.33, 29.35, 29.00, 29.25, 29.43
1. Compute the following properties of the measured set of time inter-

vals:
(a) the average,
(b) the average squared deviation from the average,
(c) the root-mean-squared average deviation from the average,
(d) the range, median and the first and third quartiles.

2. Compute the best estimates for the following properties of the underly-
ing distribution function:
(a) the mean µ̂,
(b) the variance σ̂ 2,
(c) the standard deviation σ̂ ,
(d) the standard uncertainty of the estimated mean,
(e) the uncertainty of the last three values.

3. What is (the best estimate for) your car’s real velocity? What is the stan-
dard uncertainty of this value? How large is the speedometer’s deviation
and what is the relative accuracy of that deviation? Give all values with
the correct number of significant digits.

4. If you as driver assert that you have kept the speed within a deviation
of ±0.5 km/hr, does this knowledge influence your conclusions in any
way?

5. Assuming that the (biased) bootstrap yields a reliable sampling distribu-
tion of the mean, generate a bootstrap distribution of 2000 samples and
compute the 80%, 90% and 95% confidence limits for the time interval.

6. Using this bootstrap distribution, compute the 80%, 90% and 95%
confidence limits for the velocity.

7. Assuming the underlying distribution to be normal N(µ̂, σ̂ ), compute
the 80%, 90% and 95% confidence limits for the velocity.
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8. Assuming the underlying distribution to be normal with unknown s.d.,
compute the 80%, 90% and 95% confidence limits for the velocity
according to Student’s t-distribution.

5.7 You are a member of a CODATA committee with the task to update
Avogadro’s number. The following reliable data are at your disposal:
• the already known number (see data sheet PHYSICAL CONSTANTS on

page 209)
• a series of measurements by scientist A with result:

6.022 141 48(75) × 1023

• a series of measurements by scientist B with result:
6.022 142 05(30) × 1023

• a series of measurements by scientist C with result:
6.022 1420(12) × 1023

Give the weighted mean and its standard uncertainty.

5.8 Plot the bootstrap distribution, the histogram of which is given in Fig. 5.4,
on a probability scale. Is this distribution compatible with a normal distri-
bution? Estimate graphically the mean and s.d. and compare to the values
given in the text.

5.9 (This advanced exercise requires reading of Appendix A3 and
Appendix A5.)
Determine – using the characteristic function – the distribution function of
the sum of three samples, each randomly chosen with equal probability
from the three values −1, 0 and 1. Note that the distribution function for
the sum of three values equals the convolution of the distribution functions
of each value. Determine its variance. Compare your result with Fig. 5.4.



6 Graphical handling of data
with errors

Often you perform a series of experiments in which you vary an indepen-
dent variable, such as temperature. What you are really interested in is the
relation between the measured values and the independent variables, but
the trouble is that your experimental values contain statistical deviations.
You may already have a theory about the form of this relation and use the
experiment to derive the still unknown parameters. It can also happen that
the experiment is used to validate the theory or to decide on a modification.
In this chapter a global view is taken and functional relations are qualita-
tively evaluated using simple graphical presentations of the experimental
data. The trick of transforming functional relations to a linear form allows
quick graphical interpretations. Even the inaccuracies of the parameters can
be graphically estimated. If you want accurate results, then skip to the next
chapter.

6.1 Introduction
In the previous chapter you have learned how to handle a series of equiva-
lent measurements that should have produced equal results if there had been
no random deviations in the measured data. Very commonly, however, a
quantity yi is measured as a function f (xi) of an independent variable xi
such as time, temperature, distance, concentration or bin number. The mea-
sured quantity may also be a function of several such variables. Usually the
independent variables – which are under the control of the experimenter –
are known with high accuracy and the dependent variables – the measured
values – are subject to random errors. In that case

yi = f (xi) + εi, (6.1)

where xi is the independent variable (or the set of independent variables) and
εi is a random sample from a probability distribution.

71
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Generally, you already have a theory about the function f , although that
theory may contain unknown parameters θk(k = 1, . . . , m):

y = f (x, θ1, . . . , θm). (6.2)

An example is the linear relation

y = ax + b, (6.3)

but the relation can be more complex like

y = c exp(−kx). (6.4)

It is often possible to linearize the relation by a simple transformation. For
the latter case:

ln y = ln c − kx (6.5)

yields a linear relation between ln y and x. It is usually recommended to
make such a linearization, as a simple graphic plot will show a straight line,
permitting a quick judgment of the suitability of your presumed functional
relation. In Section 6.2 a few examples will be worked out.

Let us return to the linear relation y = ax + b. Suppose you measured n
data points (xi, yi), i = 1, . . . , n, and expect the measured values yi to satisfy
as closely as possible the relation

yi ≈ f (xi), (6.6)

where f (x) = ax + b is the expected relation. Your task is to determine
the parameters a and b such that the measured values yi deviate as little as
possible from the function values. But what does that mean? The deviations
εi of the measured values with respect to the function:

εi = yi − f (xi) (6.7)

should be the sole consequence of random errors and we expect in general
that the deviations εi are random samples from a probability distribution with
zero mean. In practice this distribution is often normal. The correct method
for this kind of parameter estimation is the least-squares fit, which is treated
in Chapter 7. A computer program is needed to perform a least-squares fit.

It is not always necessary to perform a precise least-squares fit. It is always
meaningful to plot the data in such a way that you expect a linear relation.
A straight line can be adequately judged by visual inspection. A straight
line drawn “by eye” to fit the points often gives sufficiently accurate results
and even the inaccuracies in the parameters a and b can be estimated by
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varying the line within the cloud of measured data points. There is nothing
wrong with making a quick sketch on old-fashioned graph paper! Computer
programs are useful when there are many data points, when different points
have different weights or when high accuracy is required, but they are never
a substitute for bad measurements and almost never give you more insight
into the functional relations. Be careful with computer programs that are not
well-documented or do something you don’t quite understand!

This chapter is devoted to simple graphical processing of experimental
data with a simple discussion of the inaccuracies in the results. Always
ask yourself if such a simple graphic analysis can be useful for your prob-
lem: often you get a better insight into the relation between model and data.
After having done a simple analysis, a more accurate and elaborate computer
analysis can (and should) be made.

6.2 Linearization of functions
In this section a few examples of the linearization of functions are given.

(i) y = ae−kx: ln y = ln a − kx (examples: concentration as function
of time for a first-order reaction, number of counts per minute for
a radioactive decay process). Plot ln y on a linear scale versus x, or
plot y on a logarithmic scale versus x. If you do this by hand, use
semi-log paper (one coordinate linear, the other logarithmic with e.g.
two decades). Or use a simple Python plot. Figure 2.7 on page 16 is
an example. The slope (−k in this example) is read from the graph
by selecting a segment (take a large segment for better accuracy) and
read the coordinates of the end points (x1, y1) and (x2, y2); the slope
equals ln(y2/y1)/(x2 − x1). If you take a full decade for the end points
(e.g. passing through y = 1 and y = 10), then the slope is simply
ln 10/(x2 − x1).

(ii) y = a+be−kx : ln(y−a) = ln b−kx. First estimate a from the values
of y for large x and then plot y − a versus x on a logarithmic scale.
If the plot doesn’t yield a linear relation, adjust a somewhat (within
reasonable bounds).

(iii) y = a1e−k1x + a2e−k2x. This is difficult to handle graphically, unless
k1 and k2 are very different. A computer program also has difficulties
with this kind of analysis! First estimate the “slow” component (with
smallest k), subtract that component from y and plot the difference on
a logarithmic scale. Figure 6.1 gives the result for the data given in
Table 6.1; the standard error in each y is ±1 unit.

The column z in Table 6.1 gives the differences between y and the
values given by the line in the left panel of Fig. 6.1. This line has been
drawn “by eye” and goes through the points (0, 25) and (100, 2.5), yield-
ing k2 = [ln(25/2.5)]/100 = 0.023. Hence the equation for this line is
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Table 6.1 Measured values y that result from a sum of
two exponentials. The column z results from subtraction
of the “slowest” exponential. The standard uncertainty
in y equals one unit.

x y z x y z

0 90.2 65.2 40 11.7 1.7
5 62.2 39.9 50 8.8 0.9

10 42.7 22.9 60 6.9 0.6
15 30.1 12.4 70 4.6 −0.4
20 23.6 7.8 80 5.0 1.1
25 17.9 3.8 90 2.9 −0.3
30 14.0 1.5

Figure 6.1 Graphical analysis of data which represent the sum of two exponentially
decaying quantities. In the left panel the data points y have been plotted on a log-
arithmic scale versus the independent variable x and the “slowest” component is
approximated by a straight line. In the right panel the differences z between the data
y and the “slow” component are plotted. Note the different scales for x.
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25 exp(−0.023x). In the right panel of this figure z has been plotted:
the points approximately follow a linear relation. The drawn line goes
through the points (0,65) and (38, 1), yielding k1 = (ln 65)/38 = 0.11.
Therefore, the function that approximates the behavior of all data points
is given by

f (x) = 65 e−0.11 x + 25 e−0.023 x. (6.8)

This simple graphical approach does not provide a solid basis to make
a reliable guess of the uncertainties in the parameters of this equation.
But it provides an excellent basis for the initial guess of the parameters
in a nonlinear least squares fit. The latter is the subject of Chapter 7.
Such a fit must be carried out by computer; a suitable program not only
provides the best fit, but also gives an estimate of the inaccuracies and
correlations of the parameters.

(iv) y = (x − a)p (example: the isothermal compressibility χ of a fluid in
the neighborhood of the critical temperature behaves as a function of
temperature according to χ = C(T − Tc)

−γ , where γ is the critical
exponent). Plot log y versus log(x − a) (or y versus (x − a) on a double-
logarithmic scale); if a is not known beforehand, then vary a somewhat
until the relationship becomes a straight line. The slope of the line
yields p.

(v) y = ax/(b + x) (examples: adsorbed quantity nads of a solute versus
concentration c in solution or versus pressure p in the gas phase in the
case of Langmuir-type adsorption: nads = nmaxc/(K + c); reaction rate
v as function of substrate concentration [S] in the case of Michaelis–
Menten kinetics1 v = vmax[S]/(Km + [S])). By taking the reciprocal of
both sides, this equation becomes a linear relation between 1/y and 1/x:

1
y

= 1
a

+ b
a

1
x

. (6.9)

In enzyme kinetics a graph of 1/v versus 1/[S] is called a Lineweaver–
Burk plot.2 There are two other ways to produce a linear relation: plot
x/y versus x (the Hanes method):

x
y

= b
a

+ x
a

, (6.10)

or plot y/x versus y (the Eadie–Hofstee method):

y
x

= a
b

− y
b

(6.11)

1 This will be familiar to you if you are a biochemist, but sound as abacadabra if you are a
physicist or mechanical engineer. You may consult any textbook on biochemistry for
details. Or think of an application in your own field that leads to this kind of equation.

2 See e.g. Price and Dwek (1979).
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Table 6.2 Conversion rate v of urea by the enzyme urease as function of
the urea concentration [S]. The reciprocal values are given to produce a
Lineweaver–Burk plot. The standard uncertainty in 1/v equals σv/v2.

[S] 1/[S] v σv 1/v σ1/v
mM mM−1 mmol min−1 mg−1 mmol−1 min mg

30 0.03333 3.09 0.2 0.3236 0.0209
60 0.01667 5.52 0.2 0.1812 0.0066

100 0.01000 7.59 0.2 0.1318 0.0035
150 0.00667 8.72 0.2 0.1147 0.0026
250 0.00400 10.69 0.2 0.09355 0.0018
400 0.00250 12.34 0.2 0.08104 0.0013

Figure 6.2 Lineweaver–Burk plot of the tabulated data.

Which method to choose depends on the inaccuracies of the data points:
whenever a reciprocal of x or y is used, small values get relatively more
importance in the plot.

Example: urease kinetics

With the experimental values for the rate of conversion v = y of urea by the
enzyme urease3 as a function of the urea concentration [S]= x as given in
Table 6.2, the plots of Fig. 6.2 and Fig. 6.3 are obtained. In a Lineweaver–
Burk plot the value of Km = b can be obtained from the intersection with

3 Example taken from Price and Dwek (1979), with additional noise.
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Figure 6.3 Eadie–Hofstee (left) and Hanes (right) plot of the tabulated data.

the horizontal (x) axis and the value of vmax = a can be obtained from the
intersection with the vertical (y) axis. The estimation of inaccuracies of the
parameters from these graphs is not reliable; also in this case it is better to
perform a nonlinear least-squares analysis using the graphical estimates for
the initial guess of the parameters.

6.3 Graphical estimates of the accuracy of parameters
In the previous section you have seen how you can plot your data in such a
way that a linear relationship is obtained and how you can estimate the two
parameters of a linear function by drawing the “best” line through the data
points. In this section you will see how you can make a simple estimate of the
uncertainties in those parameters. Sometimes such estimates are sufficient. If
they are not, a more accurate least-squares fit is required.

In order to be able to estimate the uncertainties, you need to include error
bars in the graphs. When the uncertainty in the independent variable x, plot-
ted on the horizontal scale, is negligible, it suffices to use vertical error bars
from y − σy to y + σy. When there is a sizeable uncertainty in x, a horizontal
error bar from x −σx to x +σx must be included as well. A clear presentation
is an ellipse with principal axes of length 2σx and 2σy.

The best straight line through the data points fits as closely as possible to
all (xi, yi). The first requirement is that the line be drawn such that the sum of
the deviations (sign included) is (close to) zero. But that does not determine
the line! Any line through the “center of mass”4 of the points (⟨x⟩, ⟨y⟩) fulfills
this criterion. We need this criterium to be fulfilled not only globally, but also
locally. A good guess is the line constructed through two centers of mass,
each of a group of data points, see Fig. 6.4.

4 “Mass” is to be interpreted as “statistical weight.”
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Figure 6.4 A line drawn through two “centers of mass” of two clouds of points
approximates a linear fit to all points.

After drawing a straight line f (x) = ax + b, the parameters a and b can
be determined from the slope and the value at which the line intersects the
y-axis. The latter may be difficult to determine when the value x = 0 is
outside the range of x-values of the data points. A much better method is to
determine the “center of mass” (⟨x⟩, ⟨y⟩) of the points. The best fit should go
through this point, as you shall see in Chapter 7. Only the slope a needs to
be estimated:

f (x) = a(x − ⟨x⟩) + b, (6.12)

b = ⟨y⟩. (6.13)

The use of this relation has the advantage that uncertainties in the slope and
the additive constant are uncorrelated with each other (see page 90). It is now
much easier to estimate the uncertainties in a and b.

In order to estimate the uncertainties in the parameters, the line can be
varied in slope a (Fig. 6.5) or in additive constant b (Fig. 6.6). As we know
from the properties of a normal distribution, about 2/3 of the points should
remain within the lines if a parameter is varied by ±σ . So, as a rule of thumb,
vary the parameters (one at a time) symmetrically such that about 15 percent
of the points fall outside the lines on each side. Be aware of possible outliers
that deviate conspicuously from the line. How to handle outliers has been
treated in Section 5.7 on page 63: either eliminate or measure again!

6.4 Using calibration
Suppose you work with an instrument or method that produces a reading y
(e.g. a digital number, a needle deflection, a meniscus height) from which
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Figure 6.5 Linear fit through “center of mass” with slope varied by ±10% (a =
1.0 ± 0.1).

Figure 6.6 Linear fit through “center of mass” with additive constant varied by ±0.4
(b = 0.0 ± 0.4).

a quantity x (e.g. a concentration, an electrical current, a pressure) must be
deduced. When the instrument is not properly calibrated, i.e., when the read-
ing does not correspond directly and reliably to the measured quantity, you
should calibrate the instrument yourself. For this purpose you produce a cal-
ibration table, and preferably a calibration curve, by measuring the reading
for a number of accurately known values of x. These data you either tabulate,
or plot and interpolate in a curve, or express the relation between y and x in
a mathematical function. Often you will tabulate a correction table or plot
a correction curve that contains the differences between the readings and
the correct values. Be sure to be explicit what the difference means: usually
the correction is to be added to the reading to obtain the true value. In all
cases you can deduce the value of x for any measured reading by inversion
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Table 6.3 Compass deviation chart of the U.S.S. Cleveland (1984)
listing the compass deviations (dev) from the true magnetic
bearing for various ship headings (head). The deviation W (West)
means negative and E (East) means positive; the deviation is to be
added to the compass reading to obtain the true magnetic bearing
of the ship.

head dev head dev head dev head dev

0 1.5W 90 1.0W 180 0.0 270 1.5E
15 0.5W 105 2.0W 195 0.5E 285 0.0
30 0.0 120 3.0W 210 1.5E 300 0.5W
45 0.0 135 2.5W 225 2.5E 315 2.0W
60 0.0 150 2.0W 240 2.0E 330 2.5W
75 0.5W 165 1.0W 255 2.5E 345 2.0W

of the calibration relation. How do you proceed and how do you determine
the uncertainty in x?
Be explicit!
Mariners and navigators have coped with magnetic compass corrections for
centuries, although modern electronic aids have diminished their problems.
The compass reading (C) must be corrected first by adding the deviation
due to the influence of magnetic and ferrous materials in the ship itself to
obtain the magnetic bearing (M); then the latter must be corrected by adding
the variation due to the position of the magnetic north pole – that does not
coincide with the true geometric north pole – to obtain the true bearing (T).
Traditionally deviation and variation are expressed as E (East) if positive,
or W (West) if negative. Since a sign error can have catastrophical conse-
quences, sailors of all nations have invented mnemonics to remind them of
the proper sequence to add or subtract the corrections. A mannerly English
mnemonic is CADET: “Compass ADd East (to get) True (bearing)”, which
applies equally to deviation and variation. In the Dutch Navy Reserve (KMR)
the mnemonic “Kies de Meisjes van Rotterdam” (“choose the girls of Rot-
terdam”): Kompas + deviatie → Magnetisch + variatie → Rechtwijzend
(True bearing) is more popular. But beware: American navigators reverse the
correction by the mnemonics “True Virgins Make Dull Company” (True +
Variation → Magnetic + Deviation → Compass), which is wrong unless the
sign of the correction is also reversed. To remember this, they also memorize
“Add Whiskey” to Add Westerly corrections. So be careful and explicit in
all cases. See Table 6.35 and Fig. 6.7.

5 Data from www.tpub.com/context/administration/14220/css/14220_64.htm.
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Figure 6.7 Graph of the compass deviations (Table 6.3). The error bars are ±0.25
degree, as the corrections are given with 0.5 degree precision. The drawn line is
a least squares fit to a sum of Fourier components up to and including the fourth
harmonic.

Python code 6.1 on page 182 shows how the least-squares Fourier
components in Fig. 6.7 are computed. For general least square fits see
Section 7.3.

Make sure in the calibration procedure that you cover the whole range of
values for which the method will be used. Extrapolation is generally unreli-
able, but there is also no need to cover values that in practice will never occur.
Draw the best line through the points; if the line is not straight, hopefully you
can build it up from straight segments between calibrated points. If you want
to be sophisticated, compute a cubic spline fitting function. Now, for any new
measurement of x, given by a reading y, the quantity x can simply be read
back from the calibration curve.

Now consider the inaccuracy of a measurement. There are two sources
of error: one is the inaccuracy "y in the reading y; the other is the inac-
curacy in the calibration curve itself, due to inaccuracies of the calibration
measurements. You should also be aware of additional errors that may occur,
e.g. resulting from aging of the instrument after the last calibration. Both
types of error lead to an uncertainty in x and both sources add up quadrat-
ically, because they are independent of each other. The two contributions
are depicted in Fig. 6.8, which shows how a concentration in solution is
deduced from a measurement of the optical density in a spectrometer. The
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Figure 6.8 Example of a calibration line for spectrometric determination of the
concentration of a chromophore in solution: optical density O.D. = log (incident
intensity/transmitted intensity) as a function of the concentration of the solute. The
gray area is magnified in the panels on the right: (a) the calibration error in the con-
centration, (b) the inaccuracy in the concentration resulting from the inaccuracy of
the measured O.D.

calibration error is visualized by drawing two parallel sections of the calibra-
tion curve at distances representing the standard uncertainty in the calibration
itself.

If the calibration has been very carefully performed, the calibration error
is likely to be smaller than the direct error in the reading. In that case only
the standard uncertainty σy of the reading counts. It leads to a standard
uncertainty σx in the measured quantity by the relation

σx = σy∣∣∣
(

dy
dx

)

cal

∣∣∣
. (6.14)

Summary In this chapter you have learned how to plot your
data in such a way that a functional relation becomes visible,
preferably as a straight line. From simple plots you can roughly
estimate the parameters of your function and – by varying the
lines in position or slope – you can even get an idea of the inac-
curacies of the parameters. You have also seen how calibrations
are used to interpret instrument readings. You will not make
errors in the sign when you apply calibrated corrections. The
treatment in this chapter was rather sloppy, as its purpose was
to provide a quick insight into your data. For more precision,
proceed to the next chapter.
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Exercises

6.1 Draw a straight line “through” the points of Fig. 2.7 on page 16 and
determine the parameters in c(t) = c0 e−kt.

6.2 From Figs. 6.2 and 6.3, determine the values of vmax and Km. The straight
lines drawn “by eye” go through the points (−0.0094, 0) and (0.04, 0.35)
(Lineweaver–Burk), (0.04, 0.35) and (15, 0.007) (Eadie–Hofstee); (0, 7.5)
and (500, 39) (Hanes).

6.3 Draw the best straight line through the data points of the logarithmic graph
of k versus 1000/T , made in Exercise 3.2 (page 25). Determine the con-
stant E in the relation k = A exp(−E/RT) (which units?). Estimate the
inaccuracy in E.

6.4 Using Fig. 6.8, determine the concentration (with s.d.) when the measured
optical density equals 1.38 ± 0.01, assuming that the calibration error is
negligible.



7 Fitting functions to data

If you want to fit parameters in a functional relation to experimental data,
the best method is a least-squares analysis: Find the parameters that mini-
mize the sum of squared deviations of the measured values from the values
predicted by your function. In this chapter both linear and nonlinear least-
squares fits are considered. It is explained how you can test the validity or
effectiveness of the fit and how you can determine the expected inaccuracies
in the optimal values of the parameters.

7.1 Introduction
Consider the following task: you wish to devise a function y = f (x) such
that this function fits as accurately as possible to a number of data points
(xi, yi), i = 1, . . . , n. Usually you have – based on theoretical considera-
tions – a set of functions to choose from, and those functions may still contain
one or more yet undetermined parameters. In order to select the “best” func-
tion and parameters you must use some kind of measure for the deviation of
the data points from the function. If this deviation measure is a single value,
you can then select the function that minimizes this deviation.

This task is not at all straightforward and you may be lured into pitfalls
during the process. For example, your choice of functions and parameters
may be so large and your set of data may be so small that you can choose a
function that exactly fits your data. If you have n data points, you can fit an
(n − 1)th degree polynomial exactly through all points. But you can also fit
a smooth cubic spline through all points. In fact, there are an infinite number
of functions that fit all points and by choosing one you have achieved nothing
else than a fancy description of your data set (see Fig. 7.1). At best you have
found a non-exclusive way to interpolate your data.

Two things are needed to improve the quality of your task. First, there must
be a valid theory behind your choice of functions. The better your theory is,
the more restricted is the range of functions and parameters from which you
can choose. Second, your deviation measure must have statistical relevance

84
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Figure 7.1 Several functions fitting exactly through nine equidistant points. The first
and last point are taken equal to allow periodic solutions. Drawn curve: periodic
cubic spline (piecewise third-degree polynomials with continuous first and second
derivatives). Broken curve: each point is expanded by the function sin πx/(πx)
(Nyquist–Shannon formula; the Fourier transform of the resulting function has no
components with wavelength smaller than two units). Dotted curve: fit to a (non-
periodic) eighth-degree polynomial using Lagrange’s formula (Press et al., 1992).
Global polynomial fits are almost never satisfactory.

in the sense that it must have an associated probability that a given devia-
tion occurs. For example, you have n independent data points (n ≫ 3) and a
theory that allows either a linear relation (two parameters) or a quadratic rela-
tion (three parameters). It is clear that a quadratic relation (which includes
linear relations as a subset) will always fit better than a linear relation and
a deviation measure will then be lower for the quadratic equation. Without
a probability attached to your deviation measure you may always decide in
favor of the quadratic relation, but with a proper probability measure you
may decide that the quadratic relation fits too well and the linear relation is
more probable. As you will see, with certain assumptions deviation measures
can be devised to which meaningful probabilities can be attached.

Assuming that the independent variables xi are accurate, and the function
f (x) is the correct relation, you expect that the deviations of the depen-
dent variables yi from the function values fi = f (xi) behave as independent
random samples from a probability distribution with zero mean and finite
variance:

yi = f (xi) + εi; (7.1)

E[εi] = 0, (7.2)

E[εiεj] = σ 2
i δij. (7.3)

The εi’s are called the residuals of the fitting procedure. The assumption
that the xi’s are accurate is for convenience only; in Section 7.2 it is shown
how you should treat your data when the xi’s are themselves samples of a
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probability distribution (see (7.11) on page 88). Also the assumption that the
residues are independent (at least: uncorrelated) is for convenience only: in
Appendix A9 it is shown how you should treat your data if the residues are
correlated.

If you are lucky you may have some advance information on the prob-
ability distribution of the residues because you know something about the
random process that generates the deviations. For example, if you know
that the residue εi is an independent sample from a normal distribution
with known variance σ 2

i , you can estimate the probability that the set of
(independent) residues ε1, . . . , εn occurs:

P(ε1, . . . , εn) = 1n
i=1 p(εi) ∝ exp

[

−
n∑

i=1

ε2
i

2σ 2
i

]

= exp
[
−1

2
χ2

]
, (7.4)

where χ2 is defined as the weighted sum of square deviations:

χ2 =
n∑

i=1

(yi − f (xi))
2

σ 2
i

. (7.5)

This probability product can be considered as the likelihood of the fit: a func-
tion with a higher likelihood is more likely to occur and the best fit can be
considered to be the one that minimizes χ2. Having found the best fit, you
can use the minimum value of χ2 to assess the quality of your fit by perform-
ing a chi-squared analysis. This will be considered in Section 7.4. Also the
inaccuracy of the parameters in the function (their variances and covariances)
can be derived (Section 7.5). In Chapter 8 the principles behind choosing the
“best” function are considered more carefully.

In practice you may not be so lucky as to know beforehand what ran-
dom process generates the deviations. Often you don’t know the individual
variances, but you do know the relative weights wi of the deviations. For
example, if data point i was the average of 100 measurements and data point
j was the average of 25 similar measurements, then point i should be given
a relative weight 4 times larger than point j. Or, if you have a series of mea-
surements ti with similar uncertainty, but you use yi = log ti for your fitting
procedure, you should give the value yi a weight proportional to t2i . Refer to
Exercise 7.6 on page 109 for an explanation. Instead of minimizing χ2 you
can now minimize the weighted sum of square residues S:

S =
n∑

i=1

wi(yi − fi)2, (7.6)

but – of course – you can no longer use the minimal value of S to assess
the quality of the fit. If you can trust the functional form, and you have rea-
sons to assume that the residues are just random samples from a distribution
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with unknown variance, you can derive an estimate of the variance of the
distribution. From that you can in turn derive the inaccuracy (variances and
covariances) of the parameters in the function.

So, for the determination of accuracies in a fitting procedure there are
two possibilities: either use the known uncertainties in the data (if available)
or use the observed magnitude of the sum of square deviations. If both are
compatible, use the more reliable of the two, or – in doubt – choose the
higher uncertainty. If they are both reliable but not compatible (according
to a chi-squared analysis), then lean back, check your data and your error
estimates – possibly measure again – and revise your theory.

7.2 Linear regression
Linear regression is a least-squares fit of the parameters in a linear function
to a data set:

f (x) = ax + b, (7.7)

where a and b are the adjustable parameters of the function. Given a set of
independent data (xi, yi), i = 1, . . . , n, with optional individual weights wi,
it is now your task to minimize the sum of (weighted) square deviations:

S =
n∑

i=1

wi(yi − fi)2 minimal (7.8)

by adjusting the parameters a and b. Here

fi = f (xi) = axi + b. (7.9)

Here we use x to denote the independent variable, which is also called the
explanatory variable, as the values of y – but for a random deviation – follow
from x. There may well be more than one explanatory variable so that
fi = f (x), where x is a vector and also the parameter a becomes a vector.
This complicates the least-squares solution a bit; the multidimensional linear
regression can be found in Appendix A9.2 on page 161.

While (7.7) is linear in x, it is the linearity in the parameters a and b that
allows an analytical solution of the minimization problem (7.8). Thus also for
functions like ax2+bx+c or a+b log x+c/x least-squares minimizations can
be solved by linear regression. How this is done is explained in Appendix A9.
Here we consider only linear functions of x.

The factors wi are the statistical weights of the data points. It is quite com-
mon that all points have the same weight because they come from the same
statistical distribution; in those cases wi can all be taken = 1. If the weights
are not equal because the data points have different standard deviations σi,



88 FITTING FUNCTIONS TO DATA

then the weights must be taken equal to (or proportional to) 1/σ 2
i (note: not

proportional to 1/σ !).

Uncertainties in x

When the uncertainties in x are negligible (which is the common case), the
standard deviation σi is simply the standard deviation of yi. When the uncer-
tainty in x is not negligible (but independent of the deviation of yi), then σ 2

i
must be replaced by

σ 2
i = σ 2

yi +
(

∂f
∂x

)2

x=xi

σ 2
xi, (7.10)

because we deal with the uncertainty in yi − f (xi). For the linear relation (7.7)
this reduces to

σ 2
i = σ 2

yi + a2σ 2
xi. (7.11)

To evaluate this, you need to know the value of a which is yet to be deter-
mined. However, a rough estimate (e.g. from a graphic sketch) suffices at this
point.

The best parameter estimates

In general you will need a computer program to find the solution to the least-
squares minimization problem of (7.8). However, for the linear relation (7.7)
the solution can be expressed in simple terms. The solution follows from
setting the two derivatives ∂S/∂a and ∂S/∂b to zero and is worked out in
Appendix A9. Here the resulting equations are given.

The parameters a and b follow from a number of averages over the mea-
sured data points. The weights must be taken into account to determine
the averages, just as was done in Section 5.6 (see, for example, (5.20) on
page 62). For example:

⟨xy⟩ = 1
w

n∑

i=1

wixiyi; w =
n∑

i=1

wi. (7.12)

The parameters are:

a = ⟨("x)("y)⟩
⟨("x)2⟩ ; b = ⟨y⟩ − a⟨x⟩, (7.13)

where
"x = x − ⟨x⟩; "y = y − ⟨y⟩. (7.14)
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These averages can also be computed without first subtracting the averages
of x and y because

⟨("x)("y)⟩ = ⟨xy⟩ − ⟨x⟩⟨y⟩; (7.15)

⟨("x)2⟩ = ⟨x2⟩ − ⟨x⟩2. (7.16)

Beware of numerical precision when you subtract two large numbers (see
note on page 58).

From the equation for b (7.13) you see that the optimal function passes
through the point (⟨x⟩, ⟨y⟩). This is the “center of mass” of the set of points.
This fact was used in the discussion of graphical estimates in Section 6.3.

Uncertainties in the parameters

Estimates for the standard uncertainties σa and σb in a and b are the square
root of the estimated variances σ̂ 2

a and σ̂ 2
b . The latter follow from the behavior

of the function χ2(a, b) and are derived from the likelihood function (7.4):

p(a, b) ∝ exp
(

−1
2
χ2(a, b)

)
. (7.17)

The function χ2(a, b) is a quadratic function in a and b and hence the prob-
ability distribution p(a, b) is a bivariate normal distribution in the deviations
"a and "b from the parameter values at the minimum. The coefficients of
the terms ("a)2, ("a)("b) and ("b)2 determine the variances and covari-
ance of a and b as explained in Section 7.5 and in Appendix A9. When χ2

is estimated from the data themselves, i.e. from the minimum value S0 of S,
the results for the estimated (co)variances are

var (a) = σ̂ 2
a = S0

w(n − 2)⟨("x)2⟩ , (7.18)

var (b) = σ̂ 2
b = σ̂ 2

a ⟨x2⟩, (7.19)

cov (a, b) = −σ̂ 2
a ⟨x⟩ (7.20)

where w is the total weight of all points together. In the common case
that all weights have been taken = 1, w is simply equal to the number of
observations n.

The n − 2 in (7.18) has the meaning of the number of degrees of freedom:
the number of (independent) data points minus the number of parameters in
the function. Appendix A9 explains the details, but one could loosely say that
two points are needed to determine two parameters and only n − 2 points are

Andres Marrugo
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left to determine deviations from the fit. This makes sense: you can always
draw a straight line through two points; for n = 2, S = 0 and the inaccuracies
remain undetermined.

Covariances between parameters

The covariance cov (a, b) indicates whether deviations in a and b are corre-
lated with each other: to what extent can a deviation in a be compensated
by a deviation in b? Covariances must be used to determine the uncertainty
in quantities that are a function of the parameters, e.g. for interpolation and
extrapolation of data. See the remarks on page 22 and in Appendix A1.

The covariance is often expressed relative to the product σ̂aσ̂b and is then
called the correlation coefficient between a and b (a dimensionless number
between −1 and +1):

ρab = cov (a, b)

σ̂aσ̂b
= − ⟨x⟩

√
⟨x2⟩

. (7.21)

Note that a and b are uncorrelated (ρab = 0) when ⟨x⟩ = 0, i.e., when the
zero of x is chosen in the “center of mass.” So when you choose as the linear
function

f (x) = a(x − ⟨x⟩) + b, (7.22)

you can be sure that a and b are uncorrelated. In addition, you know right
away that

b = ⟨y⟩. (7.23)

Extrapolations are now much simplified: if you wish to determine the
inaccuracy in f (x) at an arbitrary x you can simply add the contributions
quadratically:

σ 2
f = σ 2

a (x − ⟨x⟩)2 + σ 2
b , (7.24)

while using the formula f (x) = ax + b a correction is needed: (see
Appendix A1):

σ 2
f = σ 2

a x2 + σ 2
b + 2ρabσaσbx. (7.25)

Should you use S0 or χ2
0 ?

As you have noticed, the (co)variances are proportional to the minimal sum
of squares: we have used the measured deviations to determine the uncer-
tainties in the parameters. This is the only choice we have if the individual
standard deviations σi are not known beforehand. If they are known and
reliable, they could also be used to determine the uncertainties in the param-
eters. In that case the term S0/[w(n − 2)] must be replaced by the known

Andres Marrugo
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1/
∑

σ−2
i . Before deciding which choice to make you should always per-

form a chi-squared analysis (Section 7.4). These matters are discussed more
fully in Sections 7.4 and 7.5.

Correlation coefficient between x and y values of a data series

There is a quantity that indicates how well a series of points lie on a straight
line. This is the correlation coefficient r between the x and y values of the data
series. Points approach a straight line only when there is a strong correlation
between their x and y values. Don’t confuse this correlation coefficient with
the correlation coefficient ρab (7.21) between a and b as discussed above.
While the latter is derived from expectations over an estimated probability
distribution, r is a property of the data set itself:

r = ⟨("x)("y)⟩
√

⟨("x)2⟩⟨("y)2⟩
(7.26)

= a

√
⟨("x)2⟩
⟨("y)2⟩ . (7.27)

For r = ±1 there is complete correlation: the points lie exactly on a straight
line; for r = 0 there is no correlation and it makes no sense to fit a linear
function to the data. For a reasonable correlation r should be above 0.9.

A correlation coefficient less than 1.0 indicates that, but not how the data
deviate from a linear relation. The two sets of data plotted in Figs 7.2a and
7.2b have the same correlation coefficient of 0.900, but both deviate in very

Figure 7.2 Two data sets xi, yi with the same correlation coefficient r between x
and y of 0.900. There are no numbers along the axes: correlation coefficients are
independent of linear scaling or translation of the axes. The drawn lines are the best
linear fits through the points.
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different ways from the best-fitted straight line. You also see in this figure that
r = 0.9 does not guarantee the fit to a straight line to be very satisfactory.

7.3 General least-squares fit
When the function to be fitted f (x, θ) with parameters θ = θ1, . . . , θn is more
general than ax + b, the following cases should be distinguished:

(i) f linear in θ . For functions linear in all parameters, such as

f (x) = ax2 + bx + c (7.28)

f (x) = a + b exp(−k1x) + c exp(−k2x); (7.29)

(k1, k2 known constants)

f (x) = ax + b/x + c, (7.30)

an analytical (weighted) least-squares solution minimizing S (7.8) is still
possible, but requires some matrix algebra. Appendix A9 gives details.

(ii) f linear in several variables. Functions linear in more than one
independent (“explanatory”) variable, such as

f (ξ , η, ζ ) = aξ + bη + cζ + d, (7.31)

where ξ , η, ζ are the independent variables and a, b, c, d are the parame-
ters, similarly yield analytical least-squares solutions using some matrix
algebra. Such functions are also treated in Appendix A9.

(iii) f nonlinear but linearizable. Functions that are nonlinear in the param-
eters can often be transformed to linear functions, as was done in
Section 6.2 on page 73 in order to obtain linear graphs. For example,
the function f (t) = a exp(−kt) is not linear in the parameter k. But if
you take the logarithm:

ln f (t) = −kt + ln a, (7.32)

you obtain a function that is linear in k and has the form ax + b. So you
can apply linear regression to the points (ti, ln yi) and determine k and
ln a. But take proper care of the weights: if all values of y have equal
standard deviations σ , the values ln yi have different weights:

σln y =
∣∣∣∣
d ln y

dy

∣∣∣∣ σy = σy/yi (7.33)

In this case you should take the weights wi equal to (or proportional to)
y2

i . Negative values of y, which may occur by random deviations for
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large values of t, cannot be handled. It is not allowed to selectively omit
negative values, as that will bias the result. The best way to proceed
is to omit all points with larger values for t than the value for which a
negative y first occurred. Even better is the use of a general nonlinear
fitting procedure.

(iv) f nonlinear: general case. Functions that are nonlinear in the parame-
ters cannot always be linearized. For example, the function

f (t) = a exp(−kt) + b (7.34)

cannot be transformed to a linear function of the parameters a, b, and k.
A nonlinear least-squares fitting procedure must then be used. In this
case there are no analytical solutions and solutions are obtained by
iterative function minimizers. There are several minimizers available,
some that require analytical derivatives and some that do not. The lat-
ter are more easy to use. In all cases an initial guess of the parameters
is required; for some functions a bad guess may lead to failure of the
minimization procedure. A graphical analysis is a good source for a
reasonable initial guess.

Below an example is given of a nonlinear least square minimization
using Python.

Example: nonlinear fit

Consider the data on enzyme kinetics given in Table 6.2 on page 76. Given
are six data points Si, vi with equal weights and our task is to fit two
parameters p0 = vmax and p1 = Km in the function

f (S, p) = p0S
p1 + S

; (7.35)

p = [vmax, Km], (7.36)

such that the sum of squares

SSQ =
∑

i

[vi − f (Si, p)]2 (7.37)

is minimal. One possibility is to use the Python least-squares minimization
procedure leastsq that comes with the module optimize of SciPy.
This function requires a specification of the residues yi − fi (or (yi − fi)/σi
if s.d.’s are known), which are a function of the parameters p, but does not
require any derivatives. It must be called with an initial guess for p, for which
we choose the values found by graphical inspection in Exercise 7.6:

pinit = [15, 105]. (7.38)
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Figure 7.3 Upper panel: The urease reaction rate data plotted together with the
least-squares fitted function. Lower panel: Plotting the residuals yi − fi with error
bars more clearly show whether the deviations have a random character or not.

The SSQ using this initial guess equals 0.375. After applying the minimiza-
tion procedure the parameters appear to be

pmin = [15.75, 114.65] (7.39)

and the minimal SSQ is 0.171. Figure 7.3 shows the fit, together with a plot
of the residues. The latter plot is able to show the size of the error bars, and
gives a visual impression of any systematic deviations. Later we shall see
how large the uncertainties in the parameters appear to be.

Another possibility is to use the Python procedure fmin_powell, also
in the module optimize of SciPy. With this minimizer the function to
be minimized must be specified. This routine is less accurate than leastsq
and should preferably be applied more than once.

A Python code which performs these minimizations is Python code 7.1 on
page 183
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Having determined the best values of the parameters, your problems are
not yet solved! You also wish to assess the validity of the fit and you wish to
have an estimate of the inaccuracies in the parameters. The key to the answers
to these problems lies in the value of χ2 as a function of the parameters. The
next two sections explain all this.

7.4 The chi-squared test
Suppose you have performed a least-squares fit of the parameters in a
function to a set of data. Is the fit reasonable, i.e., are the data – within
experimental errors – compatible with the functional relation? What criteria
can you apply to answer this question? What is “reasonable?”

Deviations from an acceptable fit can be expected both ways: the fit can be
not good enough but it can also be too good. When the function has too few
parameters or the functional shape is incorrect, the data will have systematic
deviations that exceed the expected random errors. When there are too many
parameters, the functional fit (if it succeeds at all) will follow the data too
closely and the deviations will be less than expected from random errors.

You should always first check how the deviations yi − fi (i.e., the residues)
depend on x. A successful fit will yield residues that are samples from a
random, generally normal, distribution. Systematic deviations are generally
immediately apparent from a plot of the residues versus x. If you see such
deviations, your fit is not acceptable and you should reconsider the functional
choice you have made.

If there are no obvious deviations, the next step is to perform a chi-squared
test. This test checks whether the sum of square deviations is compatible
with the expectation based on the assumption that the deviations are samples
from a (known) probability distribution. The chi-squared test can only be
performed if you have reliable prior estimates for the standard inaccuracies
σi of each data point. How to proceed when you don’t have prior knowl-
edge about the expected deviations is explained at the end of this section.
Determine the minimal value of χ2, defined as

χ2
0

def=
n∑

i=1

(yi − fi)2

σ 2
i

, (7.40)

where the fi are evaluated at the optimal parameter values. This is just the
value of S0 (7.6) when all weights are taken equal to the inverse variances:

wi = σ−2
i . (7.41)

Note: if you have determined S using weights that are proportional but not
equal to inverse variances, you can derive χ2

0 from
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χ2
0 = S0

w

n∑

i=1

σ−2
i , (7.42)

where w is the total weight
∑

wi. See Exercise 7.6.
Since each of the terms in the chi-squared sum should have an expectation

of 1, you expect the sum to be close to n. This is not quite correct: for a linear
regression two degrees of freedom have been “used” for the determination of
the two parameters a and b. The number of degrees of freedom ν equals
n − 2 and χ2 will be approximately equal to ν = n − 2. In general, when
there are m adjustable parameters, the remaining number of degrees of free-
dom is n − m. But χ2 has a probability distribution around this value. This
probability function depends on ν and is – if based on a normal distribution
of the contributing deviations – denoted by f (χ2|ν). The larger the number
of degrees of freedom, the narrower the chi-squared distribution becomes.
The function f (χ2|ν) is fairly complex (see the data sheet CHI-SQUARED

DISTRIBUTION on page 199 for equations), but has the convenient property
that it approaches a normal distribution for large ν. The mean is equal to ν
and the standard deviation equals

√
2ν; this is not only true in the limit of

large ν but is valid for all ν.
Tables of the chi-squared distribution do not give the probability density,

but give the cumulative distribution function (cdf) F(χ2|ν): the probabil-
ity that a sum of squares does not exceed χ2. The survival function (sf)
1 − F(χ2|ν) then indicates the probability that the value χ2 is exceeded.
The data sheet CHI-SQUARED DISTRIBUTION gives a table of values of χ2

that are still acceptable for acceptance limits of 1%, 10%, 50%, 90% and
99%. Most books on statistics (and the Handbook of Chemistry and Physics)
contain larger tables, but you may find it easier to use a Python routine from
SciPy.

See Python code 7.2 on page 184 to generate chi-squared probabilities.

Use the table or Python code as follows. First set an acceptance criterion,
e.g. between 1% and 99%, or between 10% and 90%. The choice is sub-
jective and you should report your choice when you publish your results. In
the following example we choose the 10–90% limits. If your least-squares
χ2-value is less than the 10% value, you do not accept the outcome as a ran-
dom occurrence and conclude that the fit is too good. Your function has too
many parameters and you should try a simpler function with the same data:
your data do not justify the complexity of your function. On the other hand,
if your least-squares χ2-value exceeds the 90% value, you do not accept the
outcome as a random occurrence either and conclude that the data deviate
significantly from the function. In that case: look for a function that bet-
ter describes the data, possibly with more parameters. In both cases it is
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also good practice to review your data and your original estimates of the
variances.

Example 1

In the urease kinetics example (see page 7.31) the least-squares fit gave a
minimal value for the sum of squared deviations SSQ of 0.171. Since the
s.d. of the data yi were given as 0.2 mmol/min, the minimum value of χ2

appears to be 0.171/0.22 = 4.275. This is quite close to the number of
degrees of freedom ν = n − m = 6 − 2 = 4, so you may conclude
that the deviations are compatible with random fluctuations. Indeed, the cdf
of the chi-squared distribution cdf(4.275,4) equals 0.63, a completely
insignificant deviation.

Example 2

You have 10 independent measurements (x, y), with x being accurate and y
having a known standard uncertainty σ . You have a simple theory that pre-
dicts y to be a linear function ax+b of x, but a more refined theory predicts a
second-degree function px2 + qx + r. Do your data justify the refined theory
above the simple one at a confidence level of 90%? You perform a linear
least-squares fit to both functions, using 1/σ 2 as weight factor for all points.
For the linear function you find S = χ2 = 14.2 and for the quadratic function
you find S = χ2 = 7.3. Inspection of the table in data sheet CHI-SQUARED

DISTRIBUTION for 8 degrees of freedom shows that 14.2 lies above the 90%
limit and hence is not acceptable according to the chosen acceptance crite-
rion. The quadratic function (with 7 degrees of freedom) is indeed acceptable
and the data justify its use. Had these values been 12.3 (linear function) and
6.5 (quadratic function), then the conclusion that a quadratic function should
be used would not have been warranted, despite the fact that the quadratic
function gives a better fit than the linear function.

What should you do if the standard uncertainties of the data are unknown
or inaccurately known? In that case a chi-squared test cannot be used. It could
well happen that you overestimate the experimental uncertainties by a factor
of 2; this makes χ2 a factor of 4 smaller. With e.g. 10 degrees of freedom you
may then find a value of 2, while the accurate value is 8. The value 2 is below
the 1% probability limit, making the fit unacceptable, while the accurate
value of 8 is perfectly acceptable. Thus you may draw the wrong conclusion
based on a wrong prior estimate of the uncertainties. This example shows
that your prior knowledge of the inaccuracies in the data points should be
rather precise for a valid chi-squared analysis.

With a sufficient number of data you may use the data themselves to deter-
mine the uncertainties of the measurements y. The minimal sum of squared
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deviations S0 provides the information to estimate the individual variances
σ̂ 2

i if you take for χ2 the best estimate χ̂2
0 = n − m. The relation is

σ̂ 2
i = S0

(n − m)wi
, (7.43)

which is easily obtained by setting wi = c/σ 2
i and solving c from

χ̂2
0 = S0

c
= n − m. (7.44)

Note that in the common case of equal weights and wi = 1, σ̂ 2 = S0/(n−m).
Of course you cannot use χ̂2

0 now to assess the quality of the fit. There-
fore you should apply other criteria to analyze the random character of the
residues εi = yi − fi. A graph versus x should not show systematic devi-
ations. The cumulative distribution function should resemble a symmetric
normal distribution. Statistical attributes such as mean and variance, if taken
over sections of the data, should not differ significantly for different sections.

7.5 Accuracy of the parameters
Suppose you have performed a least-squares fit and your residues stood the
tests for randomness so that you can trust the values of the standard uncer-
tainties in the data. Either you had accurate prior knowledge of the standard
uncertainties of the data points or you have scaled your uncertainties such
that χ2 in the minimum exactly equals n − m; in any case you know χ2

as a function of the parameters. Now you can compute the variances and
covariances of the fitted parameters.

In this section some general equations are given; their derivations are
given in Appendix A9. We start again from n data points xi, yi and per-
form a least-squares fit of a (linear or nonlinear) function of m parameters
θk, k = 1, . . . , m. The procedure yields χ2 as a function of the parameters,
with a minimum χ2

0 for the parameter values θ̂i, which are considered as
best estimates. Because χ2

0 is a minimum, the function χ2(θ1, θ2, . . . , θm) is
quadratic in the neighborhood of the minimum (the quadratic term is the first
term in a Taylor expansion of χ2 about the minimum, also for a fit function
which is not linear in the parameters).

An important role in the derivation of (co)variances for the parameters is
played by the matrix B with elements

Bkl =
n∑

i=1

1

σ 2
i

∂fi
∂θk

∂fi
∂θl

. (7.45)
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The partial derivatives of f with respect to θ are constants for functions that
are linear in the parameters; for nonlinear functions it is required to take the
derivatives at the best-fit values θ̂ of the parameters. This matrix is also half
the matrix of second derivatives of the function χ2(θ) (see Appendix A9):

Bkl = 1
2

∂2χ2

∂θk∂θl
, (7.46)

meaning that B quantifies the curvature of the function χ2(θ1, θ2, . . . , θm) at
the minimum:

"χ2 = χ2(θ) − χ2(θ̂) (7.47)

≈
m∑

k,l=1

Bkl"θk"θl, (7.48)

where "θk = θk − θ̂k. For linear functions the ≈ sign can be replaced
by an = sign.

Covariances of the parameters

The (co)variances of the parameters follow from the likelihood (7.4) on
page 86:

p(θ) ∝ exp
[
−1

2
"χ2(θ)

]
. (7.49)

By inserting (7.48) into (7.49) a bivariate normal distribution is obtained. As
is more fully explained in Appendix A9, the (co)variances of the parameters
are given by the inverse of the matrix B. Denoting this inverse by C:

C = B−1, (7.50)

then
cov (θk, θl) = Ckl. (7.51)

From the covariance matrix the standard deviation σθk of θk (which is its
standard inaccuracy) can be found:

σθk =
√

Ckk. (7.52)

The correlation coefficient ρkl between θk and θl is

ρkl = Ckl√
CkkCll

. (7.53)
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Table 7.1 Relation between "χ2 and the probability
distribution of a single parameter θ .

"χ2 p("θ)/p(0) "θ P(−"θ , "θ)

0.00 1.00000 0.0000 0.00%
0.50 0.77880 0.7071 52.05%
1.00 0.60653 1.0000 68.27%
1.50 0.47237 1.2247 77.93%
2.00 0.36788 1.4142 84.27%
2.50 0.28650 1.5811 88.62%
3.00 0.22313 1.7321 91.67%
3.50 0.17377 1.8708 93.86%
4.00 0.13534 2.0000 95.45%
4.50 0.10540 2.1213 96.61%
5.00 0.08208 2.2361 97.47%

Thus knowledge of the matrix C suffices to estimate inaccuracies of the
parameters and their mutual correlations. In the following two paragraphs
the one- and two-dimensional cases are graphically illustrated.

Relation between χ2 and 1-D parameter distribution

In Table 7.1 the relations are given between "χ2 and the distribution function
of "θ in the case of only one parameter, for which

p("θ) = p(0) exp
[
−1

2
"χ2("θ)

]
, (7.54)

"χ2("θ) = b("θ)2. (7.55)

Here b is the matrix element B11 in the expansion (7.48); 1/b is the variance
σ 2

θ . The standard deviation is reached when "χ2 = 1 (note that this is a frac-
tion 1/ν of "χ2

0 , the latter having an expectation of the number of degrees of
freedom ν). Twice the standard deviation is reached for "χ2 = 4. Figure 7.4
depicts the relevant relations.

This relation between "χ2 and p("θ) is not only valid in the single-
parameter case. When there are several parameters, and you wish to know
the marginal probability distribution of a particular parameter θ1, then it
suffices to compute the function "χ2("θ1), while minimizing "χ2 with
respect to all other parameters. So the standard deviation of "θ1 is reached
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Figure 7.4 Relation between "χ2 and the probability distribution of a single
parameter θ .

when "χ2("θ1) = 1, while all other parameters have their least-squares
values. Why this is so is explained in Appendix A9.

Relation between χ2 and 2-D parameter distribution

In the case of two parameters, "χ2 is a quadratic function of two param-
eters "θ1, "θ2. The important feature to remember is that the vertical and
horizontal tangents to the contour "χ2 = 1 are positioned at θ1 = ±σ1 and
θ2 = ±σ2, respectively. Appendix A9 explains why. Table 7.2 gives the rela-
tions between "χ2, their tangent projections and the integrated percentage
probability that the combined ("θ1, "θ2) lies within the contour correspond-
ing to "χ2. The integrated probability P("χ2) within the contour is a simple
function of "χ2:

P = 1 − exp
(

−1
2
"χ2

)
, (7.56)

with inverse:
"χ2 = −2 ln(1 − P). (7.57)

For example, the θ values that represent 99 percent of the integrated joint
probability are contained in the contour "χ2 = −2 ln 0.01 = 9.21.
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Table 7.2 Relation between "χ2 and the 2-D
probability distribution of two parameters
"θ1, "θ2.

"χ2 tangent projection P(contour)
contour in units σ integrated

0.0 0.000 0.00%
0.5 0.707 22.12%
1.0 1.000 39.35%
1.5 1.225 52.76%
2.0 1.414 63.21%
2.5 1.581 71.35%
3.0 1.732 77.69%
3.5 1.871 82.62%
4.0 2.000 86.47%
4.5 2.121 89.46%
5.0 2.236 91.79%
5.5 2.345 93.61%
6.0 2.449 95.02%

An example is given in Fig. 7.5, with the following choice for B and
C = B−1:

B = 1
3

(
1 −1

−1 4

)
; C =

(
4 1
1 1

)
,

the latter meaning that

σ1 = 2; σ2 = 1; ρ12 = 0.5.

Figure 7.5 represents a contour plot: Each contour encloses all values of
the two parameters for which the joint probability exceeds a given level.
The integrated joint probability for the parameter values within the contour
"χ2 = 1 (dark grey area) equals 39 percent (see Table 7.2); the projection
on the "θ1-axis indicates the standard deviation σ1 = 2. Thus the integrated
marginal probability of "θ1 (light grey area) equals the usual 68 percent
between ±σ you already know from the normal distribution. It is also pos-
sible to read the value of the correlation coefficient ρ from the contour
"χ2 = 1: The contour intersects the "θ1-axis at the value σ1

√
1 − ρ2 and

likewise for "θ2. The larger |ρ|, the more elongated is the ellipse in diagonal
direction. For positive ρ the long axis is in the SW–NE direction; for negative
ρ it is in the NW–SE direction.
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Figure 7.5 Contour plot of "χ2 for the two-parameter case. The contour "χ2 = 1
projects onto the axes at the values of the standard deviations (σ1 = 2; σ2 = 1).

See Python code 7.3 on page 184 to generate a contour of a two-dimensional
function at a prescribed level.

When there are more than two parameters, a 2-D contour plot with
the same properties can still be made for any selected pair of parameters
"θ1, "θ2, but it is then required that "χ2("θ1, "θ2) is minimized with
respect to all other parameters. The 2-D contours are projections of an
m-dimensional ellipsoid representing "χ2 in the space of all parameters.

Example

Consider the urease kinetics example (page 76; data from Table 6.2). A least-
squares fit has already been performed (page 93). You have a function
S(vmax, Km), which in this case is the unweighted sum of square deviations.
The minimum of this function is S0 = 0.171, occurring at the parameter val-
ues [15.75, 114.64]. You have also seen before (Example 1 on page 97) that
S0 is compatible with the known inaccuracies in the measurements, accord-
ing to a chi-squared analysis. What you need is χ2 as a function of the
parameters and this you obtain by scaling S such that the minimum value
scales to the expected value n − m = 4:
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Figure 7.6 Contour plot of "χ2 = 1 for the urease kinetics example. The contour
projects onto the axes at the values of the standard deviations (σ1 = 0.41; σ2 = 7.6).
The contour intersects each axis at a fraction

√
1 − ρ2 of the corresponding standard

deviation.

χ2(vmax, Km) = n − m
S0

S = 4
0.171

S(vmax, Km). (7.58)

Figure 7.6 shows the contour of χ2 = 1 in 2-D parameter space. You
can read the standard uncertainties in the parameters from the projections
of the ellipse on the axes and derive the correlation coefficient ρ from the
intersection of the contour with the axes through the minimum. These values
can also be taken from the array of contour points from which the contour
plot is generated. The results are:

σ1 = 0.41; σ2 = 7.63; ρ = 0.93.

As you see, the two parameters are strongly correlated. A simultaneous devi-
ation of the two parameters in the same direction (both positive or both
negative) is much more probable than a simultaneous deviation in opposite
directions. This is also clear from Fig. 7.6. The correlation coefficient is
important if you need to predict the inaccuracy of the reaction rate at a given
concentration.

See Python code 7.4 on page 186 to generate the χ2-contour and to derive
the uncertainties and correlation from the contour data.

If you had used your data errors (given as σy = 0.2 in this case) you
would have found χ2

0 = 0.171/0.22 = 4.3 instead of the expectation 4.0.
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Table 7.3 Standard deviations and correlation coefficient for
vmax and Km in the urease kinetics example, computed with
different methods.

method σ1 σ2 ρ

from leastsq routine 0.41 7.6 0.92
from "χ2 = 1 0.41 7.6 0.92
from C = B−1; δ = [0.2, 3.5] 0.42 7.8 0.92
as above with δ = [0.0004, 0.007] 0.36 7.0 0.93

This would have made your standard deviations an insignificant 4 percent
larger.

In order to obtain the standard deviations and correlations without pro-
ducing a "χ2 = 1 contour, the covariance matrix C is required. This is
the general procedure for more than two parameters when a 2-D plot is less
suitable. If an appropriate least-squares program is used, the program can
provide this matrix, as its elements are built up during the minimization
procedure. Another route to the covariance matrix is the construction and
subsequent inversion of the matrix B = C−1, see (7.48). The elements of
B can be found by evaluating "χ2 at grid points near the minimum, e.g. at
displacements δi in each of the parameters i and at displacements δi, δj for
all pairs. When you perform the latter evaluation and you take the test dis-
placements about equal to the standard deviations, you find results that are
similar (but not equal) to covariances produced by the least-squares proce-
dure (see Table 7.3). They are also close to the results obtained from the
"χ2 = 1 contour. However, if you take very small test displacements, the
covariance matrix differs (in this example the values are 10 to 20 percent
lower). The reason is that "χ2 is not a pure quadratic function of the param-
eters as a result of the nonlinear character of the fit function. The likelihood
exp

(
− 1

2"χ2) is not a pure bivariate normal distribution. It is best to use the
covariances derived from "χ2 in the neighborhood of 1, but be aware that
the non-normal character will influence the tails of the likelihood distribu-
tion. Don’t trust confidence intervals based on normal distributions and take
the standard deviations with a pinch of salt.

See Python code 7.5 on page 187 to generate the covariance matrix for the
urease kinetics example from the least-squares routine.

See Python code 7.6 on page 187 to generate the covariance matrix for the
urease kinetics example from construction of the B matrix.
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See Python code 7.7 on page 189 for a program that reports the results of a
general least-squares fit of a predefined function to given data.

7.6 F-test on significance of the fit
If you have fitted a theoretical relation to your data points, the first question
to ask is whether the fit has any significance at all. Does the fit significantly
reduce the sum of square deviations compared to the sum of square devi-
ations with respect to the average of yi? If not, the function does not add
anything to explain the data. But what is “significant” in this context?

The total sum of squared deviations of the data yi with respect to their
average ⟨y⟩ is given by (for simplicity we take all weight factors equal to
one):

SST =
n∑

i=1

(yi − ⟨y⟩)2. (7.59)

This is the relevant sum of square deviations if you had no model at all.
The number of degrees of freedom is n − 1 since you have used the data to
determine one parameter (the average). With a model you predict values fi
that are matched as closely as possible to yi. The residual sum of squared
deviations, now called the error sum of squares SSE, is

SSE =
n∑

i=1

(yi − fi)2. (7.60)

If your functional relation contains m parameters to determine the fi’s, the
number of degrees of freedom is n − m. This sum of squares is the least
you can obtain with your model; it is entirely due to random errors. The
difference SST − SSE is the part of the total sum of squared deviations that
is explained by the model. It is called SSR, the regression sum of squares. Its
magnitude is

SSR = SST − SSE =
n∑

i=1

( fi − ⟨ f ⟩)2. (7.61)

The number of degrees of freedom associated with SSR is m − 1 since the
fi’s are determined by m variables, but one is used for the average. You see
that all degrees of freedom are accounted for.

The validity of this equality is not immediately clear. It is valid when the
fi’s have been determined such that the residues εi = yi − fi form a set of
independent samples from a probability distribution with zero mean. The
latter implies that ⟨y⟩ = ⟨ f ⟩, while independence means that εi is not related
to fi:

∑
i εi( fi − ⟨ f ⟩) = 0. From this it follows that
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SST =
∑

(yi − ⟨y⟩)2 =
∑

i

(yi − fi + fi − ⟨ f ⟩)2

= SSE + SSR + 2
∑

i

(yi − fi)( fi − ⟨ f ⟩) (7.62)

= SSE + SSR. (7.63)

In practice this relation may not be exactly fulfilled because the last term in
(7.62) may not be exactly zero.

Having separated the total sum of squared deviations into a part SSR
explained by the model and a random-error part SSE, it is clear that the larger
SSR is (relative to SSE), the more significant your model is. The proper
statistical test is the F test (see Chapter 4, page 106, and the datasheet F-
DISTRIBUTION on page 201). The F-ratio (which is the ratio of estimated
variances) is given by

Fm−1,n−m = SSR/(m − 1)

SSE/(n − m)
. (7.64)

The cumulative F-distribution gives the probability that both sets of devi-
ations are sampled from distributions with the same variance. It tests the
null hypothesis “the model does not explain the data to a significant extent”
or – equivalently – “the model is insignificant.” You may reject the null
hypothesis and accept the model as significant when the F-ratio exceeds the
critical value Fc for which F( Fc) > 1 − α, where α is the significance
level. For example, if you have 10 data points and 3 adjustable parameters,
so that νSSR = 2 and νSSE = 7, and you set the significance level at 1 per-
cent, then the critical F-ratio equals 9.55 (see the second table of data sheet
F-DISTRIBUTION on page 201). For larger values than 9.55 you can be
confident that the model is significant.

Example

Let us return to the urease kinetics example (page 76; data from Table 6.2).
The fact that the two parameters vmax = 15.8 ± 0.4 and Km = 115 ± 8 are
highly significant (see example on page 103) already suggests that the fit is
very relevant. Indeed, almost all variation of the measured values is explained
by the model, as you can see by evaluating the sum of squared deviations:
SST = 57.02; SSR = 56.24; SSE = 0.17. Note that the sum of SSR and
SSE is not quite equal to SST, which is to be expected for a nonlinear least-
squares fit. The F-ratio equals [SSR/1]/[SSE/4] = 1315 and the cumulative
probability of the F-distribution is 0.9999966. You can be (very) confident
that the model is relevant! See Exercise 7.7 for an example with a more
dubious outcome.
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See Python code 7.8 on page 193 to compute these results.

Summary You are now able to perform least-squares fits of
parameters in a functional relation to a given data set. For func-
tions that are linear in the parameters, the least-squares method
is robust as long as the parameters are not mutually dependent.
For nonlinear functions a minimum can usually be found by
appropriate iterative computer programs. You can test your fit
in two ways: the first question is whether the fit to the specified
function is significantly better than a fit to just an average: use
an F-test for this assessment. The second question is whether
the residual deviations with respect to the fit behave as random
samples from a distribution with variance compatible with your
prior knowledge of the uncertainties: use a chi-squared test for
this assessment. If OK, then you can compute the covariance
matrix of the parameters from the observed sum S of square
deviations. Use the dependence of S on the parameters to find
this matrix.

Exercises

7.1 Perform a linear regression on the enzyme kinetics data of Table 6.2
(page 76). Do this according to the Lineweaver–Burk plot, i.e., for x = 1/[S]
en y = 1/v. Use correct standard inaccuracies for y. Give the values for
vmax and Km with their standard inaccuracies (be aware that for an s.d. in
a combination of a and b also the correlation coefficient between a and b
is needed). Compare your values with the graphical estimates from Fig. 6.2
and with the nonlinear least-squares solution of the example on page 93.
Plot the data points with the best-fitted straight line.

7.2 The "G of a reaction was determined by measuring equilibrium constants
at various temperatures. The following values were obtained:

T/K "G/kJ mol−1

270 40.3
280 38.2
290 36.1
300 32.2
310 29.1
320 28.0
330 25.3
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The uncertainty in T is negligible and the weight factors are equal for
all cases. Determine the reaction entropy "S = −d"G/dT by fitting the
values of "G to a linear function of T . What is the standard inaccuracy in
"S? Extrapolate "G to T = 350 K and give the standard inaccuracy that
follows from the variance and covariance of the parameters, as found from
the least-squares fit. Now do the same thing, but take for x the values of
T −300 instead of T itself. Discuss the differences (if any) between the two
calculations.

7.3 Explain why the weight given to a data point yi = log ti should be propor-
tional to t2i if the ti’s are all random samples from probability distributions
with the same variance. Start by deriving the variance of y assuming a
constant variance σ 2

t of t. Then relate the weight to the variance.

7.4 Perform a least-squares fit of the four-parameter double exponential func-
tion a exp(−px) + b exp(−qx) to the data x, y from Table 6.1 on page 74.
Use the Python program fit (code 7.7). As initial parameter guess use the
values that were determined graphically in Section 6.2. If the minimization
does not reach a result after the maximum number of trials, then take the
last values of the parameters as initial ones and minimize again.

7.5 You wish to measure the focal length of a positive lens on an optical bench
with a ruler graduated in mm from 0 to 1000. Your lens is placed somewhere
near 190 mm but it is an encased thick lens and you are not sure about its
exact position. Your object (a lamp) is placed at position x and you observe
the image to be sharp at position y. You estimate the s.d. σy of y. All data
are in mm.

x y σy

60 285 1
80 301 2

100 334 3
110 383 4
120 490 5
125 680 10

Set up the parameterized equation y ≈ f (x, p), assuming the thin-lens for-
mula to be valid: 1/f = 1/s1 + 1/s2, where s1 and s2 are the distances from
the lens to the object and the image, respectively. Find the least-squares
solution and evaluate the best value for f and its standard inaccuracy.
Discuss the validity of the functional fit. Use Python.

7.6 Prove (7.42) by setting wi = c/σ 2
i and eliminating c.
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7.7 The F-test for relevance of a least-squares fit can be used to test if there
is a drift in a time series, e.g. a time-dependent variable generated by a
simulation that is supposed to produce stationary fluctuating quantities.
Generate 100 random numbers from a normal distribution N(0, 1). Perform
a least-squares fit to fi = ai + b, yielding the best estimates â and b̂,
and compute the standard inaccuracy in a. There are two ways to check
if the drift you find is significant. First you can assess the probability
that a differs from zero, i.e., the two-sided probability that |a| ≤ |â|.
Although Student’s t-distribution is the appropriate distribution, you can
also use a normal distribution because with a large number of degrees of
freedom the t-distribution is nearly equivalent to a normal distribution. The
second method is using an F-test. Compute SSR and SSE and assess the
significance of the linear regression model with an F-test. Do all this for a
few fresh series of random samples and compare the two results. In order
to get significant results you may add a drift term to the data.

Remark: This is done most easily by calling the routine report, see
Python code 6.2 on page 176.



8 Back to Bayes: knowledge as a
probability distribution

In this chapter the reader is requested to sit back and think. Think about
what you are doing and why, and what your conclusions really mean. You
have a theory, containing a number of unknown – or insufficiently known –
parameters, and you have a set of experimental data. You wish to use the
data to validate your theory and to determine or refine the parameters in
your theory. Your data contain inaccuracies and whatever you infer from your
data contains inaccuracies as well. While the probability distribution of the
data, given the theory, is often known or derivable from counting events, the
inverse, i.e., the inferred probability distribution of the estimated parameters
given the experimental outcome, is of a different, more subjective kind.
Scientists who reject any subjective measures must restrict themselves to
hypothesis testing. If you want more, turn to Bayes.

8.1 Direct and inverse probabilities
Consider the reading of a sensitive digital voltmeter sensing a constant small
voltage – say in the microvolt range – during a given time, say 1 millisec-
ond. Repeat the experiment many times. Since the voltmeter itself adds a
random noise due to the thermal fluctuations in its input circuit, your obser-
vations yi will be samples from a probability distribution f (yi − θ), where
θ is the real voltage of the source. You can determine f by collecting many
samples. In some cases, when you know the physical process that adds the
noise, you may even be able to predict the distribution function. For exam-
ple, if you observe the number of light pulses in a given time interval "t,
knowing that they occur randomly at a given average rate θ , then the number
k observed in a given time interval will obey the Poisson probability dis-
tribution f (k, θ"t). Such (conditional) probabilities f (y|θ) are called direct
probabilities. They result from direct counting of events or from considering
symmetries in the random process. In this chapter the notation f is used for
such direct probabilities which are also called physical probabilities.

Now consider the value of a physical constant, e.g. Avogadro’s number
NA. It is the number of atoms in 1 gram of pure 12C. According to CODATA
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its value is (6.022 141 79 ± 0.000 000 30)× 1023. That is, the number given
is not exact. At best a probability distribution p(NA) can be given for NA,
e.g. a normal distribution with mean 6.022 141 79 × 1023 and standard devi-
ation 3.0 × 1016. But what does a probability of this kind mean? It is not a
frequency distribution that you can find by counting the outcome of a large
number of similar experiments, because – if there had been a large number
of independent evaluations – the CODATA committee would have averaged
those and proposed another mean and s.d. Similarly, the metereologist’s pre-
diction that “there is a 30 percent probability that it will rain tomorrow” or
the surgeon’s prediction that “the patient has a 95 percent chance of sur-
viving the operation” says something about a unique event that cannot be
repeated; such probabilities are more expressions of a belief based on earlier
experience than the outcome of counting numbers in repeated experiments.
Philosophers call such probabilities epistemic.1 Other names are subjective
and inverse probabilities.

The distinction between direct and inverse probabilities has been clear to
Laplace and his followers since the late eighteenth century.2 But the sub-
jective nature of inverse probability has caused many scientists to shy away
from using such concepts. The exponent of the critical school is the eminent
statistician R. A. Fisher who developed a range of statistical tools in the first
half of the twentieth century, all based on the frequency definition of direct
probabilities. He circumvented the use of inverse probabilities by introducing
the likelihood as a substitute.

There is a good reason to be critical to concepts in physics that are not
entirely objective: subjective bias, arbitrariness and prejudice may easily
creep into the interpretation of results. So, if you use inverse probabilities
as an expression of your knowledge, it is essential that such probabilities are
unbiased and do not include “information” that does not rest on verifiable
knowledge. But with this restriction the use of inverse probabilities is very
rich and very powerful to infer model parameters from experimental data.

Since the middle of the twentieth century the construction of inverse prob-
abilities has gained ground over the critical school and is recently enjoying a
real revival. It is called the Bayesian approach.

8.2 Enter Bayes
In two papers of Thomas Bayes (1763, 1764), published posthumously by
R. Price, the principle of what is now called “Bayes’ method” of construct-
ing inverse probabilities was laid down within a context of combinatorial

1 The word epistemic, from the Greek epistèmè: knowledge, was first used in the context of
probabilities by Skyrms (1966).

2 See Hald (2007) for a historical review of statistical inference.
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problems. Ten years later the concept was worked out by Laplace. It is really
very simple, once you agree to work with inverse probabilities.3

Consider two events, T and E (T stands for “theory”: a parameter or set
of parameters in a theory, and E for “experiment”: an observed quantity or
quantities). The probability of the joint event p(T, E) can be expressed as
the marginal probability of one event times the conditional probability of the
other:

p(T, E)= p(T) p(E|T)= p(E)p(T|E). (8.1)

This implies that the posterior probability of T, p(T|E), i.e., the probability
after the experiment is known, is proportional to the product of the prior
probability of T, p(T), i.e., the probability before the experiment is known,
and the probability of the experimental outcome, given the theory:

p(T|E) ∝ p(T)p(E|T). (8.2)

The proportionality constant is really a normalization factor; it is simply the
inverse of the sum or integral of the right-hand side over all possibilities of T.

In more specific terminology (and now the notation f is used for direct
probabilities and p for inverse probabilities): you have a theory with a set of
parameters θ and you have a set of data y. Now the posterior probability of
your parameters is

p(θ |y) = c f (y|θ)p0(θ), (8.3)

where p0(θ) is the prior probability density function of your parameters.
The latter expresses the knowledge you have about θ before you know the
experimental results. The constant c is given by

c−1 =
∫

f (y|θ)p0(θ) dθ , (8.4)

with integration carried out over the full domain of possible values for θ .
Here it is assumed that the parameters can take on a continuous range of val-
ues (with p being probability densities), but they can just as well be discrete,
in which case the integration becomes a summation and the p’s are proba-
bility mass functions. Likewise the direct probabilities f (y|θ) can be either
continuous or discrete.

3 See, among many others, Box and Tiao (1973) and Lee (1989) for Bayesian treatments of
statistical problems. Cox (2006) compares the frequentist and Bayesian approaches to
statistical inference.



114 BACK TO BAYES: KNOWLEDGE AS A PROBABILITY DISTRIBUTION

8.3 Choosing the prior
The prior distribution p0 must be unbiased. It can only depend on previous
experiments and derived by equations like (8.3). If no such experimen-
tal information is known, the prior must be as uninformative as possible:
any information you put into the prior that does not rely on verifiable data
introduces a form of prejudice.

The most uninformative prior is a constant: all values are equally possible.
It seems a bit strange to propose a constant for a probability density func-
tion (pdf): a respectable pdf should be normalized, i.e., the integral over its
domain should be unity. Probability densities that cannot be normalized are
called improper. But you can make the constant pdf respectable if you cut its
value to zero at the far ends beyond the range of possible values. Since the
direct probability f (y|θ) is a peaked function with finite integral, the integral
in (8.4) exists even for p0 ≡ 1. So it is OK to allow improper priors.

There is one objective requirement for an acceptable prior: it should scale
properly with transformations of the parameters. Consider a location param-
eter µ, occurring as an additive factor in the range (−∞, ∞). It could just
as well be replaced by a linear transformation µ′ = aµ + b; a uniform dis-
tribution of µ should also be uniform if expressed in µ′. That is indeed the
case: since p(µ) dµ= p′(µ′) dµ′ and dµ′ = adµ, p′ = p/a, which is uniform
if p is a constant. Now consider a scale parameter σ , occurring as a multi-
plicative factor in the range (0, ∞). It could just as well be replaced by cσ or
by σ 2 or by σ−1, or by the transformation σ ′ = bσ a. It is clear that the vari-
able log σ transforms linearly: log σ ′ = a log σ +b; therefore the distribution
should be uniform in log σ . This implies that the uncommitted (or ignorant)
prior should be proportional to 1/σ since d log σ = dσ/σ . Summarizing (this
rule is due to Jeffreys, 1939):

The most uninformative (ignorant, uncommitted, unbiased) improper prior
p0(θ) equals 1 if θ is a location parameter or 1/θ if θ is a scale parameter.

8.4 Three examples of Bayesian inference
Updating knowledge: Avogadro’s number

CODATA suggests that we may believe the inverse probability density
function of Avogadro’s number to be

p0(NA) ∝ exp

[

− (NA − µ0)
2

2σ 2
0

]

, (8.5)

with µ0 = 6.022 141 79 × 1023 and σ0 = 3.0 × 1016.
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A scientist comes along with a reliable new measurement of NA. She
measured the value y = 6.022 141 48 × 1023 and asserts that her analysis of
experimental errors indicates that her result y is a sample from a normal
distribution N(y − NA, σ1), where σ1 = 7.5 × 1016.

Inserting these data into (8.3) we find that

p(NA|y) ∝ exp

[

− (y − NA)2

2σ 2
1

]

exp

[

− (NA − µ0)
2

2σ 2
0

]

. (8.6)

Working out the exponent
(
omitting a factor − 1

2 for the time being
)
:

(y − NA)2

σ 2
1

+ (NA − µ0)
2

σ 2
0

(8.7)

=
(
σ−2

0 + σ−2
1

)
[

N2
A − 2NA

µ0σ
−2
0 + yσ−2

1

σ−2
0 + σ−2

1

+ · · ·
]

(8.8)

= (NA − µ)2

σ 2 + · · · , (8.9)

where

µ = µ0σ
−2
0 + yσ−2

1

σ−2
0 + σ−2

1

, (8.10)

σ−2 = σ−2
0 + σ−2

1 . (8.11)

Thus the posteriori inverse probability density of NA is a normal distribution
with weighted averages for the mean and variance (see also Exercise 5.7 on
page 70):

p(NA|y) ∝ exp
[
− (NA − µ)2

2σ 2

]
. (8.12)

The result is that the parameters µ0 and σ0 in the prior pdf (8.5) have been
updated to µ and σ in the posterior pdf (8.12).

Inference from a series of normally distributed samples

Suppose your experimental data are n independent samples from a normal
distribution with unknown µ and unknown σ . You have no prior knowledge
of the mean and s.d., so you take the uninformative prior

p0(µ, σ ) = 1/σ , (8.13)
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because µ is a location parameter and σ is a scale parameter. The probability
of observing n values yi, i = 1, . . . , n is the product of the probabilities of all
measurements, because the data are independent:

f (y|µ, σ ) = 1n
i=1

1

σ
√

2π
exp

[
− (yi − µ)2

2σ 2

]
(8.14)

∝ σ−n exp

[

− 1
2σ 2

n∑

i=1

(yi − µ)2

]

(8.15)

This can be rewritten as

σ−n exp
[
− (⟨y⟩ − µ)2 + ⟨("y)2⟩

2σ 2/n

]
, (8.16)

where

⟨y⟩= 1
n

n∑

i=1

yi (8.17)

and

⟨("y)2⟩= 1
n

n∑

i=1

(yi − ⟨y⟩)2. (8.18)

For the posterior probability density we can now write:

p(µ, σ |y) ∝ σ−(n+1) exp
[
− (µ − ⟨y⟩)2 + ⟨("y)2⟩

2σ 2/n

]
. (8.19)

The proportionality constant can be obtained by integrating the right-hand
side over both µ and σ . In this case there is an analytical expression for
the integral, but it is often easier to determine the constant by numerical
integration.

It is interesting to see that the probability (8.19) of the parameters is given
by only two properties of the data set: the average and the mean-squared
deviation from the average. Apparently these two properties are sufficient to
know everything about the statistics of the data set (sufficient statistics). But
this is only true if we already know that the samples come from a normal
distribution!

The pdf of (8.19) is bivariate. It is plotted as a number of contours at
various fractional heights in Fig. 8.1 for the example of 10 samples with
⟨y⟩ = 0 and ⟨("y)2⟩ = 1. The values within a given contour represent a
defined integrated probability.

In practice you will more often find use for one-dimensional distribution
functions. First consider the pdf for µ (Fig. 8.2).
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Figure 8.1 Contour plot of the Bayesian inverse bivariate pdf of the mean µ and s.d.
σ given the value of 10 independent normally distributed experimental samples.
The average equals zero and the rmsd equals 1. Contours – from inside out – are
full-drawn at fractional heights 0.9, 0.8, . . . , 0.1; broken at 0.05, 0.02, 0.01, 0.005,
0.002.

Figure 8.2 The Bayesian posterior pdf for the parameter µ, given the value of
10 independent normally distributed experimental samples with zero average and
rmsd = 1. The drawn line is the marginal p(µ|y) for unknown σ ; the broken line is
p(µ|y, σ ) for known σ = 1.



118 BACK TO BAYES: KNOWLEDGE AS A PROBABILITY DISTRIBUTION

For known σ you see from (8.19) that the posterior pdf of µ is a normal
distribution around ⟨y⟩ with variance σ 2/n:

p(µ|y, σ ) ∝ exp
[
− (µ − ⟨y⟩)2

2σ 2/n

]
. (8.20)

For unknown σ the probability must be integrated over all possible values of
σ in order to obtain a marginal distribution of µ.

p(µ|y) =
∫ ∞

0
p(µ, σ |y) dσ . (8.21)

This integral can be written as proportional to
∫ ∞

0
σ−(n+1) exp

(
− q

σ 2

)
dσ , (8.22)

where

q = 1
2

n[(µ − ⟨y⟩)2 + ⟨("y)2⟩]. (8.23)

By substituting q/σ 2 for a new variable, a Gamma-function is obtained.
The integral appears to be proportional to

p(µ|y) ∝
(

1 + (µ − ⟨y⟩)2

⟨("y)2⟩

)−n/2

. (8.24)

This is exactly Student’s t-distribution density function f (t|ν) for ν = n − 1
degrees of freedom, as a function of the variable t:

f (t|ν) ∝
(

1 + t2

ν

)−(ν+1)/2

(8.25)

t =
√

(n − 1)(µ − ⟨y⟩)2

⟨("y)2⟩ = µ − ⟨y⟩
σ̂/

√
n

, (8.26)

where σ̂ 2 = [n/(n − 1)] ⟨("y)2⟩. See data sheet STUDENT’S T-DISTRIBU-
TION on page 213 for further details on the t-distribution.

Next consider the pdf for σ . If µ is known, the pdf is given by (8.19).
Figure 8.3 shows p(σ |y, µ = 0) for the example used above. It is more
common that you do not know µ in advance; then your Bayesian posterior
probability is the marginal probability:

p(σ |y) =
∫ ∞

−∞
p(µ, σ |y) dµ (8.27)

∝ σ−n exp
[
−⟨("x)2⟩

2σ 2/n

]
. (8.28)
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Figure 8.3 The Bayesian posterior pdf for the parameter σ , given the value of
10 independent normally distributed experimental samples with zero average and
rmsd = 1. The drawn line is the marginal p(σ |y) for unknown µ; the broken line is
p(σ |y, µ) for known µ = 0.

Figure 8.4 The Bayesian posterior pdf for the rate parameter k, given the value of n
independent time intervals between events. For this example the average observed
time equals 1 ns. The pdf’s are drawn for n = 1, 2, 3, 4, 5, 7, 10.
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As you see from Fig. 8.3, the value predicted for σ is slightly larger and
slightly less accurate when µ is not known a priori.

Infer a rate constant from a few events

Consider the observation of single events that sample a rate process. This
could be a pulse emitted from a source that is excited at t = 0; it could be
the observation of a conformational change in the simulation of a protein
that is made unstable by changing its environment at t = 0; it could be the
time between two sightings of a meteor, or any other seldom event that you
can observe only a few times. Your theory says that the event results from
a simple rate process with constant probability k"t that the event occurs in
any small time interval "t. You observe n independent events at times or
intervals ti, i = 1, . . . , n. What can you say about the rate constant k?

In a Bayesian approach you wish to determine after the first event the
inverse posterior probability

p1(k|t1) ∝ f (t1|k)p0(k), (8.29)

where f (t|k) is the direct probability that an event occurs after a time t, given
the rate constant k. This is easy to derive. Divide time in small intervals "t;
t/"t = m. The probability that the pulse occurs at the m-th interval, and not
before, is (1 − k"t)m−1 k"t. Taking the limit "t → 0; m → ∞, you find

f (t|k)= ke−kt. (8.30)

The prior inverse probability p0(k) must be taken as 1/k, since k is a scale
parameter. So

p1(k|t1) ∝ e−kt1 . (8.31)

After observing a second event at time t2, you can update this probability:

p2(k|t1, t2) ∝ ke−kt2 e−kt1 (8.32)

and after n events you obtain

pn(k|t1, . . . , tn) ∝ k(n−1) exp[−k(t1 + · · · , tn)]. (8.33)

In general, if the average of the observed time intervals is ⟨t⟩, and the pro-
portionality constant is included by integrating this function, it is found
that

pn(k|t1, . . . , tn) = (n⟨t⟩)n

(n − 1)!kn−1 exp(−kn⟨t⟩). (8.34)
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So you see that the average of the observation times is sufficient statistics: it
determines all you can know about k. It is easily seen that the expectations
over this distribution of k and its variance are given by

k̂ = E[k] = 1
⟨t⟩ , (8.35)

σ̂ 2 = E[(k − ⟨k⟩)2] = 1
n⟨t⟩2 . (8.36)

The latter equation implies that σ̂ = k̂/
√

n. As always, the relative standard
inaccuracy decreases with the square root of the number of observations.

The case n = 7 has been used before in this book: Fig. 2.5 on page 12.
For that case three different point estimates are given: the mean (1.00), the
median (0.95) and the mode (0.86). It is pointless to haggle about what is
best, as all values are well within a s.d. (0.38) from the mean.

8.5 Conclusion
The examples above express your knowledge in terms of probability den-
sity functions. These have one disadvantage: they look much more exact
than they are. Be aware that such probability distributions only express your
degree of ignorance about the parameters derived from theory and experi-
ment. Your best value is not necessarily the exact mean or the exact mode; it
can be anywhere within the width of the distribution. Be careful to report the
right number of digits!

How to proceed if you absolutely refuse to use inverse probabilities? First,
you can fool yourself by defining the likelihood of a parameter as equal to
the direct probability of the measured value:

l(θ |y) = f (y|θ). (8.37)

This is of course equivalent to the posterior Bayesian probability when you
assume a uniform prior. Inconsistencies are expected for scale parameters.
Renaming a quantity does not solve your problem but hides it like an ostrich
does.

Second, you can limit yourself to testing hypotheses rather than predicting
values. It is useful if you wish to assess the effect of some agent that does
or does not influence a sampled result. The null hypothesis usually assumes
that the agent has no effect and you try to prove that the result you obtain
is unlikely under the null hypothesis. If so, you accept the truth of the alter-
native hypothesis (“the agent does have an effect”). This procedure avoids
any inverse probabilities, but it makes life quite poor: you also want to know
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what the effect of the agent is. Many questions you wish to be answered by
your experiments remain out of bounds.

Summary This chapter has taken a Bayesian point of view on
statistics, accepting the notion of “inverse probability”. Sim-
ple rules then allow you to express all the knowledge you have,
including the outcome of your recent experiments, in probabil-
ity functions of the parameters in your theory. In three examples
it is shown that you can either update existing knowledge with
new experimental data or – without prior knowledge – express
the knowledge gained from limited experimental data in proba-
bility distributions. The introduction to this chapter invited you
to sit back and think. Now, sit back and draw your conclusions.
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2.1 (a) l = 31.3 ± 0.2 m (unless the precision is really 20 ± 1 cm; in that
case l = 31, 30 ± 0, 20 m); (b) c = 15.3 ± 0.1 mM; (c) κ = 252 S/m;
(d) k/L mol−1 s−1 = (35.7 ± 0.7) × 102 or k = (35.7 ± 0.7) × 102

L mol−1 s−1; (e) = 2.00 ± 0.03.
2.2 (a) 173 Pa; (b) 2.31 × 105 Pa = 2.31 bar; (c) 2.3 mmol/L; (d) 0.145 nm

or 145 pm; (e) 24.0 kJ/mol; (f) 8400 kJ (note that often cal or Cal is
written while kcal is meant); (g) 556 N; (h) 2.0 × 10−4 Gy; (i) 0.080
L/km or 8.0 L/100 km; (j) 6.17 × 10−30 Cm; (k) 1.602 × 10−40 F m2.

3.1 (a) 3.00 ± 0.06 (relative uncertainty 2%); (b) 6.0 ± 0.3 (relative uncer-
tainty

√
32 + 42%); (c) 3.000 ± 0.001. Note that log10(1 ± δ) = ±

0.434 ln(1 + δ) ≈ ±0.434δ = 0.00087. Sometimes it is easier to eval-
uate both boundaries: log10 998 = 2.99913 and log10 1002 = 3.00087;
(d) 2.71 ± 0.06 (relative uncertainty

√
1.52 + 12%).

3.2 k = ln 2/τ1/2. The relative uncertainty in k equals the relative uncer-
tainty in τ1/2. The absolute uncertainty in ln k equals the relative
uncertainty in k : σ (ln k)= σ (k)/k. The following values are obtained:

1000
T/K k/s−1 ln(k/s−1)

1.2771 (0.347 ± 0.017) × 10−3 −7.97 ± 0.05
1.2300 (1.155 ± 0.077) × 10−3 −6.76 ± 0.07
1.1862 (2.89 ± 0.24) × 10−3 −5.85 ± 0.08
1.1455 (7.70 ± 0.86) × 10−3 −4.87 ± 0.11

Python code for logarithmic plot:
autoplotp([Tinv,k],yscale=’log’,ybars=sigk), with
Tinv, k, sigk from table.

3.3 9.80 ± 0.03 (Relative uncertainty is
√

0.22 + (2 × 0.12) = 0.28%)
3.4 Because "G = RT ln(kh/kBT), the derivative with respect to T equals

("G/T) + R. That is (30 000/300) + 8.3 = 108.3. This implies that a
deviation in T of ±5 yields a deviation in "G of 108.3×5 = 540 J/mol.

3.5 The volume from r = 1 equals 4.19 mm3; the mean of 1000 samples
was found to be 4.30 mm3 and the standard deviation was found to be
1.27. The systematic error in the “naive” volume is −0.11, much less
than the standard deviation.

4.1 f (0)= 0.598 74; f (1)= 0.315 12; f (2)= 0.074 635; f (3) = 0.010 475;
f (4)= 0.000 965.

4.2 You are looking for 1 − f (0) = 1 − 0.9920 = 0.182.
4.3 With a sample size of n and probability p of voting candidate no. 1, the

average number of votes for no. 1 will be pn with variance p(1 − p)n
(binomial distribution). To obtain a relative standard deviation of 0.01,
n ≥ 10 000 is required.
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4.4 This distribution is binomial. (a) p̂1 = k0/n; (b) σ0 = √
(k0k1/n); (c)

same as (b); (d) Note that deviations in k0 and k1 are fully anticorre-
lated. Therefore (k1 ± σ )/(k0 ∓ σ )= r(1 ± σk−1

1 )/(1 ∓ σk−1
0 )= r[1 ±

σ (k−1
1 + k−1

0 )]. Standard deviation of r equals [1 + (k1/k0)]/
√

n).
4.5 Sum µk/k! over k = 0 to k = ∞, yielding eµ.
4.6 Generate Poisson probabilities f (k, µ) and cumulative probabilities

F(k, µ) from
from scipy import stats
f=stats.poisson.pmf
F=stats.poisson.cdf
(a) 2.98; (b) (k ≥ 8) : 1 − F(7, 3) = 0.012; (c) 4 beds; 0.185 patients
transported. The optimization can best be done by defining a function
cost(n), which computes the costs with n beds, and finding a whole
number n for which cost(n) is minimal. For example:
def cost(n):

krange=arange(1,n,1)
avbeds=(f(krange,3)*krange).sum()+n*
(1-F((n-1),3))

return (1-F(n,3))*1500.+(n-avbeds)*300.
4.7 This is a Poisson process: s.d. equals the square root of the number

of observed impulses. The light measurement gives 900 ± 30 impulses
and the dark measurement gives 100 ± 10 impulses. The light inten-
sity is proportional to (900 − 100) ±

√
302 + 102 = 800 ± 32. Hence

the relative s.d. is 4%. After repeating the measurement 100 times (or
after a hundredfold increase of measuring time), the measured numbers
become 100× larger, but the (absolute) errors become only 10× larger.
The relative uncertainty becomes 10× smaller (0.4%).

4.8 F(0.1) − F(−0.1) = 2 × (0.5 − 0.4602) = 0.0796. Note that this is
almost equal to f (0) × 0.2 = 0.0798.

4.9 f (6)= 6.076×10−9; F(−6)= 1.0126 × 10−9(37/38 + . . .)= 9.8600×
10−10. Compare to the exact value stats.norm.cdf(-6.)=
9.8659 × 10−10.

4.10 (a) The uniform distribution f (x) = 1, 0 ≤ x < 1, has average 0.5 and
variance σ 2 =

∫ 1
0 (x − 0.5)2 dx = 1/12; adding 12 numbers yields a 12

times larger variance. (b) and (c) with Python code:
x=randn(100)
autoplotc(x,yscale=’prob’)

4.11 mean: ⟨t⟩ = 1/k; variance ⟨(t − k−1)2⟩= 1/k2.
Use

∫ ∞
0 tn exp(−kt) dt = n!/kn+1 for evaluating integrals.

4.12 SSR = 115.6; SSE = 154.0; F = 6.005; cdf(F, 1, 8) = 0.96; treatment
is significant at 5% confidence level.

5.1 Yes, Fig. 2.1 gives a straight line; µ = 8.68; σ = 1.10. Accuracy
ca 0.05.

5.2 Just work out the square in 1
n

∑
(xi − ⟨x⟩)2.
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5.3 No: apply the equation to y = x − c; all terms with c cancel.
5.4 Usually things go wrong for c exceeding 107. Suggestion: use Python

function:
def rmsd(c):

n=1000
x=randn(n)+c
xav=x.sum()/n
rmsd1=((x-xav)**2).sum()/n
rmsd2=(x**2).sum()/n - xav**2
return [rmsd1,rmsd2]

The first value is correct; the second may be in error.
5.5 The estimated s.d. equals σ̂ =

√
⟨("x)2⟩n/(n − 1), where ⟨("x)2⟩ is

the mean squared deviation. For n = 15 the s.d. in σ is 19%; this gives
σ̂ = 5 ± 1. For n = 200 the s.d. in σ is 5%; this gives σ̂ = 5.1 ± 0.3.
In the first case the mean is 75 ± 5; in the second case the mean is
75.3 ± 5.1.

5.6 1. (a) average: 29.172 s; (b) msd: 0.0315 s2; (c) rmsd: 0.1775 s; (d)
range: 28.89–29.43 s; median: 29.24 s; first quartile: 29.02 s; third
quartile: 29.33 s

2. (a) mean: 29.172 s; (b) variance: 0.0354 s2; (c) s.d.: 0.188 s; (d):
0.063 s; (e) 0.0177 s; 0.047 s; 0.016 s.

3. 29.16 ± 0.06 km/hr; deviation: +6.6 ± 4% km/hr.
4. No. The inaccuracy of keeping the right speed is incorporated into

the measurements.
5. 80%: 29.10–29.25; 90%: 29.07–29.27; 95%: 29.06–29.28 s.
6. 80%: 123.06–123.74; 90%: 123.00–123.82; 95%: 122.91–123.92

km/hr.
7. 80%: 123.06–123.76; 90%: 122.97–123.85; 95%: 122.88–123.94

km/hr.
8. 80%: 123.03–123.76; 90%: 122.91–123.90; 95%: 122.79–124.02

km/hr.
5.7 Use weighted averaging: NA = 6.022 141 89(20).
5.8 The plot can be made by first constructing a list z of all 27 possible

values:
z=[-1.]+[-2./3.]*3+[-1./3.]*6+[0.]*7+[1./3.]*6

+[2./3.]*3+[1.]
autoplotc(z,yscale=’prob’)
This plot perfectly fits a straight line through (0, 50%); σ = 0.47 (exact:
0.471).

5.9 Note that the characteristic function of δ(x − a) equals exp(iat). The
probability density function of a variable x, randomly chosen from −1,
0 and +1, consists of three delta functions +(t) = 1

3 δ(x+1)+ 1
3 δ(x)+

1
3 δ(x − 1). Its characteristic function is 1

3 [1 + exp(−it) + exp(it)]. The
pdf of the sum of three such variables x1, x2, x3 is the convolution of
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f (x1), f (x2) and f (x3); its characteristic function equals +(t)3. Working
out the third power yields

[exp(3it) + 3 exp(2it) + 6 exp(−it) + 7 + 6 exp(−it) + 3 exp(−2it) +
exp(−3it)]/27.

Its Fourier transform contains seven delta functions at x = −3, −2, −1,
0, 1, 2, 3. If not the sum but the average of three values is taken, the x
values reduce by a factor 3.

The variance can be obtained from the second derivative of the char-
acteristic function at t = 0, or directly from the pdf, and equals 2 for
the sum, or 2/9 for the average.

6.1 Line goes through points (9, 100) and (188, 1) (precision ca 1%). Gives
k = ln 100/(188 − 9) = 0.0257 and c0 = 126.

6.2 (In too many decimals:) Lineweaver–Burk: Km = 1/0.0094 = 106.383;
vmax = Km(0.04 + 0.0094)/0.35 = 15.015; Eadie–Hofstee: Km = (15 −
2)/(0.120 − 0.007) = 115.04; vmax = 0.120Km + 2 = 15.805; Hanes:
vmax = 500/(39 − 7.5) = 15.873; Km = 7.5vmax = 119.05.

6.3 Plot the data 1000/T , k on a horizontal scale from 1.14 to 1.30. Draw
the best line through the points; this line goes through (1.14, 9.5e − 3)
and (1.30, 2.0e − 4). Hence E/1000R =[ln(9.5e − 3/2.e − 4)]/[1.30 −
1.14]= 24.13 and E = 200.63 kJ/mol. Varying the slope yields E
between 191.69 and 208.24. Result: E = 201 ± 8 kJ/mol. Your values
may differ (insignificantly) from these numbers.

6.4 68.8 ± 0.6 mmol/L (note that the unit molar (M, mol/L) is obsolete).
7.1 Use the Python program fit (code 7.7). With the function y = ax + b,

the best fit gives a = 7.23±0.31 and b = 0.0636±0.0017, with correla-
tion coefficient ρab = −0.816. From this follows vmax = 1/b = 15.7 ±
0.4 and Km = a/b = 114 ± 8. The relative uncertainty δ in a/b is found
from

δ2 =
(σa

a

)2
+

(σb

b

)2
− 2ρab

σaσb

ab
.

A direct nonlinear fit to the data [S,v] yields vmax = 15.7 ± 0.4 and
Km = a/b = 115 ± 8.

7.2 Use the Python program fit (code 7.7). With the function y = −aT +
b you find "S = a = 0.259 ± 0.013, b = 110.3 ± 3.9 and ρab =
0.99778516. Extrapolation to T = 350 gives "G(350) = 19.81±0.71,
where the s.d. has been calculated from

σ 2
"G = 3502σ 2

a + σ 2
b − 2.350.ρabσaσb.

With the function y = −a(T − 300) + b you find "S = a = 0.259 ±
0.013, b = 32.74 ± 0.26 and ρab = 0. Extrapolation to T = 350 now
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gives "G(350) = 19.81 ± 0.71, where the s.d. has been calculated
from

σ 2
"G = 502σ 2

a + σ 2
b .

The results are exactly the same, but the extrapolation is much simpler
in the second case where ρ = 0.

7.3

σ 2
y =

(
dy
dt

)2

σ 2
t = σ 2

t

t2
.

Hence wi = σ−2
y = t2i /σ

2
t ∝ t2i .

7.4 a = 71.5 ± 3.8; b = 19.1 ± 3.9; p = 0.0981 ± 0.0061; q = 0.0183 ±
0.0034. Note that these values deviate from the graphical estimate. Fit-
ting to multiple exponentials is quite difficult; the parameters have a
strong mutual correlation (e.g. ρab = 0.98) and sometimes a minimum
cannot be found.

7.5 For c = position lens, yf (x, [ f , c]) = c + f ∗ (c − x)/(c − x − f ). Least-
squares fitting yields f = 55.15; c = 187.20. The S0 = 3.13; 4 degrees
of freedom. Covariance matrix (S0/4∗ leastsq output yields σ1 = 0.2;
σ2 = 0.3; ρ = 0.91. Result: f = 55.1 ± 0.2 mm.

7.6 Find out by yourself.
7.7 The output of the program report gives sufficient comment. Try

x=arange(100.); sig=ones(100)
y1=randn(100); y2=y1+0.01*x
report([x,y1,sig])may produce an insignificant drift, while y2
may imply a significant drift.
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A1 Combining uncertainties

Why do squared uncertainties add up in sums?

We wish to determine the sum f = x + y of two quantities, each of which are
drawn from a probability distribution, with

E[x] = µx; E[(x − µx)
2] = σ 2

x , (A1.1)

E[y] = µy; E[(y − µy)
2] = σ 2

y . (A1.2)

The quantity f = x + y has the expectation

µ = µx + µy (A1.3)

and a variance

σ 2
f = E[(f − µ)2] = E[(x − µx + y − µy)

2]

= E[(x − µx)
2 + (y − µy)

2 + 2(x − µx)(y − µy)]
= σ 2

x + σ 2
y + 2E[(x − µx)(y − µy)]. (A1.4)

If x and y are independent of each other (i.e., the deviations from the means
of x and y are statistically independent samples), then the last term vanishes.1

In that case the squared uncertainties (the variances) indeed add up to yield
the squared uncertainty of the sum.

From the derivation we see immediately that squared uncertainties no
longer simply add up when the deviations of the two contributing quanti-
ties are correlated. The quantity E[(x − µx)(y − µy)] is the covariance of x
and y. The covariance is often expressed relative to the variances themselves
as the correlation coefficient ρxy:

cov (x, y) = E[(x − µx)(y − µy)] (A1.5)

ρxy = cov (x, y)
σxσy

. (A1.6)

1 Strictly, the requirement is that the two quantities are uncorrelated, i.e., their covariance is
zero. This is a less severe requirement than being independent.
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The complete equation for a sum thus is

var (x + y) = var (x) + var (y) + 2 cov (x, y). (A1.7)

For a difference f = x − y the equation is

var (x − y) = var (x) + var (y) − 2 cov (x, y). (A1.8)

For a product, resp. a quotient, the same equations are valid for the relative
deviations:

var f
f 2 = var x

x2 + var y
y2 ± 2

cov (x, y)
xy

, (A1.9)

where the plus sign is valid for f = xy and the minus sign for f = x/y.
The general equation for the variance of a function f (x1, x2, . . .) is

var (f ) =
∑

i,j

∂f
∂xi

∂f
∂xj

cov (xi, xj). (A1.10)

Here cov (xi, xi)= var (xi). This equation follows directly by taking the
square of

df =
∑

i

∂f
∂xi

dxi.

The assumption is made that deviations are small, so that only the first order
in a Taylor expansion need be considered.

Here is an example of the use of covariances. Suppose we have performed
(with a computer program) a least-squares analysis of f (x) = ax + b on a
number of data points with the result:2

a = 2.30526; b = 5.21632;

σa = 0.00312; σb = 0.0357; ρab = 0.7326.

These results will be used for an inter- or extrapolation: What value and
standard deviation is expected for f (10)?

For this purpose we first determine the values, variances and covariances
for the two quantities ax and b we want to add. In this case x is a multiplying

2 Note that the numbers are given in too many digits. This is good practice for intermediate
results of a statistical analysis, since unnecessary rounding errors are thus avoided.
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factor that appears quadratically in var (ax) and linearly in cov (ax, b):

ax = 23.0526; b = 5.21632; f = 28.26892;

var (ax) = 0.003122 × 102; var (b) = 0.03572;

cov (ax, b) = 10 × 0.7326 × 0.00312 × 0.0357.

Insertion in Eq. (A1.7) then gives var (f ) = 0.00388. Had we disregarded
the covariance, var (f ) would have appeared to be equal to 0.00225. The s.d.
of f now is 0.0623 and we give the result as f = 28.27 ± 0.06.



A2 Systematic deviations due to
random errors

When f (x) has a non-negligible curvature, systematic deviations may occur
in f as a result of random deviations in x, even when the latter are symmetri-
cally distributed. Suppose you have a batch of spheres with approximately –
but not exactly – equal radii. You measure the radii and find an approximately
normal distribution with r = 1.0 ± 0.1 mm. For the volume you thus find (in
too many decimals): V = 4

3πr3 = 4.19 mm3. However, if you work out the
third power of r to higher order, you find:

(r ± "r)3 = r3 ± 3r2"r + 3r("r)2 ± ("r)3.

Assuming the distribution function for "r to be symmetric, you must con-
clude that the third term is always positive and thus gives a contribution to
the expected value of f :

E[r3] = r3 + 3r var (r).

If E[f (x)] ̸= f (E[x]) we have a systematic deviation or bias. In our example
this extra contribution to the volume is 0.13 mm3 and the expected volume
is 4.32 mm3. Without this correction, the predicted volume has a bias of
−0.13. This is ten times smaller than the standard deviation itself and is
therefore not very important. But there are cases when this kind of bias must
be corrected.

The general equation results from the second term in a Taylor expansion:

f (x) = f (a) + (x − a)f ′(a) + 1
2
(x − a)2f ′′(a) + · · · (A2.1)

E[f ] = f (E[x]) + 1
2

d2f
dx2 var (x) + · · · (A2.2)

A special case: sampling exponential functions

There is at least one type of fairly common application where evaluation of
the bias is essential: computing the average over an exponential function

138
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of a statistically distributed observable. For example, computation of the
thermodynamic potential µ of a molecular species in a molecular simula-
tion (molecular dynamics or Monte Carlo) by the particle insertion method
requires many random trial insertions of a particle. If the computed interac-
tion energy of the inserted particle with its environment of the i-th insertion
is Ei, the excess thermodynamic potential (in excess of the ideal gas value) is
approximated by

µexc = β−1 ln

[
1
N

N∑

i=1

e−βEi

]

, (A2.3)

where β = 1/(kBT) with kB = Boltzmann’s constant and T the absolute
temperature. The same kind of averaging occurs in other types of free-energy
determinations from simulations. The reader is referred to Berendsen (2007)1

for details on the physics of these methods.
The essential statistics in problems of this kind can be formulated as aver-

aging over an exponential function of a randomly sampled variable x, with
distribution function f (x). We are interested in the logarithm of such an
average:

y = − 1
β

ln⟨e−βx⟩, (A2.4)

where

⟨e−βx⟩ = E[e−βx] =
∫ ∞

−∞
f (x) e−βx dx. (A2.5)

The parameter β functions as a scaling for x: given a fixed probability dis-
tribution for x, the larger β, the more severe the statistical problems on
averaging appear to be. The problem is that occasional large negative values
for x contribute heavily to the average. We can get some insight by expand-
ing y in powers of β; such an expansion is called a cumulant expansion. For
simplicity we take ⟨x⟩ = 0, so that all moments of the distribution of x are
central moments. Adding an arbitrary value a to every x simply results in
adding a to the result y. The cumulant expansion is

y = − β

2! ⟨x
2⟩ + β2

3! ⟨x3⟩ − β3

4! (⟨x4⟩ − 3⟨x2⟩2) + O(β4). (A2.6)

For a normal distribution only the first term survives, resulting in

y = −β/2, (A2.7)

as can be checked by direct integration of (A2.5). This is a bias due to the
width of the normal distribution. If we know for sure that the distribution

1 See reference list on page 123.
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Figure A2.1 Cumulative average of y = −β−1 ln⟨exp(−βx)⟩ over n samples drawn
from a normal distribution (average 0, variance σ 2 = 1). The theoretical limits are
−0.5β, indicated by dotted lines (from Berendsen, 2007).

function of x is normal, y can be accurately determined from (A2.7), but it is
difficult to determine y from random sampling of x. To show this, Fig. A2.1
gives the values of y obtained from running averages for 1000 samples of x
from a normal distribution and for three values of β. It turns out that 1000
samples are barely sufficient to find convergence for β = 2, but for β = 4
this number by no means suffices.



A3 Characteristic function

The characteristic function +(t) of a probability density function f (x):

+(t) def= E[eitx] =
∫ ∞

−∞
eitxf (x) dx (A3.1)

has some interesting properties. In fact, +(t) is the Fourier transform of
f (x). This implies that the characteristic function of the convolution f1 ∗ f2
of two density functions f1 and f2 is the product of the two corresponding
characteristic functions +1 and +2. The convolution, defined by

f1 ∗ f2(x) =
∫ ∞

−∞
f1(x − ξ)f2(ξ) dξ , (A3.2)

is the density distribution of the sum of two random variables x1 + x2 when
the density functions of x1 and x2 are resp. f1 and f2. The convolution theorem
of Fourier analysis states that the Fourier transform of a convolution equals
the product of the Fourier transforms of the contributing terms. This product
rule also applies to convolutions of n functions.

Another interesting property of the characteristic function is that its series
expansion in powers of t generates the moments of the distribution. The char-
acteristic function is therefore often called the moment-generating function.
Since

eitx =
∞∑

n=0

(itx)n

n! , (A3.3)

it follows that

+(x) = E[eitx] =
∞∑

n=0

(it)n

n! E[xn] =
∞∑

n=0

(it)n

n! µn. (A3.4)

The moments are also given by the derivatives of the characteristic function
at t = 0:

+(n)(0) = dn+

dtn
|t=0 = inµn. (A3.5)
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Figure A3.1 Left: a probability density function (in this case a normal distribution);
right: its characteristic function. The dashed curve has a standard deviation twice
that of the drawn curve.

The µn are the moments, not the central moments. But you can always
choose the origin of x at the position of the mean.

A special case is the variance σ 2:

σ 2 = −d2+

dt2
(0). (A3.6)

Figure A3.1 shows the relation between a density function and its char-
acteristic function. The density function is normalized by its integral; the
characteristic function is always equal to 1 for t = 0. The broader the density
function, the narrower the characteristic function.



A4 From binomial to normal distributions

A4.1 The binomial distribution
Consider a case where the outcome of an observation x can be either 0 or 1
(or tail or head, or no or yes, or false or true, or absent or present, or what-
ever binary choice you wish to define). Let the probability of obtaining 1 be
equal to p, meaning E[x] = p. Then for two observations the following com-
binations may occur: 00, 01, 10, 11. Assuming that successive observations
are independent, the probability f (k)(k = 0, 1, 2) that exactly k times a 1 is
observed is

f (0) = (1 − p)2

f (1) = 2p(1 − p)

f (2) = p2. (A4.1)

In general: the probability f (k; n) that in n independent observations exactly
k times a 1 is observed equals

f (k; n) =
(

n
k

)
pk(1 − p)(n−k), (A4.2)

where (
n
k

)
= n!

k!(n − k)! (A4.3)

is the binomial n over k, i.e., the number of ways k items can be chosen
from a collection of n items. For the case considered above: n = 2, the three
binomial coefficients (k = 0, 1, 2) are respectively 1, 2 and 1; these are the
coefficients in f (k) of (A4.1). This is the binomial distribution.

Note that the sum of all probabilities equals 1:

n∑

k=0

f (k; n) =
n∑

k=0

(
n
k

)
pk(1 − p)(n−k) = (p + 1 − p)n = 1. (A4.4)
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The mean E[k] is defined by the sum

E[k] =
n∑

k=0

kf (k; n); (A4.5)

this can be worked out as

E[k] = pn
n∑

k=1

(
n − 1
k − 1

)
pk−1(1 − p){n−1−(k−1)} = pn. (A4.6)

Similarly (details are left to the reader), the variance equals

E[(k − pn)2] = E[k2] − 2pnE[k] + (pn)2

=
n∑

k=1

k2f (k; n) − (pn)2 = p(1 − p)n. (A4.7)

A4.2 The multinomial distribution
When there are more than one (e.g. m) possible values for the sampled vari-
able, with probabilities p1, p2, . . . , pm (

∑
i pi = 1), then the distribution is a

multinomial distribution:

f (k1, k2, . . . , km; n) = n!
k1!k2! . . . km!1

m
i=1pki

i ;
∑

i

ki = n. (A4.8)

This is an example of a multidimensional joint probability, meaning the prob-
ability that event 1 occurs k1 times and event 2 occurs k2 times and etc. The
means and variances for each of the number of occurrences are the same as
for the binomial distribution:

E[ki] = µi = npi, (A4.9)

E[(ki − µi)
2] = σ 2

i = npi(1 − pi). (A4.10)

The fact that the sum of all ki is constrained causes a covariance between ki
and kj(i ̸= j):

covar(ki, kj) = E[(ki − µi)(kj − µj)] = −npipj. (A4.11)

The covariance matrix is a symmetric matrix of which the diagonal elements
are the variances and the non-diagonal elements are the covariances.
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A4.3 The Poisson distribution
From binomial to Poisson

Consider a suspension of small particles. You want to determine the average
number of particles per unit volume by counting the number of particles
under a microscope in a sample of 0.1 × 0.1 × 0.1 mm (10−6 cm3). If the
number density is known, and thus the average number of particles in the
sample volume is known, what then is the probability of finding exactly k
particles in the small volume?

Let the average number of particles in the sample volume be µ. Divide
the sample volume into a large number n of cells, small enough to contain no
more than one particle. The probability that a specified cell contains a particle
equals p = µ/n. The probability that precisely k particles will be found in
the sample volume equals the binomial distribution f (k; n) with p = µ/n.

Equivalently you may consider another example: Electrical impulses (or
photons, or gamma quanta, or any other short events) occur randomly and
independently of each other. You observe the events during a given time span
T . If the average number of events within a time T is known, what then is the
probability that precisely k events are observed in a time span of length T? In
this case we divide the interval T into n short time intervals. Let the average
number of events in a time T be µ. The probability that precisely k events
will be counted in the interval T equals the binomial distribution f (k; n) with
p = µ/n.

Now let the number of cells, or the number of time intervals, n go to
infinity, while pn = µ is kept constant. This means that p → 0, but in such
a way that pn = µ remains the same. Thus k ≪ n. The binomial coefficient
then approaches nk/k!:

n!
k!(n − k)! = n(n − 1) . . . (n − k + 1)

k! ≈ nk

k! , (A4.12)

so that

p(k) → nk

k!
(µ

n

)k (
1 − µ

n

)n−k
.

The term on the right approaches e−µ because n − k → n and

lim
n→∞

(
1 − µ

n

)n
= e−µ, (A4.13)

from which it follows that

f (k) = µke−µ

k! . (A4.14)
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This is the probability mass function of the Poisson distribution for k, given
the average µ.

The Poisson distribution is a discrete distribution: the observed number k
can only assume positive integer values 0, 1, 2, . . . The mean µ is a parameter
of the distribution and can be any positive real number.

Properties of the Poisson distribution

It is easy to show that the Poisson distribution is normalized and that its mean
equals µ. Prove this by using the series expansion

eµ =
∞∑

k=0

µk

k! . (A4.15)

The variance of the distribution is

var (k) = σ 2 = E[(k − µ)2] = µ. (A4.16)

This follows from
∑∞

k=0 k2µk/k! = µ2 +µ, but it is also the limit of (A4.10)
for p → 0.

A4.4 The normal distribution
From Poisson to normal

For large values of µ the Poisson distribution approaches a normal distribu-
tion with mean µ and s.d.

√
µ. When we attempt to derive this limit we must

be very careful to retain a sufficiently high order in the approximations as
terms tend to compensate each other.

Let both k and µ go simultaneously to ∞, but in a coordinated way. Define

x = k − µ√
µ

; k = µ + x
√

µ,

and use the Stirling approximation of the factorial k!:

k! = kke−k
√

2πk [1 + O(k−1)]. (A4.17)

The logarithm of the Poisson probability (A4.14) expands in orders of k−1

as follows:

ln f (k) = k − µ − k ln(k/µ) − 1
2

ln(2πk) + O(k−1)

= x
√

µ − (µ + x
√

µ) ln
(

1 + x√
µ

)
− 1

2
ln

[
2πµ

(
1 + x√

µ

)]
.
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Because ln µ → ∞, the whole expression goes to −∞! This is what we
expect because we calculate the probability of finding precisely one (integer)
value of k (which obviously goes to zero) and not the probability density of
f (x). When we expand the logarithm

ln(1 + z) = z − 1
2

z2 + O(z3), (A4.18)

we find eventually that

lim
k→∞

ln f (k) = −1
2

x2 − 1
2

ln(2πµ).

The distance between two successive discrete values of x is

"x = k + 1 − µ√
µ

− k − µ√
µ

= 1√
µ

;

therefore there are
√

µ dx discrete values between x and x + dx. It follows
that

f (x) dx = 1√
2π

exp
(

−x2

2

)
dx, (A4.19)

what we set out to prove.



A5 Central limit theorem

While the central limit theorem can be found in almost all textbooks on statis-
tics, its proof is almost never given. The best reference in the accessible
literature that includes a discussion of the validity limitations can be found
in Cramér (1946).1 Van Kampen (1981)2 gives a more intuitive discussion.
You will need to know what the characteristic function of a probability dis-
tribution is (see Appendix A3 on page 141). Cramér states the central limit
theorem as follows:

Whatever be the distributions of the independent variables xi – subject to
certain very general conditions – the sum x = xi + · · · + xn is asymptot-
ically normal (m, σ ), where m is the sum of means and σ 2 is the sum of
variances.

“Asymptotically normal” means that the distribution of x tends to the nor-
mal distribution N(m, σ ) for large n. The “certain very general conditions”
include the requirement that every contributing distribution has a finite vari-
ance; in addition the sum of third moments, divided by the 3/2 power of the
total variance, must tend to zero for large n. The latter is of course always
true for symmetric distributions, but it is also true for a sum of equivalent
distributions. It is false only in pathological cases.

Consider a large number n of independent continuous random variables
x1, x2, . . . , xn with sum x:

x =
n∑

i=1

xi, (A5.1)

each with a probability density function fi(x). Let each pdf have a finite mean
mi and variance σ 2

i . We now ask the question what can we say about the
probability density function f (x), when n tends to infinity.

First eliminate the mean. Since
∑

i

(xi − mi) =
∑

i

xi −
∑

i

mi = x − m, (A5.2)

1 See reference list on page 123.
2 See reference list on page 124.
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the mean of x is the sum of the means mi. So by considering xi − mi instead
of xi, all contributing variables and the resulting sum have zero mean. Now
consider the density function of the sum f (x). This is a convolution of all
fi and hence the characteristic function +(t) of f (x) is the product of the
characteristic functions +i(t) of fi(xi):

+(t) = 1n
i=1+i(t), (A5.3)

or

ln +(t) =
n∑

i=1

ln +i(t), (A5.4)

where

+i(t)
def=

∫ ∞

−∞
eixtfi(x) dx. (A5.5)

We know that +(0) = 1, but for t ̸= 0 each +i(t) < 1 (because at t = 0 the
first derivative is zero and the second derivative is negative) and hence the
product +(t) tends to zero. So +i(t) is a rapidly decaying function of t. How
does it behave for small t?

Consider the expansion of ln +i(t) in powers of t, which follows from the
expansion (A3.4) on page 141 of +i(t):

ln +i(t) = −1
2
σ 2

i t2 − i
6
µ3it3 + 1

24
(µ4i − 3σ 4

i )t4 + · · · (A5.6)

From this we find, denoting
∑

i σ
2
i by σ 2:

ln +(t) = −1
2
σ 2t2

[

1 + i
3

∑
i µ3i

σ 3 σ t − 1
12

(∑
i µ4i

σ 4 − 3

∑
i σ

4
i

σ 4

)

σ 2t2 . . .

]

(A5.7)

Since – under mild conditions – terms such as
∑

i σ
2
i ,

∑
i µ3i, etc. scale pro-

portional to n, the factor
∑

i µ3i/σ
3 in the second term scales as n−1/2 and

the factor in the third term scales as n−1. So, for large n, ln +(t) approaches
−σ 2t2/2:

lim
n→∞ +(t) = e−(σ 2t2/2), (A5.8)

which implies that the probability density function is normal:

lim
n→∞ f (x) = 1

σ
√

2π
exp

(
− x2

2σ 2

)
. (A5.9)
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Figure A5.1 The probability distribution of the sum of n random numbers (n =
1, 2, 10), chosen from a uniform distribution between −a and +a, compared with
the normal distribution N(0, 1). Each distribution has unit variance. Left: probability
density, right: cumulative distribution on a probability scale.

Summarizing we can say that, with increasing n, the higher powers of t in
ln +(t) die out relative to the t2-term; the higher the power, the faster it dies
out. The most persistent is the third power (related to the skewness), which
diminishes only slowly with the inverse square root of n.

An example, related to Exercise 4.10 on page 51, is the distribution
function of the sum of n random numbers, sampled from a uniform distri-
bution in the domain [−a, a⟩. Figure A5.1 gives the distribution functions
for n = 1, 2, 10, compared with the normal distribution N(0, 1). In each case
a has been chosen such that the distribution function of the resulting sum
variable has a standard deviation of 1.

See Python code A5.1 on page 194 for a Python code to generate the
distribution function for arbitrary n using Fourier transforms.

It is clear that the derivation fails completely when one or more of the
contributing distributions has an undefined (infinite) variance, such as the
Lorentz distribution (see page 43) has. In fact, the sum of Lorentz-distributed
random variables remains Lorentz-distributed!



A6 Estimation of the variance

Why is the best estimate for the variance larger than the mean
squared deviation of the average?

Assume xi are independent samples from a distribution f (µ, σ ) with mean
µ and s.d. σ . In order to find out the relation between ⟨("x)2⟩ and σ it is
necessary to compute the expectation of ⟨("x)2⟩. After realizing that

⟨("x)2⟩ = ⟨(x − ⟨x⟩)2⟩
= ⟨[x − µ − (⟨x⟩ − µ)]2⟩,
= ⟨(x − µ)2⟩ − (⟨x⟩ − µ)2, (A6.1)

we see that

E[⟨("x)2⟩] = σ 2 − E

⎡

⎣
(

1
n

n∑

i=1

(xi − µ)

)2
⎤

⎦

= σ 2 − 1
n2

n∑

i=1

n∑

j=1

E[(xi − µ)(xj − µ)] (A6.2)

Uncorrelated data points
When all samples are independent of each other (and therefore uncorre-
lated),1 the double sum reduces to a single sum because xi and xj are

1 The terms independent and uncorrelated mean different things. Two random variables x
and y are statistically independent when the random processes selecting either of them are
independent of each other; x and y are statistically uncorrelated when
E[(x − µx)(y − µy)] = 0. Independent samples are also uncorrelated, but uncorrelated
samples need not be independent. For example, the random variable x sampled from
N(0, 1) and x2 are uncorrelated (because E[x3] = 0), but they are not independent!
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independent and only the term j = i in the second sum survives:

E[⟨("x)2⟩] = σ 2 − 1
n2

n∑

i=1

E[(xi − µ)2]

= σ 2
(

1 − 1
n

)
. (A6.3)

Thus it follows that the best estimate for σ 2 equals n/(n−1) times the average
of the squared deviations from the average. Note that this is true for any kind
of distribution with finite variance.

Correlated data points
In the derivation of (A6.3) explicit use has been made of the assumption that
the deviations from the mean are uncorrelated. In practice subsequent data
points are often correlated, i.e., E[(xi −µ)(xj −µ)] ̸= 0 for j ̸= i. If the latter
is the case, more terms will remain in the double sum of (A6.2) and a larger
term will be subtracted from σ 2. The best estimate for the variance will be
larger.

Here we shall give the equation for the cases that a known correlation
between successive data points exists (Straatsma et al., 1986).2 The assump-
tion is made that the ordered series x1, . . . , xn is a stationary stochastic
variable, i.e. it has a constant variance and correlation coefficients between
xi and xj that only depend on the distance |j − i|.

The term with the double sum in (A6.2) is:

1
n2

∑

i

∑

j

E[(xi − µ)(xj − µ)] = σ 2 nc

n
, (A6.4)

where nc is a kind of correlation length:

nc = 1 + 2
n−1∑

k=1

(
1 − k

n

)
ρk. (A6.5)

Here ρk is the correlation coefficient between xi and xi+k:

E[(xi − µ)(xi+k − µ)] = ρkσ
2. (A6.6)

2 See reference list on page 124.
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Figure A6.1 The correlation matrix ρij for the example n = 5. If all elements are
summed by adding diagonally, one obtains 5 + 2(4ρ1 + 3ρ2 + 2ρ3 + ρ4).

For series that are much longer than the correlation length (k ≪ n), (A6.5)
can be reduced to

nc = 1 + 2
∞∑

k=1

ρk. (A6.7)

Equations (A6.4) and (A6.5) follow simply from counting the number of
occurrences in the double sum of (A6.4). Figure A6.1 elucidates how (A6.5)
is obtained by summing all matrix elements.

Instead of (A6.3) we now obtain as a result:

E[⟨("x)2⟩] = σ 2
(

1 − nc

n

)
. (A6.8)

The effect of correlation in the data series on the estimate of σ is not very
large and can generally be neglected. However, the effect on the estimate for
the standard inaccuracy of the average is quite large and not negligible. This
is treated in Appendix A7.



A7 Standard deviation of the mean

Why is the variance of the mean ⟨x⟩ of n independent data equal
to the variance of x itself divided by n?

We investigate the following quantity:

var (⟨x⟩) = E[(⟨x⟩ − µ)2] = 1
n2 E

⎡

⎣
{

∑

i

(xi − µ)

}2
⎤

⎦ (A7.1)

= 1
n2

∑

i

∑

j

E[(xi − µ)(xj − µ)]. (A7.2)

For uncorrelated data E[(xi − µ)(xj − µ) = σ 2δij. Therefore

var (⟨x⟩) = σ 2/n (A7.3)

and

σ⟨x⟩ = 1√
n
σ . (A7.4)

How is this result influenced when the data are correlated?

For this we need to work out the double sum in (A7.2). We have already
done that in Appendix A6, see (A6.4), for the case of an ordered sequence in
which correlations depend only on the distance k = |j − i|. It was found that

var (⟨x⟩) = σ 2 nc

n
, (A7.5)

where nc is the correlation length, defined in Appendix A6 in (A6.7). So you
see that correlations in the data tend to increase the uncertainty of the mean. It
is as if the effective number of data points is less than the number you actually
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have. In order to make a reliable estimate of the uncertainty, you need to
know the correlation length nc, or deduce nc from the data. This is in general
not a simple task because the correlation between data points is difficult to
evaluate, especially for large intervals. The correlation length is an integral
over the correlation function, which is notoriously difficult to determine from
noisy data.1

A practical alternative to the summing of correlation coefficients is the
block average procedure:2 group blocks of sequential data together and con-
sider the average of each block as a new data point. If most of the sequential
correlation is located within a block, the block averages are mutually almost
uncorrelated and can be treated by standard methods. For example, if you
have 1000 data points and you expect the correlation to stretch over some 10
or 20 points, then choose 10 blocks of 100 points each. Much better is to vary
the block length and check if the results have a reliable limit. This “block
average” procedure is not exact because there is always some correlation left
between successive blocks, but it is very practical.

Example

Time series generated by Monte Carlo or molecular dynamics simulations
often contain significant sequential correlations that complicate the deter-
mination of the inaccuracies of averages. In a dynamic simulation of a
molecular system a time series of 20 000 data points (t, T) is generated
with the “temperature” T (derived from the total kinetic energy) at times
t in steps of 0.009 ps. Applying the rules for uncorrelated samples, the
average temperature appears to be 309.967 ± 0.022 K. This inaccuracy is
likely to be far too low in view of the expected sequential correlation of
the data points T . What is the true standard inaccuracy? Figure A7.1 plots
the first 500 points versus time: it is apparent that correlation persists over
times of the order of picoseconds and includes some oscillatory behavior.
Figure A7.2 plots the standard inaccuracy estimated from a series of block
averages, with block sizes varying between 1 and 400 points, or 0.009 to
3.6 ps. A plateau of 0.11 K is reached after about 2 ps. This plateau value
is 5 times larger than the “uncorrelated value,” indicating that the statisti-
cal correlation length nc is some 25 time steps or 0.22 ps. The block length
must be taken several times larger than the correlation length for the blocks
to be statistically independent. The final result for the average temperature
is 309.97 ± 0.11 K.

1 A discussion of alternative methods to determine the accuracy of the mean of correlated
data can be found in Hess (2002), see reference list on page 124.

2 The method is similar, but not identical to the “jackknife procedure,” which estimates the
mean and variance by averaging over data sets from which subgroups of data have been
omitted. See Wolter (2007), Chapter 4, in the reference list on page 124.
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Figure A7.1 The first 500 points of a 20 000 point data set with temperatures derived
from the kinetic energy as a function of time of a molecular dynamics simulation of
a molecular system. The time interval between points is 0.009 ps.

Figure A7.2 Estimates of the inaccuracy (standard deviation) in the mean using
block averages of 20 000 data points with temperature data (from a molecular
dynamics simulation) as function of time. The block averages are assumed to be
uncorrelated. The block size varies from 1 point (0.009 ps) to 400 points (3.6 ps).
The error bars indicate the uncertainties in the s.d. based on the limited number nb

of block averages, which amounts to a relative error of 1/
√

2(nb − 1).
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Python code 7.1 on page 195 shows how the standard inaccuracy of averages
can be estimated from a set of block averages.

How accurate is the estimated standard deviation?

Because the variance of a distribution is estimated from the sum of squared
deviations from the average (divided by n − 1), the statistics of the vari-
ance satisfies the statistics of a sum of squares of random samples. For
normally distributed samples, this sum follows the “chi-squared distribution”
(see Section 7.4 and data sheet CHI-SQUARED DISTRIBUTION on page 199).
A chi-squared distribution has a mean ν and a variance 2ν; hence it has a rel-
ative s.d. of

√
2/ν, where ν is the number of degrees of freedom: ν = n − 1.

So the relative s.d. of the variance is
√

2/(n − 1) and the relative s.d. of
the standard deviation itself is 1/

√
2(n − 1). This result is valid for normally

distributed independent samples. Any sequential correlation will increase the
inaccuracy.



A8 Weight factors when variances
are not equal

What is the “best” determination of the mean of a number of data
xi with the same expectations µ but with unequal standard
deviations σi?

The answer is: take a weighted average:

⟨x⟩ = 1
w

n∑

i=1

wixi; w =
n∑

i=1

wi. (A8.1)

But the question remains: how should you choose the w’s? What criterion for
the “best” choice is valid here? The criterion that the estimate of the mean
should be unbiased, i.e., that the expectation of the mean should be equal to
µ, is not useful because this is true for any choice of weight factors. The next
obvious criterion is the minimal variance estimate: the most sharp and hence
most accurate value. So let us determine wi such that

E[(⟨x⟩ − µ)2] = E[⟨x − µ⟩2] minimal, (A8.2)

or

E[⟨x − µ⟩2] = E

⎡

⎣ 1
w2

(
∑

i

wi(xi − µ)

)2
⎤

⎦

= 1
w2

∑

i,j

wiwjE[(xi − µ)(xj − µ)]

= 1
w2

∑

i,j

wiwj cov (xi, xj) = minimal. (A8.3)

Now assume that xi and xj are uncorrelated, meaning that in the summa-
tion only j = i survives. So we search for the minimum of the quantity∑

i w2
i σ

2
i under the condition that

∑
i wi remains constant. The standard way

to solve such an optimization with boundary condition problem is Lagrange’s
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method of undetermined multipliers. In this method the boundary condition
(
∑

i wi is constant) is multiplied by an as-yet-undetermined multiplier λ and
then added to the function that is to be minimized. The partial derivatives of
this total function with respect to each of the variables is then set to zero.
The solution of the obtained set of equations still contains the undetermined
multiplier, but the latter follows from the boundary condition. This is the
way it goes:

∂

∂wi

⎛

⎝
∑

j

w2
j σ

2
j + λ

∑

j

wj

⎞

⎠ = 2wiσ
2
i + λ = 0. (A8.4)

Therefore

wi ∝ 1

σ 2
i

. (A8.5)

The conclusion must be that the weight of each data point must be propor-
tional to the inverse variance of that point. This is valid when the deviations
of the data points are uncorrelated.

The same conclusion can be reached if it is assumed that the distribution
of deviations is normal. However, the requirement of minimal variance is
much more general and the result applies to any distribution function with
finite variance.

How large is the variance in ⟨x⟩?
For this the expectation of (⟨x⟩ − µ)2 must be computed:

σ 2
⟨x⟩ = E[(⟨x⟩ − µ)2] = 1

w2

∑

i

w2
i σ

2
i .

Here use is made of the fact that xi and xj are uncorrelated. For wi we choose
wi = 1/σ 2

i and it follows that

σ 2
⟨x⟩ = 1

w2

∑

i

1

σ 2
i

=
(

∑

i

1

σ 2
i

)−1

. (A8.6)
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In this appendix matrix notation is used. A bold lower case letter is a column
matrix (which is an n × 1 matrix representing a vector); a bold capital letter
is a matrix. A matrix product C = AB is defined by Cij = ∑

k AikBkj. The
transpose AT of A is defined by (AT)ij = Aji. The trace Tr (A) is the sum of
diagonal elements of A. The inverse A−1 fulfills A−1A = AA−1 = 1 (unit
matrix). Recall that (AB)T = BTAT and (AB)−1 = B−1A−1. The trace of a
matrix product is invariant for cyclic permutation of its terms: Tr (ABC) =
Tr (CAB). Note that for a column matrix (vector) a the product aTa is a
scalar equal to

∑
i a2

i , while aaT is a square matrix with elements aiaj.

A9.1 How do you find the best parameters a and b
in y ≈ ax + b?

In order to find the values of a and b in the function f (x) = ax + b, such that

S =
n∑

i=1

wi(yi − fi)2 =
n∑

i=1

wi(yi − axi − b)2minimal,

you simply solve for zero derivatives of S/w (w = ∑
i wi) with respect to a

and b:

1
w

∂S
∂a

= − 2
w

n∑

i=1

wixi(yi − axi − b) = 0

1
w

∂S
∂b

= − 2
w

n∑

i=1

wi(yi − axi − b) = 0.

From the second equation it follows that b = ⟨y⟩ − a⟨x⟩. Substitution of b
in the first equation yields the solution for a, see (7.13). The averages are
weighted averages such as

160
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⟨y⟩ = 1
w

n∑

i=1

wiyi.

A9.2 General linear regression

In general a set of equations linear in m parameters θk, k = 1, . . . , m can be
written as

fi(θ1, θ2, . . . , θm) =
m∑

k=1

Aikθk, of f (θ) = Aθ . (A9.1)

Suppose that the “true” values yi are given by

y = Aθm + ϵ, (A9.2)

where θm are the “true” model values of the parameters and ϵ the added
stochastic variable or “noise” with properties

E[ϵ] = 0 (A9.3)

E[ϵϵT] = %. (A9.4)

Here % is the covariance matrix of “errors” ϵ in the measured values y. This
is a very general assumption allowing correlation between the data points. If
% is diagonal, the data are not correlated.

The chi-squared sum can now be written as

χ2 = (y − Aθ)T%−1(y − Aθ). (A9.5)

Now the case is quite common that % is not accurately known, and you only
know something about the relative size and the mutual correlation of the data.
So assume that – on the basis of your limited knowledge of the uncertainties –
you can assign a weight matrix W that is proportional to the inverse of the
covariance matrix of the random errors in the measured values:

W = c%−1. (A9.6)

For the moment the constant c is unknown, but – as we shall see below –
under certain conditions c is derivable from the data themselves. Without
correlations between the data points both % and W are diagonal, with σ 2

i ,
resp. cσ−2

i , as diagonal elements.
We can now construct the SSQ: the Sum of (weighted) SQuare devia-

tions S:
S = (y − Aθ)TW(y − Aθ) = cχ2. (A9.7)
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The derivatives of S with respect to the parameters yields the following
vector:

∂S
∂θ

= −2 ATW(y − Aθ) = 0. (A9.8)

The least-squares solution for θ , indicated by θ̂ , is the solution of the set of
equations

ATWAθ = ATWy. (A9.9)

Thus the final solution for the best estimate of θ is

θ̂ = (ATWA)−1ATWy. (A9.10)

This equation solves any linear least-squares fit, including multiple explana-
tory variables and including any known correlations between data points.
Note that the exact values of the individual inaccuracies are not needed to
determine the minimum: if all values of W are multiplied by a constant, the
solution θ̂ does not change.

The least-squares solution θ̂ is an unbiased estimate of θ , meaning that the
expectation of the estimate equals the true value:

E[θ̂] = (ATWA)−1ATWE[y] = θm, (A9.11)

because, according to (A9.2) and (A9.3), E[y] = Aθm.

A9.3 SSQ as a function of the parameters
The expression (A9.7) for S(θ) can be written as a quadratic function of the
parameters. After relating S to χ2, we find the likelihood exp[− 1

2χ2] – see
(7.4) on page 86 – as a quadratic function of the parameters and from that we
can estimate the variances and covariances of the parameters.

Defining the deviations from the best estimates of the parameters:

&θ
def= θ − θ̂ , (A9.12)

and the minimum of S:

S0 = (y − Aθ̂)TW(y − Aθ̂), (A9.13)

and inserting (A9.10) and (A9.12) into (A9.13), we find

S(θ) = S0 + &θTATWA&θ . (A9.14)
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Here the gradient A9.8 has been used. So you see that S is a parabolic
function in &θ .

Since the likelihood depends on χ2 = S/c, we need to estimate c. This
is straightforward as the expectation for χ2

0 equals the number of degrees of
freedom n − m:

χ̂2
0 = S0

c
= n − m. (A9.15)

Hence c = S/(n − m) and

χ̂2(θ) = n − m + n − m
S0

&θTATWA&θ (A9.16)

= n − m + &θTB&θ , (A9.17)

where
B def= n − m

S0
ATWA. (A9.18)

From (A9.17) you see that the matrix of second derivatives of χ2(θ) is given
by 2B.

The likelihood P (proportional to exp[− 1
2χ2]) is of the form:

P ∝ exp
[
−1

2
&θTB&θ

]
. (A9.19)

In case you have reliable knowledge on the uncertainties %, so that you can
take the weight matrix exactly equal to %−1, the likelihood is

P ∝ exp
[
−1

2
&θTAT%−1A&θ

]
. (A9.20)

Both forms are multivariate normal distributions. With this knowledge we
can derive the (co)variances of the parameters.

A9.4 Covariances of the parameters
A multivariate normal distribution (see data sheet NORMAL DISTRIBUTION

on page 205) has the form

P ∝ exp
[
−1

2
&θTC−1&θ

]
, (A9.21)

where C is the covariance matrix:

C = E[(&θ)(&θ)T] (A9.22)

Ckl = cov ("θk, "θl). (A9.23)
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Comparing this to the likelihood expressions (A9.19) and (A9.20), the
expressions for the covariance matrix are found. For the common case that
S0 is used to estimate χ2:

C = B−1; B defined in A9.18 (A9.24)

and for the case that uncertainties % are accurately known:

C′ =
(
AT%−1A

)−1. (A9.25)

These are our main results. Practical equations are simplifications of (A9.24)
and (A9.25).

In order to simplify the presentation, consider the case that there is no cor-
relation between data points, and their variances are σ 2

i so that % = diag (σ 2
i )

and W = c diag (σ−2
i ). Then the covariance matrix (A9.24) simplifies to

C = B−1; Bkl = n − m
S0

∑

i

wiAikAil (A9.26)

and (A9.25) simplifies to

C′ = B′−1; B′
kl =

∑

i

σ−2
i AikAil. (A9.27)

The equations for the parameter (co)variances for linear regression of f (x) =
ax + b, given in Chapter 7 on page 89 in (7.18), (7.19) and (7.20), are easily
recovered from these equations. For θ1 = a and θ2 = b, the n × 2 matrix A
is given by

Ai1 = xi; Ai2 = 1. (A9.28)

For example, the element B11 of the 2×2 matrix B (A9.26) can be written as

B11 = n − m
S0

∑
wix2

i = n − m
S0

1
w

⟨x2⟩, (A9.29)

where w is the total sum of wi. The rest of the derivation is straightforward
and left to the reader.

Why is the s.d. of a parameter given by the projection
of the ellipsoid &χ2 = 1?

The condition "χ2 = 1 describes a surface (an ellipsoid) in the
m-dimensional parameter space. In Fig. 7.5 on page 103 tangents to the
ellipse "χ2 = 1 indicate that the projection of this figure on one of the axes
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(e.g. θ1) occurs within the limits θ̂1 ± σ1. The tangent touches the ellipse in
a point where χ2 is minimal with respect to all other parameters θ2, . . . , θm,
i.e., where the gradient of χ2 points in the direction of θ1:

grad χ2 = (a, 0, . . . , 0)T,

where a is a constant resulting from "χ2 =&θTB&θ = 1: because1

grad χ2 = 2B&θ ,

&θT 1
2
(a, 0, . . . , 0)T = 1

2
a"θ1 = 1.

Hence

B&θ = 1
2
(2/"θ1, 0, . . . , 0)T

and

&θ = C(1/"θ1, 0, . . . , 0)T or "θ1 = ±
√

C11 = ±σ1. (A9.30)

This is what we wished to prove.2

Nonlinear least-squares fit

When the functions fi(θ1, . . . , θm) are not linear in all parameters, but S =
(y − f )TW(y − f ) does have a minimum S0 = S(θ̂), then S(θ) can be
expanded around that minimum in a Taylor series with zero linear term, just
as in (A9.14) in the linear case. In terms of the expectation of χ2 (which
equals n − m at the minimum):

χ̂2(θ) = n − m
S0

S(θ) = n − m + &θTB&θ + · · · , (A9.31)

After a redefinition of the matrix A:

Aik =
(

∂fi
∂θk

)

θ̂

, (A9.32)

all equations for the parameters and their (co)variances remain approxi-
mately valid. The inverse of B = n−m

S0
ATWA is still (but approximately)

equal to the covariance matrix of the parameters. See Press et al. (1992)3 for

1 The gradient of a quadratic form 1
2 xTGx, with G symmetric, equals Gx.

2 The proof can be found in Press et al. (1992), see the reference section on page 124.
3 See reference list on page 124.
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a discussion on this point. For uncorrelated data, Equation (A9.26) on page
164 is still valid:

Bkl = n − m
S0

n∑

i=1

wi
∂fi
∂θk

∂fi
∂θl

. (A9.33)

The covariance matrix is approximately equal to the inverse of B.
For functions that are not linear in the parameters, the likelihood function

is only approximately equal to a multivariate normal distribution. Especially
the tails of the distribution may differ and the blind derivation of confidence
limits based on normal distributions may be erroneous in the tail regions of
the distribution. More accurate estimations can be done using the likelihood
function

p(θ) ∝ exp
[
−1

2
χ2(θ)

]
. (A9.34)

As the practical implications are of little importance, we don’t pursue this
point here any further.



PART III

Python codes
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This appendix contains programs, functions or code fragments written in
Python. Each code is referred to in the text; the page where the reference is
made is given in the header.

First some general instructions are given on how to work with these codes.
Python is a general-purpose interpretative language, for which interpreters
are available for most platforms, including Windows. Python is in the public
domain and interpreters are freely available.1 Most applications in this book
use a powerful numerical array extension NumPy, which also provides basic
tools in linear algebra, Fourier transforms and random numbers.2 Although
Python version 3 is available, at the time of writing NumPy requires Python
version 2, the latest being 2.6. In addition, applications may require the
scientific tools library SciPy, which relies on NumPy.3 Importing SciPy
automatically implies the import of NumPy.

Users are advised first to download Python 2.6, then the most recent stable
version of NumPy, and then SciPy. Further instructions for Windows users
can be found at www.hjcb.nl/python.

There are several options to produce plots, for example Gnuplot.py,4

based on the gnuplot package5 or rpy6 based on the statistical package
“R.”7 But there are many more.8 Since the user may find it difficult to
make a choice, we have added yet another, but very simple to use, plot-
ting module called plotsvg.py. It can be downloaded from the author’s
website.9 Its plotting routines produce SVG output files (Scalable Vector
Graphics, a W3C standard) that can be viewed by an SVG-enabled browser.
Among others, the Firefox, Opera and Google Chrome browsers (but not
Internet Explorer) have native SVG support. While customized plots are
possible, automatic plots of functions, points and cumulative distributions
can be simply made. For example, the following code produces automatic
display of the cumulative distribution of 200 normally distributed random
numbers on a probability scale (on which normal distributions should give a
straight line):

Python code 0.1 Demo plotsvg

1 www.python.org.
2 www.scipy.org/numpy.
3 www.scipy.org/SciPy.
4 http://gnuplot-py.sourceforge.net/.
5 www.gnuplot.info/.
6 http://rpy.sourceforge.net/.
7 www.r-project.org/.
8 See http://wiki.python.org/moin/NumericAndScientific/Plotting.
9 www.hjcb.nl/python/.
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Figure P.1 Plotting demo: a cumulative plot on a probability scale of 200 random
samples from a normal distribution.

from scipy import *
from plotsvg import *
r=randn(200)
autoplotc(r,yscale=’prob’)

with Fig. P.1 as a result.

Comments:
The module plotsvg.py defines a class Figure() with methods
frame() to define a frame with titles allowing for logarithmic and prob-
ability scales, plotp() to plot a series of points with or without con-
necting lines and error bars, plotc() to plot cumulative distributions,
plotf() to plot functions and a number of utilities like addtext() and
addobject(). There are also stand-alone programs like autoplotp()
for quick graphs.

Another module that can be downloaded from the author’s website is
physcon.py. This module contains most of the fundamental physical con-
stants as SI values in the form of a dictionary. In addition the following
symbols are defined as the SI value (float): alpha, a_0, c, e, eps_0,
F, G, g_e, g_p, gamma_p, h, hbar, k_B m_d, m_e, m_n, m_p,
mu_B, mu_e, mu_N, mu_p, mu_0, N_A, R, sigma, u.
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Python code 0.2 Demo physcon

import physcon as pc
pc.help()

This will list available functions, variables and keys

pc.descr(’avogadro’)

This will describe avogadro: name, symbol, value, standard error, relative
s.d., unit, data source

N=pc.N_A

This will assign the value 6.02214179e + 023 to N

Python code 2.1 (page 6) Generate and plot Fig. 2.2

from scipy import *
x = 8.5 + randn(30)
xr = x.sort().round(2)
from plotsvg import *
autoplotc(xr,title=’Cumulative distribution’)
autoplotc(xr,title=’Cumulative distribution’,\

yscale=’prob’)

Python code 2.2 (page 8) Generate histogram of Fig. 2.3

from plotsvg import *
hisx = [6.5,7.5,8.5,9.5,10.5,11.5]
hisy = [1,7,8,10,2,2]
f = Figure()
f.frame([6,12],title=’Histogram’)
f.plotp([hisx,hisy],symbol=’halfbar’,\

symbolfill=Darkgrey,symbolstroke=Black)
f.show()

Python code 2.3 (page 8) Some array methods and functions

from scipy import *
n=alen(x) # assigns length of array x to n
m=x.mean() # assigns mean of x to m
msd=x.var() # assigns mean squared deviation

# of x to msd
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rmsd=x.std() # assigns root mean squared deviation
# of x to rmsd

Python code 2.4 (page 8) Generate percentiles of a given data set

from scipy import *
from scipy import stats
def percentiles(x, per=[1,5,10,25,50,75,90,95,99]):
# x = 1D-array
# per = list of percentages

scores=zeros(len(per),dtype=float)
i=0
for p in per:

scores[i]=stats.scoreatpercentile(x,p)
i++

return scores

Comments:
The scipy.stats function scoreatpercentile(x,p) gives the p-th
percentile, i.e. the value ≥ p% of the data and ≤ (100 − p)% of the data.
If that is not a single value, linear interpolation is used.

Python code 2.5 (page 16) Plot on a logarithmic scale

from plotsvg import *
time=[20.,40.,60.,80.,100.,120.,140.,160.,180.]
conc=[75.,43.,26.,16.,10.,5.,3.5,1.8,1.6]
err=[4.,3.,3.,3.,2.,2.,1.,1.,1.]
f=Figure()
f.frame([[0,200],[1,100]],xlabel=’time <i>t</>/s’,\

ylabel=’concentration <i>c</i>/mmol L<sup>-1\
</sup>’, yscale=’log’)

f.plotp([time,conc],ybars=err)
f.show()

Comments:
This code produces Fig. 2.7 with the module plotsvg available from the
author’s web site www.hjcb.nl/python/. An SVG file is produced and dis-
played by a suitable browser (Firefox, Opera, Google Chrome, but not
Internet Explorer).
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Python code 3.1 (page 25) Monte Carlo generation of equilibrium constant

from scipy import *
from plotsvg import *
def Keq(a,b,V1,V2,x): # define equilibrium

# constant
V=V1+V2
K=x/((a/V-x)*(b/V-x))*1000. # convert to L/mol
return K

n=1000 # set number of
# samples

a0=5.0; a=a0+randn(n)*0.2 # mmol
b0=10.0; b=b0+randn(n)*0.2 # mmol
V10=0.1; V1=V10+randn(n)*0.001 # L
V20=0.1; V2=V20+randn(n)*0.001 # L
x0=5.0; x=x0+randn(n)*0.35 # mmol/L
K=Keq(a,b,V1,V2,x) # L/mol (array of

# K-values)
K0=Keq(a0,b0,V10,V20,x0) # L/mol (K at

# central values)
print ’K from values without noise = %g’ % (K0)
print ’number of samples = %d’ % (n)
print ’average and std of K = %g +/- %g’ %\

(K.mean(), K.std())

Generate Figure 3.1:

f=Figure()
f.size=[5500,6400]
f.frame([[4.,7.5],[0,100]],title=’Equilibrium\

constant’, yscale=’prob’,\
xlabel=’<i>K</><sub>eq</sub>/L mol<sup>-1\
</sup>’, ylabel=’cumulative probability\
distribution’)

f.plotc(K)
f.show()

Python code 4.1 (page 36) Generate binomial functions for Figures 4.1, 4.2
and 4.3

from scipy import *
from scipy import stats
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Probability of finding k “heads” in 10 coin tossings:

def fun1(k): return stats.binom.pmf(k,10,0.5)

Probability of finding k “6”’s in 60 dice throws:

def fun2(k): return stats.binom.pmf(k,60,1./6.)

Probability of exceeding k correct guesses in 25 Zener cards:

def fun3(k): return stats.binom.sf(k,25,0.2)

Generate Fig. 4.1:

from plotsvg import *
x1=arange(11); y1=fun1(x1)
f=Figure()
f.frame([[-1,11],[-0.02,0.27]],\

title="Binomial 10 coin tosses",\
xlabel="nr of heads", ylabel="probability")

f.plotp([x1,y1], symbol=’halfbar’,\
symbolstroke=Black, symbolfill=Darkgrey)

f.show()

Generate Fig. 4.2:

x2=arange(27); y2=fun2(x2)
f=Figure()
f.frame([[-1,26],[-0.01,0.15]],\

title="Binomial 60 dice throws",\
xlabel="nr of 6’s", ylabel="probability")

f.plotp([x2,y2],symbol=’halfbar’,\
symbolstroke=Black,symbolfill=Darkgrey)

f.show()

Generate Fig. 4.3:

x3=arange(16); y3=fun3(x3)
f=Figure()
f.frame([[0,12],[0,1]],\

title="Binomial 25 Zener cards",\
xlabel="nr correct", ylabel="survival\
(1 - c.d.f.)")

f.plotp([x3,y3],symbol=’dot’,lines=Black)
f.show()

Python code 4.2 (page 47) Generate Weibull distribution functions
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from scipy import stats
pdf=stats.weibull_min.pdf
cdf=stats.weibull_min.cdf
def f1(t):

if (t<0.001):
return None

else: return pdf(t,0.5)
def g1(t): return cdf(t,0.5)
def f2(t): return pdf(t,1.)
def g2(t): return cdf(t,1.)

Comments:
The scipy module stats contains a large number of distribution functions. The
pdf for negative c is infinity for t = 0, which should be excluded. The pdf’s
f1, f2 and the cdf’s g1, g2 are suitable for plotting.

Python code 5.1 (page 67) The bootstrap method: Generate averages from
random samples

def bootstrap(x,n,dof=0):
# x = 1D-array of input samples
# n = nr of averages generated
# dof = nr of degrees of freedom.
# If not specified, dof=len(x)
# returns 1D-array of averages

from scipy import stats
nx=len(x)
if (dof==0): nu=nx
else: nu=dof
result=zeros(n,dtype=float)
for i in range(n):

index=stats.randint.rvs(0,nx,size=nu)
result[i]=x[index].mean()

return result

Comments:
The randint.rvs(min,max,size=n) function of the scipy package
stats produces an array of n random integers >= min and < max.
x[index] produces an array containing the values of x[i], where i are

all values of the integer array index.
If dof is not specified, the averages are taken over as many items as there

are in the input array x; this yields the biased bootstrap distribution. The
unbiased distribution can be approximated by setting dof equal to the length
of x minus 1.
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Python code 6.2 (page 67) Report: a program that analyzes a set of
independent data.

from scipy import *
from plotsvg import *
def report(data,figures=True):

’’’
Function. Reports statistics on single uncorrelated
---------------------------------------------------
data series.
------------
arguments:

data: list or array [y] or [x,y] or [x,y,
sig] of data; if [y] then x=arange
(len(y))

sig = sd of y-value; if given,
chisq test reported, if sig not
given, equal weights are assumed

figures=True if True, figures are produced and
displayed

returns: [[mean,sdmean,var,sd],[a,siga,b,
sigb]] (fit ax+b)

Remarks:
report of properties (average, msd, rmsd) and of
estimates (mean, variance, sd, skewness, excess)
and their accuracies is printed (skewness and
excess only if relevant). Figures produced:
figdata.svg: data points with error bars and
linear fit;
figcum.svg: cumulative plot on probability
scale.

Outliers are identified. If s.d. sig are given, a
chi-squared analysis is produced. A linear
regression drift analysis is done.

’’’
import os
from scipy import stats
# unify data structure:
data=array(data)
dimension=array(data).ndim
weights=False
if (dimension==1):

n=len(data)
xy=array([arange(n),data])
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elif (dimension==2):
n=len(data[0])
if (len(data)==2):

xy=array(data)
elif (len(data)==3):

xy=array(data[:2])
weights=True
w=1./array(data[2])**2

else:
print ’ERROR: wrong data length’
print ’report aborted’
return 0

else:
print ’ERROR: wrong data dimension’
print ’report aborted’
return 0

# compute properties
if weights:

wtot=w.sum()
xav=(xy[0]*w).sum()/wtot
yav=(xy[1]*w).sum()/wtot

else:
wtot=float(n)
xav=xy[0].mean()
yav=xy[1].mean()

xdif=xy[0]-xav
ydif=xy[1]-yav
if weights:

ssq=(w*ydif**2).sum()
else:

ssq=(ydif**2).sum()
msd=ssq/wtot
rmsd=sqrt(msd)
var=msd*n/(n-1.)
sd=sqrt(var)
sdmean=sd/sqrt(n)
ymin=xy[1].min()
yminindex=xy[1].argmin()
ymax=xy[1].max()
ymaxindex=xy[1].argmax()
# linear regression:
if weights:

xmsd=(w*xdif**2).sum()/wtot
a=(xdif*ydif*w).sum()/wtot/xmsd
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b=yav-a*xav
S=(w*((xy[1]-a*xy[0]-b)**2)).sum()
siga=sqrt(S/(wtot*(n-2.)*xmsd))
sigb=siga*sqrt((w*(xy[0]**2)).sum()/wtot)

else:
xmsd=(xdif**2).mean()
a=(xdif*ydif).mean()/xmsd
b=yav-a*xav
S=((xy[1]-a*xy[0]-b)**2).sum()
siga=sqrt(S/(n*(n-2.)*xmsd))
sigb=siga*sqrt((xy[0]**2).mean())

# produce figures
if figures:

def fun0(x): return yav
def fun1(x): return yav-sd
def fun2(x): return yav+sd
def fun3(x): return yav-2.*sd
def fun4(x): return yav+2.*sd
def fun5(x): return a*x+b
f=Figure()
f.frame([[xy[0,0],xy[0,-1]],[ymin,ymax]],\

title=’input data’)
f.plotf(fun0,color=Red)
f.plotf(fun1,color=Red)
f.plotf(fun2,color=Red)
f.plotf(fun3,color=Red)
f.plotf(fun4,color=Red)
f.plotf(fun5,color=Green)
if weights:

f.plotp(xy,ybars=data[2],symbolfill=\
Blue, barcolor=Blue)

else:
f.plotp(xy,lines=Blue,symbol=’’)

f.addtext([890,4140],\
’<small>red lines: mean, &#177; &#963;,\
&#177; 2&#963; </small>’,fill=Red)

f.addtext([4890,4140],\
’<small>green line: linear\

regression</small>’, align=’r’,\
fill=Green)

f.show(filename=’figdata.svg’)
os.startfile(’figdata.svg’)
print ’figdata.svg is now displayed by\

your browser’



PYTHON CODES 179

f=Figure()
f.size=[5500,6400]
f.frame([[(1.1*ymin-0.1*ymax),(-0.1*ymin\

+1.1*ymax)],\
[0,100]], title=’cum.distribution\
of data’, yscale=’prob’)

f.plotc(xy[1])
f.show(filename=’figcum.svg’)
os.startfile(’figcum.svg’)
print ’figcum.svg is now displayed by your\

browser’
print ’\nStatistical report on uncorrelated\

data series’
print ’\nProperties:’
print ’nr of elem. = %5d’ % n
print ’average = %10.6g’ % (yav)
print ’msd = %10.6g’ % (msd)
print ’rmsd = %10.6g’ % (rmsd)
print ’\nEstimates’
print ’mean = %10.6g +/- %8.4g’ % (yav,\

sdmean)
if weights: print ’*)’
print ’\nvariance = %10.6g +/- %8.4g’ %\

(var, var*sqrt(2./(n-1.)))
print ’st. dev = %10.6g +/- %8.4g’ %\

(sd, sd/sqrt(2.*(n-1.)))
if weights:

print ’*) this standard uncertainty in the
mean is\
derived from the data variance’

print " derived from the supplied sigma’s
it is", "%8.4g" % (wtot**(-0.5))

print ’ Choose the more reliable, or else\
the larger value.’

print ’ See also the chi-square analysis\
below.’

# skewness and excess only if weights=False
if not weights:

if (n>=20):
skew=(xy[1]**3).sum()/(n*var*sd)
print ’skewness = %10.6g +/- %8.4g’\

% (skew, sqrt(15./n))
else: print ’skewness: insufficient\
statistics’
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if (n>=100):
exc=(xy[1]**4).sum()/(n*var*var)-3.
print ’excess = %10.6g +/- %8.4g’\

% (exc, sqrt(96./n))
else: print ’excess: insufficient\
statistics’

# outliers and their probabilities
ydevmax=(ymax-yav)/sd
ydevmin=(yav-ymin)/sd
Fmax=stats.norm.cdf(-ydevmax)
probmax=100.*(1.-(1.-Fmax)**n)
Fmin=stats.norm.cdf(-ydevmin)
probmin=100.*(1.-(1.-Fmin)**n)
print ’\nPossible outliers:’,
if ((probmax>5.) and (probmin>5.)):

print ’ (there are no significant\
outliers with p<5%)’

else:
print ’(there are significant outliers\
with p<5%)’

print ’largest element y[%d]=%10.6g deviates\
+%5.2g stand.’,\

’dev. from mean’ % (ymaxindex,ymax,\
ydevmax)

print ’prob. to obtain a higher value at least\
once is’,\

’%4.3g %%’ % (probmax)
print ’smallest element y[%d]=%10.6g deviates\

-%5.2g stand.’,\
’dev from mean’ % (yminindex,ymin,\
ydevmin)

print ’prob. to obtain a lower value at least\
once is’,\

’%4.3g %%’ % (probmin)
# chi-square analysis if weight=True:
if weights:

nu=n-1
F=stats.chi2.cdf(S,nu)
print ’\nChi-square analysis:’
print ’chi^2 (sum of weighted square dev.)\

= %10.6g’ % (ssq)
print ’cum. prob. for chi^2 = %5.3g %%’ %\

(100.*F)
if (F<.1):
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print "chi^2 is low! Did you\
overestimate the\
supplied sigma’s?"

print ’Or did you fit the original\
data too closely\
with too many parameters?’

elif (F>.9):
print "chi^2 is high! Did you neglect\

an error source\
in the supplied sigma’s?"

print ’Or did the data result from a\
bad fitting procedure?’

else:
print ’cum. probab. of chi^2 is\

reasonable (between\
10% and 90%).’

print "The spread in the data agrees\
with the supplied sigma’s."

# Significance of drift
print ’\nLinear regression: y=a*x+b’
print ’a=%10.6g +/- %10.6g; b=%10.6g +/-\

%10.6g’ % (a,siga,b,sigb)
Pdrift=2.*(1.-stats.norm.cdf(abs(a)/siga))
print ’\nNormal test on significance of\

slope a’
print ’Probability to obtain at least this\

drift by random\
fluctuation is %8.3g %%’ %\
(100.*Pdrift)

print ’\nF-test on significance of linear\
regression:’

print ’sum of square deviations reduced from\
%7.5g to %7.5g’\
% (ssq,S)

ypred=a*xy[0]+b
ypmean=ypred.mean()
if weights:

SSR=(w*(ypred-ypmean)**2).sum()
else:

SSR=((ypred-ypmean)**2).sum()
Fratio=SSR/(S/(n-1))
Fcum=stats.f.cdf(Fratio,1,n-1)
print ’The F-ratio SSR/(SSE/(n-1)) = %7.3g’ %\

(Fratio)
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print ’The cum. prob. of the F-distribution is\
%8.5g’ % (Fcum)

print ’Probability to obtain this fit (or\
better) by random’,\
’fluctuation is %8.3g %%’ % (100.*\
(1.-Fcum))

if ((Fcum>0.9) and (Pdrift<0.1)):
print ’\nThere is a significant drift (90%\

conf. level)’
else:

print ’\nThere is no significant drift\
(90% conf. level)’

print
return [[yav,sdmean,var,sd],[a,siga,b,sigb]]

Comments:
This program can be downloaded from www.hjcb.nl/python). Look for recent
updates. Two plots are automatically generated and displayed by the stan-
dard browser. Make sure that the .svg mime type starts your SVG-enabled
browser.

Python code 6.1 (page 81) Fit a number of harmonics to data points

from scipy import optimize
# data from compass corrections:
x=arange(0.,365.,15.)
y=array([-1.5,-0.5,0.,0.,0.,-0.5,-1.,-2.,-3.,-2.5,\

-2.,-1.,0., 0.5,1.5,2.5,2.0,2.5,1.5,0.,\
-0.5,-2.,-2.5,-2.,-1.5])

def fitfun(x,p):
phi=x*pi/180.
result=p[0]
for i in range(1,5,1):

result=result+p[2*i-1]*sin(i*phi)+p[2*i]\
*cos(i*phi)

return result # result is
# array like x

def residuals(p): return y-fitfun(x,p)
pin=[0.]*9 # initial

# parameter guess
output=optimize.leastsq(residuals,pin)
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pout=output[0] # optimized
# parameters

def fun(x): return fitfun(x,pout) # suitable for
# plotting

Comments:
For simplicity a general least-squares optimization is used, although the opti-
mization problem is linear here. The function to be fitted is p0 + p1 sin φ +
p2 cos φ+p3 sin 2φ+p4 cos 2φ+p5 sin 3φ+p6 cos 3φ+p7 sin 4φ+p8 cos 4φ.
In view of the inaccuracy of the corrections, a fit with still higher harmonics
is an overkill. The minimizer leastsq of the scipy package optimize is
used.

Python code 7.1 (page 94) Nonlinear least-squares fit, urease kinetics

from scipy import optimize
S = array([30.,60.,100.,150.,250.,400.])
v = array([3.09,5.52,7.59,8.72,10.69,12.34])

A. Minimization using leastsq:

lsq = optimize.leastsq
def residuals(p):

[vmax,Km]=p
return v-vmax*S/(Km+S)

output = lsq(residuals,[15,105])
pout = output[0]

B. Minimization using fmin_powell:

def fun(S,p):
[vmax,Km]=p
return vmax*S/(Km+S)

def SSQ(p): return ((v-fun(S,p))**2).sum()
pin = [15,105]
pout = optimize.fmin_powell(SSQ,pin)

Comments:
The function leastsq requires as input an array of residues as a func-
tion of the parameters; it minimizes its sum of squares. The function
fmin_powell adjusts the parameters in fun such that SSQ is a minimum.
The new parameters pout are returned. The last line may be repeated with
the new parameters as input. These minimization procedures do not need
any derivatives. Check SSQ by the command print SSQ(pout). In this
example method A gives a more accurate result than method B.
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Python code 7.2 (page 96) Generate the cumulative probability for given χ2

from scipy import stats
cdf=stats.chi2.cdf
ppf=stats.chi2.ppf

Comments:
The function cdf(x, ν) gives the probability that χ2, i.e., the sum of ν
squares of random samples from a normal distribution, is less than x. For
example, for 15 degrees of freedom, the probability of finding χ2 ≤ 10.5 is
given by
print cdf(10.5,15)
and the probability of finding χ2 ≥ 18.3 is given by
1.-cdf(18.3,15)
The values of χ2 for which the probabilities that the sum of 15 squares does
not exceed χ2 are 1,2,5,10 % are given by
ppf(array([1.,2.,5.,10.])*0.01,15)
The values of χ2 for which the probabilities that the sum of 15 squares
exceeds χ2 are 1,2,5,10 % are given by
ppf(array([99.,98.,95.,90.])*0.01,15).

Python code 7.3 (page 103) Generate and plot a contour for a
two-dimensional function

from scipy import *
from scipy import optimize
def contour(fxy,z,xycenter,xyscale=[1.,1.],\

radius=0.05,nmax=500):
# construct contour f(x,y)=z by succession of
# circular intersects
# input:
# fxy(x,y): defined function;
# z: level
# xycenter: [xc,yc] point within contour
# xyscale: [xscale,yscale] approximate
# coordinate ranges
# radius: radius of circle in units of
# coordinate range
# nmax: maximum number of points (for open
# contours)

from scipy import optimize
x0=xycenter[0]; y0=xycenter[1]
xscale=xyscale[0]; yscale=xyscale[1]
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def funx(x):
return fxy(x,y0)-z

def funphi(phi):
# uses xa,xb; dxs,dys (scaled)
sinphi=sin(phi); cosphi=cos(phi)
x=xa+(dxs*cosphi+dys*sinphi)*xscale
y=ya+(-dxs*sinphi+dys*cosphi)*yscale
return fxy(x,y)-z

# find first point on x-axis
xx=optimize.brentq(funx,x0,x0+5.*xscale)
xlist=[xx]; ylist=[y0]
# find second point
dxs=radius; dys=0.
xa=xx; ya=y0
phi=optimize.brentq(funphi,-pi,0.)
sinphi=sin(phi); cosphi=cos(phi)
xb=xa+(dxs*cosphi+dys*sinphi)*xscale
yb=ya+(-dxs*sinphi+dys*cosphi)*yscale
xlist += [xb]; ylist += [yb]
# find next point
radsq=radius*radius
dsq=4.*radsq
n=0
while (dsq>radsq) and (n<nmax):

n +=1
dxs=(xb-xa)/xscale
dys=(yb-ya)/yscale
xa=xb; ya=yb
phi=optimize.brentq(funphi,-0.5*pi,0.5*pi)
sinphi=sin(phi); cosphi=cos(phi)
xb=xa+(dxs*cosphi+dys*sinphi)*xscale
yb=ya+(-dxs*sinphi+dys*cosphi)*yscale
xlist += [xb]; ylist += [yb]} \\
dsq=((xb-xx)/xscale)**2+((yb-y0)/yscale)**2

xlist += [xx]; ylist += [y0]
data=array([xlist,ylist])
return data

Comments:
This function produces an array of coordinate values [x, y] along a contour
for which f (x, y) = z. Here f (x, y) is a predefined function and z is a pre-
scribed level. This array can be simply plotted by connecting the points with
straight lines, e.g.:
autoplotp(data,symbol=’’,lines=Black)
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The points are generated as follows. The first point is located on a line par-
allel to the x-axis, starting from the point [xc,yc], searching in positive
direction. Thus the input point [xc,yc] should be located inside the con-
tour. The second point is searched on a half-circular (positive y) contour
around the first point, with radius radius. Subsequent points are searched
on a half-circular contour around the previous point, searching in the for-
ward direction. Thus radius is the distance between subsequent points,
which determines the resolution of the plot. The search is done in scaled
x, y coordinates in order to prevent uneven distribution of points. The input
xyscale is used for scaling: x-values are divided by xyscale[0] and
y-values by xyscale[1]. You can use the total width of the plotted scales
for xyscale, but the choice is not critical. The default radius 0.05 then
means that the distance between points is 5 percent of the plot size. The
optional parameter nmax limits the number of points generated on the con-
tour, preventing infinite search along open contours. If a closed contour
appears to be incomplete, either increase nmax or increase radius.

Python code 7.4 (page 104) Generate a "χ2 = 1 contour and derive
uncertainties for the urease kinetics example

Start from python code 7.1, which defines SSQ(p), p[0]= vmax;
p[1]= Km, pout= best parameter values.

from scipy import *
from plotsvg import *
S0=SSQ(pout)
def fxy(x,y): return 4./S0*(SSQ([x,y])-S0)
data=contour(fxy,1.,pout,xyscale=[0.4,7.])
# plot the contour:
f=Figure()
f.frame([[15.25,16.25],[105,125]]
f.plotp(data,lines=Black,symbol=’’)
f.show()
# compute sig1,sig2, rho from contour:
sig1=0.5*(data[0].max()-data[0].min())
sig2=0.5*(data[1].max()-data[1].min())
ratio=(data[0,0]-pout[0])/sig1
rho=sqrt(1.-ratio**2)
print ’sigma1= %5.2f, sigma2=%5.2f, rho=%5.2f’ %\

(sig1,sig2,rho)

Comments:
The function fxy defines "χ2 as a function of the parameters. The input
xyscale in the function contour (see python code 7.3) is taken as
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estimates of the standard deviations. The contour data array data contains
122 points; you may increase the resolution by setting a smaller radius.
The standard uncertainties are derived from the extrema of the contour data;
the correlation coefficient is found from the x-intercept data[0,0] by
using the rule that the intercept occurs at a fraction

√
1 − ρ2 of the standard

deviation.

Python code 7.5 (page 105) Generate the covariance matrix by minimization
(urease kinetics example)

Start from python code 7.1, which defines residuals(p), SSQ(p),
p[0]= vmax; p[1]= Km. We redo the minimization with full output:

from scipy import optimize
lsq=optimize.leastsq
output = lsq(residuals,[15,105],full_output=1)
pout = output[0]
S0=SSQ(pout)
C=S0/(n-m)*output[1]
sig1=sqrt(C[0,0])
sig2=sqrt(C[1,1])
rho=C[0,1]/sig1/sig2
print ’sigma1= %5.2f, sigma2=%5.2f, rho=\%5.2f’ %\

(sig1,sig2,rho)

Comments:
The routine leastsq has a full output option, which produces as second
element the covariance matrix C, be it without proper scaling. The output
matrix is only equal to the covariance matrix if all standard uncertainties σy
are equal to 1. Correct results are obtained if the output matrix is scaled by
S0/(n − m).

Python code 7.6 (page 105) Generate the covariance matrix from the B-matrix
(urease kinetics example)

First construct matrix B in general, given function delchisq(p)

from scipy import *
def matrixB(delchisq, delta):
# delchisq(delp) = chisq(p-p0)-chisq(p0)
# delta = array of test deviations

m=len(delta)
B=zeros((m,m))
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d=zeros(m)
fun=zeros(m)
if (abs(delchisq(d)) > 1.e-8):

print ’definition delchisq incorrect’
for i in range(m):

di=delta[i]
d[i]=di
fun[i]=delchisq(d)
B[i,i]=fun[i]/(di*di)
for j in range(i):

dj=delta[j]
d[j]=dj
funij=delchisq(d)
B[j,i]=B[i,j]=0.5*(funij-fun[i]-\
fun[j])/(di*dj)
d[j]=0.

d[i]=0.
return B

Start from python code 7.1, which defines residuals(p), SSQ(p),
p[0]= vmax; p[1]= Km, pout = best parameter values. First con-
struct B, then invert B and print results.

delta=array([0.2,3.5]) # displacements near
# delchisq = 1

def delchisq(delp): return 4.*(SSQ(pout+delp)/\
S0-1.)

B=matrixB(delchisq,delta)
from numpy import linalg
C=linalg.inv(B)
sig1=sqrt(C[0,0])
sig2=sqrt(C[1,1])
rho=C[0,1]/sig1/sig2
print ’sigma1=%5.2f, sigma2=%5.2f, rho=%5.2f’ %\

(sig1,sig2,rho)

Comments:
The construction of B proceeds by stepping delta[i] in all direc-
tions (which yields the diagonal elements) and stepping all pairs
delta[i],delta[j] (which yields the off-diagonal elements). This is
a simple procedure that could be made more sophisticated by involving steps
in the opposite directions as well. Matrix inversion is done by the routine
inv contained in the numpy module linalg.
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Python code 7.7 (page 106) Fit: a program that reports a general least-squares
fit of a predefined function to a set of independent data.

from scipy import *
from plotsvg import *
def fit(function,data,parin,figures=True):

’’’
Function. Non-linear least-squares fit of function
--------------------------------------------------
(x,par) to data
---------------
arguments:
function predefined function(x,par),

where x=independent variable
(called with an array x=data
[0]); par is a list of
parameters, e.g. [a,b]

data list (or 2D array) [x,y] or
[x,y,sig]. sig contains
standard deviations of y
(if known). If sig is given, a
chi-squared test is done; if
not given, equal weights are
assumed.

parin list of initial values for the
parameters, e.g. [0.,1.]

figures=True if True, two figures are
produced and displayed

returns: [parout,sigma] (final parameters
with s.d.)

Remarks:
The sum of weighted square deviations
chisq=sum(((y-function(x))/sig)**2) [or, if no
sig is given, SSQ=sum(((y-function(x)))**2)] is
minimized by the nonlinear Scipy routine
leastsq., using function values only. After
successful determination of the best fit,
uncertainties (s.d. and correlation
coefficients) are computed, including the full
covariance matrix. Plots of the fit and the
residuals are produced.
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Example: fit exponential function to data [x,y]
with sd sig:

>>>def f(x,par):
[a,k,c]=par
return a*exp(-k*x)+c

>>>[[a,k,b],[siga,sigk,sigc]]=fit(f,[x,y,sig],
[1.,0.1,0.])

’’’
import os
from scipy import optimize,stats
lsq=optimize.leastsq
if (len(data)==2):

weights=False
elif (len(data)==3):

weights=True
else:

print ’ERROR: data should contain 2 or\
3 items’

print ’fit aborted’
return 0

m=len(parin)
x=array(data[0])
n=len(x)
y=array(data[1])
if (len(y)!=n):

print ’ERROR: x and y have unequal length’
print ’fit aborted’
return 0

if weights:
sig=array(data[2])
if (len(sig)!=n):

print ’ERROR: x and sig have unequal\
length’

print ’fit aborted’
return 0

def residuals(p): return (y-\
function(x,p))/sig

else:
def residuals(p): return (y-function(x,p))

def SSQ(p): return (residuals(p)**2).sum()
SSQ0=SSQ(parin)
# print results after minimization:
print ’\n Report on least-squares parameter\

fit’
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if weights:
print ’chisq = sum of square reduced dev.\

(y-f(x))/sig’
else:

print ’SSQ = sum of square deviations\
(y-f(x))’

print ’\nnr of data points: %5d’ % (n)
print ’nr of parameters: %5d’ % (m)
print ’nr of degrees of freedom: %5d’ % (n-m)
print ’\nInitial values of parameters: ’
print parin
if weights:

print ’Initial chisq = %10.6g’ % (SSQ0)
else:

print ’Initial SSQ = %10.6g’ % (SSQ0)
output=lsq(residuals,parin,full_output=1)
parout=output[0]
SSQout=SSQ(parout)
print ’Results after minimization:’
if weights:

print ’Final chisq = %10.6g’ % (SSQout)
else:

print ’Final SSQ = %10.6g’ % (SSQout)
print ’Final values of parameters’
print parout
# covariance matrix C
C=SSQout/(n-m)*output[1]
sigma=arange(m,dtype=float)
for i in range(m): sigma[i]=sqrt(C[i,i])
print ’Standard inaccuracies of parameters,:’
print sigma
print ’\nMatrix of covariances’
print C
SR=zeros((m,m),dtype=float)
for i in range(m):

SR[i,i]=sigma[i]
for j in range(i+1,m):

SR[j,i]=SR[i,j]=C[i,j]/(sigma[i]*
sigma[j])

print ’\nMatrix of sd (diagonal) and corr.
coeff. (off-diag)’

print SR
# chisq analysis
if weights:
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nu=n-m
F=stats.chi2.cdf(SSQout,nu)
print ’\nChi-square analysis:’
print ’chi^2 (sum of weighted square\

deviations) =%10.6g’ % (SSQout)
print ’cum. prob. for chi^2 = %5.3g %%’ %\

(100.*F)
if (F<.1):

print "chi^2 is low! Did you\
overestimate the supplied\
sigma’s?"

print ’Or did you fit the original\
data too closely with too many\
parameters?’

elif (F>.9):
print "chi^2 is high! Did you neglect\

an error source in the supplied\
sigma’s?"

print ’Or did the data result from a\
bad fitting procedure?’

else:
print ’cum. probab. of chi^2 is\

reasonable (between 10% and 90%).’
print "The spread in the data agrees\

with the supplied sigma’s"
# produce two plots (data and fitting curve;
# residuals)
if figures:

xmin=x.min(); xmax=x.max()
ymin=y.min(); ymax=y.max()
if weights:

maxsigy=sig.max()
ymin=ymin-maxsigy
ymax=ymax+maxsigy

y1=1.05*ymin-0.05*ymax; y2=1.05*ymax
-0.05*ymin
f=Figure()
f.frame([[xmin,xmax],[y1,y2]],title=\

’Least-squares fit’)
if weights:

f.plotp([x,y],symbolfill=Blue,ybars=\
sig, barcolor=Blue)

else:
f.plotp([x,y],symbolfill=Blue)
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def fun(x): return function(x,parout)
f.plotf(fun,color=Red)
f.show(filename=’figfit.svg’)
os.startfile(’figfit.svg’)
print ’figfit.svg is now displayed by your\

browser’
residuals=y-fun(x)
minres=residuals.min(); maxres=residuals.
max()
if weights:

minres=minres-maxsigy
maxres=maxres+maxsigy

y1=1.05*minres-0.05*maxres; y2=1.05*maxres\
-0.05*minres

f=Figure()
f.size=[5500,3400]
f.frame([[xmin,xmax],[y1,y2]],
title="residuals")
if weights:

f.plotp([x,residuals],symbolfill=Blue,\
ybars=sig, barcolor=Blue)

else:
f.plotp([x,residuals],symbolfill=Blue)

f.show(filename=’figresiduals.svg’)
os.startfile(’figresiduals.svg’)
print ’figresiduals.svg is now displayed\

by your browser’
return [parout,sigma]

Comments:
This program can be downloaded from www.hjcb.nl/python. Look for recent
updates. Two plots are automatically generated and displayed by the stan-
dard browser. Make sure that the .svg mime type starts your SVG-enabled
browser.

Python code 7.8 (page 108) Compute various sum of squared deviations and
perform an F-test on the urease kinetics example

Start from python code 7.1 and code 7.5, which defines independent variable
S, dependent variable v and best parameters pout.

y=S
def fun(x,p): return p[0]*x/(p[1]+x)
def ssq(x): return (x**2).sum()
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f=fun(v,pout)
SST=ssq(y-y.mean())
SSR=ssq(f-f.mean())
SSE=ssq(y-f)
Fratio=SSR/(SSE/4.)
from scipy import stats
Fcum=stats.f.cdf(Fratio,1,4)
print ’SST=%7.3f SSR=%7.3f SSE=%7.3f’ % (SST,SSR,\

SSE)
print ’Fratio=%7.3f Fcum=%7.3f’ % (Fratio,Fcum)

Comments:
The function ssq(x) computes the sum of squares of the elements of a
1D-array x. The array f gives the best-fitted function values. The function
f.cdf(Fratio, nu1,nu2) of the scipy module stats gives the
cumulative F-distribution.

Python code A5.1 (page 150) Generate pdf of sum of n homogeneously
distributed random numbers

from scipy import fftpack
def symmetrize(x): # adds mirror to x

n=alen(x)
half=n/2
for i in range(1,half): x[n-i] += x[i]
return 1

def FT(Fx,delx): # produces real FT of symmetric
# Fx

Gy=fftpack.fft(Fx).real*delx
return Gy

def IFT(Gy,delx): # produces real inverse FT of
# symmetric Gy

Fx=fftpack.ifft(Gy).real/delx
return Fx

n=10 # number of random numbers to be
# added

a=sqrt(3./n) # [-a,a] is range of random
# numbers

nft=4096 # array length for FT
xm=50. # maximum of x-scale
delx=2.*xm/nft # delta x between points in Fx
dely=pi/xm # delta y between points in Gy
ym=nft*dely/2. # maximum of y-scale
Fx=zeros((nft),dtype=float)
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# set rectangular function Fx:
for i in range(int(a/delx)): Fx[i]=0.5/a
symmetrize(Fx) # this makes the FT real
corr=1./Fx.sum()/delx # correction to make

# integral exactly = 1
Fx=Fx*corr
Gy=FT(Fx,delx) # Fourier transform of

# rectangular function
Gyn=Gy**n # FT of convolution of 10

# rectangular functions
Fxn=IFT(Gyn,delx) # Inverse FT gives the

# convolution function
m=4./delx # [-4,4] is interesting plot

# range
yn=concatenate((Fxn[-m:],Fxn[:m]))

# yn is the useful output

Comments:
This example computes the probability density function of the sum of n = 10
homogeneously distributed random numbers from an interval [−a, a⟩, where
a is chosen such that the resulting variance of the sum equals 1. Such a dis-
tribution is a convolution of 10 rectangular functions, which is most easily
computed by inverse FT of the n-th power of the FT of the original rect-
angular function. In the last lines the result is recast into a smaller range,
symmetrical around zero (−4 < x < 4).

Python code A7.1 (page 157) Variance of the mean by block averages

def block(data,n):
# block-average data in blocks of length n
# data: input [x,y] (x,y: 1D-arrays of same length)
# n: number of points in each block
# returns array of block averages of both x and y

ntot=len(data[0])
nnew=ntot/n
x=zeros(nnew,dtype=float)
y=zeros(nnew,dtype=float)
for i in range(nnew):

x[i]=sum(data[0][i*n:(i+1)*n])/float(n)
y[i]=sum(data[1][i*n:(i+1)*n])/float(n)

return [x,y][1ex]
def blockerror(data,blocksize=[10,20,40,60,80,100,\
125]):
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# make list of s.d of the mean for given blocksizes
# data: input [x,y] (x,y: 1D-arrays of same length)
# blocksize: list of lengths of blocks,
# assuming independent block averages
# returns [blocksize, stderror, ybars]
# ybars is rms inaccuracy of stderror

n=len(data[1])
delt=(data[0][-1]-data[0][0])/float(n-1)
xout=[]
yout=[]
ybars=[]
for nb in blocksize:

xyblock=block(data,nb)
number = len(xyblock[1])
std=xyblock[1].std()
stderror = std/sqrt(number-1.)
xout += [nb*delt]
yout += [stderror]
ybars += [stderror/sqrt(2.*(number-1.))]

return [xout,yout,ybars]

Comments:
It is assumed that a set of data=[x,y] is available (x and y being arrays).
The function block(data,n) returns a new set of data consisting of the
averages over blocks of length n. The blocks start at the first data item; if the
number of data points does not fit an integer number of blocks, the remaining
points are not used. The function blockerror calls the function block
for each of the elements in the optional argument blocksize. For each
blocksize it computes the standard error in the mean and outputs it as yout.
The output values xout are the block sizes expressed in units of x. The
output values ybars are the standard deviations expected for yout on the
basis of the limited number of averages; it can be used to draw error bars in
a plot of the output data.
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Chi-squared distribution
Probability distribution sum of squares

x1, x2, . . . , xν are independent, normally distributed variables with E{xi} = 0
and E{x2

i } = 1; ν = number of degrees of freedom; χ2 = ∑ν
i=1 x2

i . The
probability density function of χ2 is:

f (χ2|ν) dχ2 = [2ν/2 8( ν
2 )]−1(χ2)ν/2−1 exp[−χ2/2] dχ2.

Moments of f (χ2|ν):
mean µ = E{χ2} = ν

variance σ 2 = E{(χ2 − µ)2} = 2ν

skewness γ1 = E{(χ2 − µ)3/σ 3} = 2
√

(2/ν)

excess γ2 = E{(χ2 − µ)4/σ 4 − 3} = 12/ν

Special cases

ν f (χ2|ν)

1 (2π)−1/2χ−1 exp[−χ2/2]
2 1

2 exp[−χ2/2]
3 (2π)−1/2χ exp[−χ2/2]
∞ (4πν)−1/2 exp[−(χ2 − ν)2/(4ν)]

normal with var = 2ν

Relation to Poisson
distribution (ν even)
1 − F(χ2|ν) =
= ∑c−1

j=0 e−mmj/j!,
c = 1

2ν m = 1
2χ2).

Cumulative χ2-distribution

F(χ2|ν) = probability that sum of squares < χ2:

F(χ2|ν) =
∫ χ2

0 f (S|ν) dS. See table p. 2.

Probability that χ2 is exceeded is 1 − F(χ2).
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Chi-squared distribution
Values of χ2 for 1%, 10%, 50%, 90%, and 99%

F = ν 0.01 0.10 0.50 0.90 0.99

1 0.000 0.016 0.455 2.706 6.635
2 0.020 0.211 1.386 4.605 9.210
3 0.115 0.584 2.366 6.251 11.35
4 0.297 1.064 3.357 7.779 13.28
5 0.554 1.610 4.351 9.236 15.09
6 0.872 2.204 5.348 10.65 16.81
7 1.239 2.833 6.346 12.02 18.48
8 1.646 3.490 7.344 13.36 20.09
9 2.088 4.168 8.343 14.68 21.67

10 2.558 4.865 9.342 15.99 23.21
11 3.053 5.578 10.34 17.28 24.73
12 3.571 6.304 11.34 18.55 26.22
13 4.107 7.042 12.34 19.81 27.69
14 4.660 7.790 13.34 21.06 29.14
15 5.229 8.547 14.34 22.31 30.58
20 8.260 12.44 19.34 28.41 37.57
25 11.52 16.47 24.34 34.38 44.31
30 14.95 20.60 29.34 40.26 50.89
40 22.16 29.05 39.34 51.81 63.69
50 29.71 37.69 49.34 63.17 76.15
60 37.49 46.46 59.34 74.40 88.38
70 45.44 55.33 69.33 85.53 100.4
80 53.54 64.28 79.33 96.58 112.3
90 61.75 73.29 89.33 107.6 124.1

100 70.07 82.36 99.33 118.5 135.8

∞ ν − a ν − b ν ν + b ν + a
a = 3.290

√
ν b = 1.812

√
ν
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F-distribution
F-distribution

Meaning of variable: F-ratio = ratio of mean squared deviations of two
groups of samples.

Fν1,ν2 = MSD1

MSD2
=

∑
("y1i)

2/ν1∑
("y2i)2/ν2

.

F-test: yields (cumulative) probability that both groups come from distribu-
tions with the same variance.

Probability density function:

f (Fν1,ν2) = 8
( ν1+ν2

2

)

8
( ν1

2

)
8

( ν1
2

)ν
ν1/2
1 ν

ν2/2
2 F(ν1−2)/2(ν2 + ν1F)−(ν1+ν2)/2.

Cumulative distribution function:
F(Fν1,ν2) =

∫ F
−∞ f (F′) dF′

1 − F(Fν1,ν2) =
∫ ∞

F f (F′) dF′

mean: m = ν2/(ν2 − 2), ν2 > 2
variance: σ 2 = 2ν2

2 (ν1 + ν2 − 2)/[ν1(ν2 − 2)2(ν2 − 4)], ν2 > 4.

Reflexive relation:
F(Fν1,ν2) = 1 − F(1/Fν2,ν1)
e.g. F10,5 = 4.74 at the 95% level; then F5,10 = 1/4.74 = 0.21 at the 5%
level.
Therefore tables can be restricted to F-ratios > 1.

Use in ANOVA (analysis of variance) in regression

Given: n data (xi, yi), i = 1, . . . , n. Fit fi = axi + b by linear regression.
The total sum of squared deviations SST can be divided into SSR (regression
SSQ, explained by the model) and SSE (remaining error). ν = nr of degrees
of freedom:
SST (ν = n − 1) = SSR (ν = 1) + SSE (ν = n − 2)
SST = ∑

(yi − ⟨y⟩)2; SSR = ∑
(fi − ⟨y⟩)2; SSE = ∑

(yi − fi)2

Perform F-test on F1,n−2 = [SSR/1]/[SSE/(n − 2)].
Remark: For regression with m parameters:
Perform F-test on Fm−1,n−m = [SSR/(m − 1)]/[SSE/(n − m)].
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F-distribution
F-distribution, percentage points 95% and 99%

F(Fν1,ν2) = 0.95
If (

∑
y2

1i/ν1)/(
∑

y2
2i/ν2) exceeds the F-ratio Fν1,ν2 given in the table, the

probability is < 5% that y and z are samples from distributions with equal
variance.

ν1 1 2 3 4 5 7 10 20 50 ∞
ν2

2 18.5 19.0 19.2 19.3 19.3 19.4 19.4 19.5 19.5 19.5
3 10.1 9.55 9.28 9.12 9.01 8.89 8.79 8.66 8.58 8.53
4 7.71 6.94 6.59 6.39 6.26 6.09 5.96 5.80 5.70 5.63
5 6.61 5.79 5.41 5.19 5.05 4.88 4.74 4.56 4.44 4.36
7 5.59 4.74 4.35 4.12 3.97 3.79 3.64 3.44 3.32 3.23

10 4.96 4.10 3.71 3.48 3.33 3.14 2.98 2.77 2.64 2.54
20 4.35 3.49 3.10 2.87 2.71 2.51 2.35 2.12 1.97 1.84
50 4.03 3.18 2.79 2.56 2.40 2.20 2.03 1.78 1.60 1.44
∞ 3.84 3.00 2.61 2.37 2.21 2.01 1.83 1.57 1.35 1.00

F(Fν1,ν2) = 0.99

ν1 1 2 3 4 5 7 10 20 50 ∞
ν2

2 98.5 99.0 99.2 99.3 99.3 99.4 99.4 99.5 99.5 99.5
3 34.1 30.8 29.5 28.7 28.2 27.7 27.2 26.7 26.4 26.1
4 21, 2 18.0 16.7 16.0 15.5 15.0 14.6 14.0 13.7 13.5
5 16.3 13.3 12.1 11.4 11.0 10.5 10.1 9.55 9.24 9.02
7 12.3 9.55 8.45 7.85 7.46 6.99 6.62 6.16 5.86 5.65

10 10.0 7.56 6.55 5.99 5.64 5.20 4.85 4.41 4.12 3.91
20 8.10 5.85 4.94 4.43 4.10 3.70 3.37 2.94 2.64 2.42
50 7.17 5.06 4.20 3.72 3.41 3.02 2.70 2.27 1.95 1.68
∞ 6.63 4.61 3.78 3.32 3.02 2.64 2.32 1.88 1.53 1.00
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Least-squares fitting
General least-squares fitting

Sum of weighted squared deviations
a. Uncorrelated data
Given n measured values yi, i = 1, . . . n, we seek m parameters θ̂k, k =
1 . . . m, m < n; such that:

S = ∑n
i=1 wi(yi − fi)2 minimal

fi(θ1, . . . θm) are functions of parameters. For the minimum: S(θ̂) = S0. Both
yi and fi can be functions of one or more independent variables.
The residuals εi = yi − fi are supposed to be samples from a random distri-
bution with properties: E[εi] = 0; E[εiεj] = σ 2

i δij.
The weight factors wi should be proportional to σ−2

i .
If the variances σi of the deviations are known, a chi-squared test can be car-
ried out on χ2

0 = min
∑n

i=1[(yi − fi)/σi]2, for ν = n−m degrees of freedom.
b. Correlated data
S = ∑n

i,j=1 wij(yi − fi)(yj − fj) minimal, with εi = yi − fi samples from
a random distribution with properties: E[εi] = 0; E[εiεj] = 9ij. % is the
covariance matrix of the measured values. The matrix W of weight factors
should be proportional to %−1.

Parameter covariances Likelihood of θ is proportional to exp
[
− 1

2χ2(θ)
]
.

Since E[χ2
0 ] = n − m, χ2(θ) is estimated by scaling S:

χ̂2(θ) = (n − m)S(θ)/S0 = n − m + (&θ)TB&θ , where &θ = θ − θ̂ .
The expectation of the parameter covariance matrix C = E[(&θ)(&θ)T] is
given by:

C = B−1.

σk = √
Ckk; ρkl = Ckl/(σkσl).



D
A

TA
 S

H
EE

T

204 SCIENTIFIC DATA

Least-squares fitting
Linear in the parameters

When fi are linear functions of θ :
fi(θ) = ∑

k Aikθk; f = A θ (general: Aik = ∂fi/∂θk)

S = (y − f )TW(y − f ) minimal

for θ̂ = (ATWA)−1ATWy,

where Wij ∝ σ−2
i δij (uncorrelated data).

S(θ̂) = S0

Expectation of parameter covariance matrix C = E[(&θ)(&θ)T] is given by:

C = [S0/(n − m)](ATWA)−1.

Special case: linear function:
fi = f (xi) = axi + b (a and b parameters):

a = ⟨("x)("y)⟩/⟨("x)2⟩; b = ⟨y⟩ − a⟨x⟩.

Here ⟨ ⟩ are weighted averages, such as:

⟨ξ ⟩ = (1/w)
∑n

i=1 wi ξi; w = ∑n
i=1 wi.

"x = x − ⟨x⟩; "y = y − ⟨y⟩.

Expectation of (co)variances of a and b:
E[("a)2] = σ 2

a = S0/[n(n − 2)⟨("x)2⟩]
E[("b)2] = σ 2

b = ⟨x2⟩σ 2
a

E["a"b] = −⟨x⟩σ 2
a ; ρab = −⟨x⟩σa/σb

N.B.: a and b are uncorrelated if ⟨x⟩ = 0.

Correlation coefficient r of x and y:

r = ⟨("x)("y)⟩√
⟨("x)2⟩

√
⟨("y)2⟩

= a
(

⟨("x)2⟩
⟨("y)2⟩

)1/2
.
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Normal distribution
One-dimensional Gauss function

Probability density function:
f (x) dx = (σ

√
2π)−1 exp[−(x − µ)2/(2σ 2)] dx

µ = mean,
σ 2 = variance,
σ = standard deviation.
Standard form:
f (z) = (1/

√
2π) exp(−z2/2),

z = (x − µ)/σ .

Characteristic function: +(t) = exp
(
− 1

2σ 2t2
)

exp(iµt).
Central moments µn =

∫ ∞
−∞(x − µ)nf (x) dx,

µm = 0 for m even, µ2n = σ 2n × 1 × 3 × 5 × (2n − 1),
µ2 = σ 2, µ4 = 3σ 4, µ6 = 15σ 6, µ8 = 105σ 8.
skewness = 0, excess = 0.

Cumulative distribution function:
F(x) =

∫ x
−∞ f (x′) dx′ = 1

2 {1 + erf (x/σ
√

2)},
1 − F(x) = F(−x) =

∫ ∞
x f (x′) dx′ = 1

2 erfc (x/σ
√

2).

z f (z) F(−z) z f (z) F(−z)

0.0 0.3989 0.5000 1.4 1.497e-01 8.076e-02
0.1 0.3970 0.4602 1.6 1.109e-01 5.480e-02
0.2 0.3910 0.4207 1.8 7.895e-02 3.593e-02
0.3 0.3814 0.3821 2.0 5.399e-02 2.275e-02
0.4 0.3683 0.3446 2.5 1.753e-02 6.210e-03
0.5 0.3521 0.3085 3.0 4.432e-03 1.350e-03
0.6 0.3332 0.2743 3.5 8.727e-04 2.326e-04
0.7 0.3123 0.2420 4.0 1.338e-04 3.167e-05
0.8 0.2897 0.2119 5.0 1.487e-06 2.866e-07
0.9 0.2661 0.1841 7.0 9.135e-12 1.280e-12
1.0 0.2420 0.1587 10 7.695e-23 7.620e-24
1.2 0.1942 0.1151 15 5.531e-50 3.671e-51

large z : F(−z) = 1 − F(z) ≈ f (z)
z

(
1 − 1

z2+2 + · · ·
)
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Normal distribution
Multivariate Gauss functions

General n-dimensional form:
f (x) dx = (2π)−n/2 (det W)1/2 exp

[
− 1

2 (x − µ)TW(x − µ)
]

dx,

where W is the weight matrix. W = C−1.

C def= E[(x − µ)(x − µ)T] is the covariance matrix.

Bivariate normal distribution:

C =
(

σ 2
x ρσxσy

ρσxσy σ 2
y

)
; ρ is the correlation coefficient.

W = 1
1−ρ2

(
σ−2

x −ρ/(σxσy)

−ρ/(σxσy) σ−2
y

)

f (x, y) dx dy = 1

2πσxσy
√

1 − ρ2
exp

[
− z2

2(1 − ρ2)

]
dx dy;

z2 = (x − µx)
2

σ 2
x

− 2
ρ(x − µx)(y − µy)

σxσy
+ (y − µy)

2

σ 2
y

.

Standard form:
µx = µy = 0; σx = σy = 1;
r2 = x2 − 2ρxy + y2 is equation
for ellipse at +45◦ for ρ > 0
or −45◦ for ρ < 0. Half major
axis a = r/

√
1 − |ρ|; half minor

axis b = r/
√

(1 + |ρ|. Cumulative
probability integrated over ellipse:
1 − exp

[
− 1

2 r2/(1 − ρ2)
]
.

Marginal distr.: fx(x) = (σx
√

2π)−1 exp
[
− 1

2 ((x − µx)/σx)
2],

Conditional distribution:

f (x|y) = 1

σx
√

2π(1 − ρ2)
exp

[

− {x − µx − ρ(σx/σy)(y − µy)}2

2σ 2
x (1 − ρ2)

]

.

Conditional expectation: E[x|y] = µx + ρ(σx/σy)(y − µy).
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Normal distribution
Probability that ≥1 ∈ n samples exceeds an interval

Probability that at least one out of n (independent, normally distributed)
samples falls outside the interval (µ − d, µ + d):

Pr{≥1; n, d} = 1 − [1 − 2F(−d/σ )]n (double-sided)

n ↓ d/σ → 1.5 2 2.5 3 3.5 4

1 0.134 0.046 0.012 0.0027 4.7e-4 6.3e-5

2 0.249 0.089 0.025 0.0054 9.3e-4 1.3e-4
3 0.350 0.130 0.037 0.0081 0.0014 1.9e-4
4 0.437 0.170 0.049 0.0108 0.0019 2.5e-4

5 0.512 0.208 0.061 0.0134 0.0023 3.2e-4
6 0.577 0.244 0.072 0.0161 0.0028 3.8e-4
7 0.634 0.278 0.084 0.0187 0.0033 4.4e-4
8 0.683 0.311 0.095 0.0214 0.0037 5.1e-4
9 0.725 0.342 0.106 0.0240 0.0042 5.7e-4

10 0.762 0.372 0.117 0.0267 0.0046 6.3e-4
12 0.821 0.428 0.139 0.0319 0.0056 7.6e-4
15 0.884 0.503 0.171 0.0397 0.0070 9.5e-4

20 0.943 0.606 0.221 0.0526 0.0093 0.0013
25 0.972 0.688 0.268 0.0654 0.0116 0.0016
30 0.986 0.753 0.313 0.0779 0.0139 0.0019
40 0.997 0.845 0.393 0.102 0.0184 0.0025
50 0.999 0.903 0.465 0.126 0.0230 0.0032
70 1.000 0.962 0.583 0.172 0.0321 0.0044

100 1.000 0.991 0.713 0.237 0.0455 0.0063

150 1.000 0.999 0.847 0.333 0.0674 0.0095
200 1.000 1.000 0.918 0.418 0.0889 0.0126
300 1.000 1.000 0.976 0.556 0.130 0.0188
400 1.000 1.000 0.993 0.661 0.167 0.0250
500 1.000 1.000 0.998 0.741 0.208 0.0312

horizontal lines mark 5% level
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Normal distribution
Probability that ≥1 ∈ n samples exceeds a value

Probability that at least one out of n (independent, normally distributed)
samples is >µ + d (or . . . <µ − d):

Pr{≥1; n, d} = 1 − [1 − F(−d/σ )]n (single-sided)

n ↓ d/σ → 1.5 2 2.5 3 3.5 4

1 0.067 0.023 0.0062 0.0014 2.3e-4 3.2e-5
2 0.129 0.045 0.012 0.0027 4.7e-4 6.3e-5

3 0.187 0.067 0.019 0.0040 6.9e-4 9.5e-5
4 0.242 0.088 0.025 0.0054 9.3e-4 1.3e-5
5 0.292 0.109 0.031 0.0067 0.0012 1.6e-4
6 0.340 0.129 0.037 0.0081 0.0014 1.9e-4
7 0.384 0.149 0.043 0.0094 0.0016 2.2e-4
8 0.425 0.168 0.049 0.011 0.0019 2.5e-4

9 0.463 0.187 0.055 0.012 0.0021 2.9e-4
10 0.499 0.206 0.060 0.013 0.0023 3.2e-4
12 0.564 0.241 0.072 0.016 0.0028 3.8e-4
15 0.646 0.292 0.089 0.020 0.0035 4.8e-4
20 0.749 0.369 0.117 0.027 0.0046 6.3e-4
25 0.823 0.438 0.144 0.033 0.0058 7.9e-4
30 0.874 0.499 0.170 0.038 0.0070 9.5e-4

40 0.937 0.602 0.221 0.053 0.0093 0.0013
50 0.968 0.684 0.268 0.065 0.012 0.0016
70 0.992 0.800 0.353 0.090 0.016 0.0022

100 0.999 0.900 0.464 0.126 0.023 0.0032
150 1.000 0.968 0.607 0.183 0.034 0.0047
200 1.000 0.990 0.712 0.237 0.045 0.0063

300 1.000 0.999 0.846 0.333 0.067 0.0095
400 1.000 1.000 0.917 0.417 0.089 0.0126
500 1.000 1.000 0.956 0.491 0.110 0.0157

horizontal lines mark 5% level
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Physical constants
(between parentheses: standard deviation)

velocity of light c = 299 792 458 m/s (exact)
magnetic constant µ0 = 4π × 10−7 N/A2 (exact)

= 1.256 637 0614. . . × 10−6

electric constant ε0 = 1/µ0c2 (exact)
= 8.854 187 817. . . × 10−12 F/m

characteristic impedance Z0 = √
µ0/ϵ0 = µ0c (exact)

vacuum = 376.730 313 461 . . . :

Planck constant h = 6.626 068 96(33)×10−34 J s
Dirac constant h/2π ! = 1.054 571 628(53) × 10−34 J s
gravitational constant G = 6.674 28(67)×10−11 m3 kg−1 s−2

elementary charge e = 1.602 176 487(40)×10−19 C
mass electron me = 9.109 382 15(45)×10−31 kg
mass proton mp = 1.672 621 637(83)×10−27 kg

= 1.007 276 466 77(10) u
me/mp = 5.446 170 2177(24)×10−4

atomic mass unit u = 1.660 538 782(83)×10−27 kg
Avogadro number NA = 6.022 141 79(30)×1023 mol−1

Boltzmann constant k = 1.380 6504(24)×10−23 J/K
gas constant kNA R = 8.314 472(15) J mol−1 K−1

molar volume Vm = 22.710 98(40) × 10−3 m3/mol
ideal gas 273.15 K, 100 kPa

Faraday eNA F = 96 485.3399(24) C/mol
Bohr radius a0 = 5.291 772 0859(36)×10−11m

a0 = !/(mecα) = 107 (!/ce)2/me
Bohr magneton µB = 9.274 009 15(23)×10−24 J/T

µB = e!/2me
nuclear magneton µN = 5.050 783 24(13)×10−27 J/T
magnetic moment electron µe = −9.284 763 77(23)×10−24 J/T
magnetic moment proton µp = 1.410 606 662(37)×10−26 J/T
g-factor electron ge = −2.002 319 304 3622(15)
g-factor proton gp = 5.585 694 713(46)
fine structure constant α = 7.297 352 5376(50)×10−3

α−1 = 4πε0!c/e2 α−1 = 137.035 999 679(94)

proton gyromagnetic γp = 2.675 222 099(70)×108 s−1T−1

ratio γp/2π = 42.577 4821(11) MHz/T
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Physical constants
conductance quantum G0 = 7.748 091 7004(53)×10−5 S
Josephson constant KJ = 4.835 978 91(12) × 1014 Hz/V
magnetic flux quantum +0 = 2.067 833 667(52) × 10−15 Wb

G0 = 2e2/h; KJ = 2e/h; +0 = h/2e
Stefan–Boltzmann constant σ = 5.670 400(40) × 10−8

π2k4/(60!3c2); U = σT4 (black body radiation) W m−2K−4

Rydberg constant R∞ = 10 973 731,568 527(73) m−1

α2mec/2h

masses of neutron (n), deuteron (d) and muon (µ)

n: 1.674 927 211(84)×10−27 kg = 1.008 664 915 97(43) u
d: 3.343 583 20(17)×10−27 kg = 2.013 553 212 724(78) u
µ: 1.883 531 30(11)×10−28 kg = 0.113 428 9256(29) u

Relative standard deviations

ge 7.4 × 10−13 gp 8.2 × 10−9

R∞ 6.6 × 10−12 e, KJ , +0 2.5 × 10−8

md/u 3.9 × 10−11 h, NA, u, me,
mp/u 1.0 × 10−10 mp, md , mn 5.0 × 10−8

me/u, mn/u, k, R, Vm 1.7 × 10−6

me/mp 4.2 × 10−10 σ (Stefan-B.) 7.0 × 10−6

α, ao, G0 6.8 × 10−10 G 1.0 × 10−4

Accuracies of derived quantities

If yk is a product of powers of physical constants xi:
yk = ak1

N
i=1xpki

i (ak is a constant), then

ϵ2
k =

N∑

i=1

p2
kiϵ

2
i + 2

N∑

j<i

pkipkjrijϵiϵj,

where ϵk = relative standard deviation and rij = correlationcoefficient
between i and j (For r: see website)

CODATA 2006 http://physics.nist.gov/cuu/constants/
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Probability distributions
Continuous one-dimensional probability functions

x is a real variable from a domain D; the probability density function (pdf)
p(x) is real; p(x) ≥ 0. p(x) dx is the probability of finding a sample X in the
interval (x, x + dx).
p(x) is normalized:

∫
D p(x) dx = 1 (if p(x) cannot be normalized, it is called

an improper pdf).
The value of x for which p(x) is a maximum, is called the mode.

The expectation or expected value of a function g(x) over the pdf p(x) is
defined as the functional

E[g(x)] def=
∫

D
g(x)p(x) dx.

mean: µ = E[x].
variance: σ 2 = E[(x − µ)2].
standard deviation (std) σ : root of the variance.

n-th moment: µn
def= E[xn].

n-th central moment µc
n

def= E[(x − µ)n].
skewness: E[(x − µ)3/σ 3].
kurtosis: E[(x − µ)4/σ 4].
excess: kurtosis−3.

characteristic function +(t):

+(t) def= E[eitx] =
∫ ∞

∞
eitxp(x) dx

=
∞∑

n=0

(it)n

n! E[xn] =
∞∑

n=0

(it)n

n! µn

+(t) generates the moments µn. The moments are also given by the
derivatives of the characteristic function at t = 0:

+(n)(0) = dn+

dtn
|t=0 = inµn.

Special case: µ2 = σ 2 + µ2 = −(d2+(t)/dt2)x=0.
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Probability distributions
(one-dimensional functions – continued)
Cumulative distribution function (cdf) P(x):

P(x) def=
∫ x

a
p(x′) dx′,

where a is the lower limit of the domain of x (usually −∞). P(x) is a
monotonously non-decreasing function of x, starting at 0 and ending at 1.
The value of x for which P(x) = 0.5 is the median; when P(x) = 0.25, x is the
first quartile; when P(x) = 0.75, x is the third quartile; when P(x) = 0.01n, x
is the n-th percentile.
Survival function (sf): S(x) = 1 − P(x).

Continuous two-dimensional probability functions

Joint pdf : p(x, y) dx dy is the probability for a sample pair (X, Y) to find the
value X in the interval (x, x + dx) and the value Y in the interval (y, y + dy).
p(x, y) ≥ 0;

∫
p(x, y) dx dy = 1.

Conditional pdf : p(x|y) dx (p of x given y) is the probability for a sample
pair (X, Y) that a sample X occurs in the interval (x, x + dx) while Y has the
value y.
Marginal pdf : px(x) =

∫
p(x, y) dy is the probability for a sample pair (X, Y)

that a sample X occurs in the interval (x, x + dx) irrespective of the value
of Y .

p(x|y) = p(x, y)/py(y),
p(x, y) = px(x) p(y|x) = py(y) p(x|y),
p(x|y) = px(x) if x and y are independent,
p(x, y) = px(x) py(y) if x and y are independent.

Expectation of g(x, y): E[g(x, y)] =
∫

dx
∫

dy g(x, y) p(x, y).
Mean of x: µx is the expectation E[x] =

∫
dx

∫
dy x p(x, y) =

=
∫

x px(x) dx.
Variance of x: σ 2

x = Cxx = E[(x − µx)
2].

Covariance of x and y: Cxy = E[(x − µx)(y − µy)] =
=

∫
dx

∫
dy(x − µx)(y − µy)p(x, y).

Correlation coefficient between x and y: ρxy = Cxy/(σxσy).
C = E[xxT] is the correlation matrix (x is the column vector of deviations
from the mean).
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Student’s t-distribution
Student’s t-distribution

Let X be a normally distributed variable with expectation 0 and variance σ 2

and Y2/σ 2 an independent chi-squared distributed variable with ν degrees of
freedom. Then t = X

√
ν

Y is distributed according to a Student’s t-distribution
f (t|ν) with ν degrees of freedom, independent of σ :

f (t|ν) dt = 1√
νπ

8[(ν + 1)/2]
8(ν/2)

(
1 + t2

ν

)−(ν+1)/2

dt.

Application: accuracy of the mean

Let x1, . . . , xn be n independent samples from a normal distribution with
unknown expectation µ and unknown variance σ 2; let ⟨x⟩ = 1

n

∑n
i=1 xi;

S = ∑n
i=1(xi − ⟨x⟩)2 and σ̂ = √

S/(n − 1), then t = [(⟨x⟩ − µ)
√

n]/σ̂ is
distributed according to a Student’s t-distribution with ν = n − 1 degrees of
freedom. The best estimate for σ is σ̂ . If σ is known, then ⟨x⟩ is distributed
normally with mean µ and variance σ 2/n. In the latter case χ2 = S/σ 2

satisfies a chi-squared distribution with ν = n − 1 degrees of freedom.

Properties and moments

f is symmetric: f (−t) = f (t); mean = 0
variance σ 2 = ν/(ν − 2) (ν > 2); ‘skewness’ γ1 = 0
“excess” γ2 = E{t4}/σ 4 − 3 = 6/(ν − 4)
limν→∞ f (t|ν) = (1/

√
2π) exp(−t2/2)

Cumulative
distribution

F(t|ν) =
∫ t
−∞ f (t′|ν) dt′

F(−t|ν) = 1 − F(t|ν)

see table p. 2
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Student’s t-distribution
Values of t at 75%, 90%, 95%, 99%, and 99.5%

A = acceptance level
for two-sided interval
(−t, t)

F(t) = 0.75 0.90 0.95 0.99 0.995
F(−t) = 0.25 0.10 0.05 0.01 0.005
A(%) 50 80 90 98 99

ν = 1 1.000 3.078 6.314 31.821 63.657
2 0.816 1.886 2.920 6.965 9.925
3 0.765 1.638 2.353 4.541 5.841
4 0.741 1.533 2.132 3.747 4.604
5 0.727 1.467 2.015 3.365 4.032
6 0.718 1.440 1.943 3.143 3.707
7 0.711 1.415 1.895 2.998 3.499
8 0.706 1.397 1.860 2.896 3.355
9 0.703 1.383 1.833 2.821 3.250

10 0.700 1.372 1.812 2.764 1.169
11 0.697 1.363 1.796 2.718 3.106
12 0.695 1.356 1.782 2.681 3.055
13 0.694 1.350 1.771 2.650 3.012
14 0.692 1.345 1.761 2.624 2.977
15 0.691 1.341 1.753 2.602 2.947
20 0.687 1.325 1.725 2.528 2.845
25 0.684 1.316 1.708 2.485 2.787
30 0.683 1.310 1.697 2.457 2.750
40 0.681 1.303 1.684 2.423 2.704
50 0.679 1.299 1.676 2.403 2.678
60 0.697 1.296 1.671 2.390 2.660
70 0.678 1.294 1.667 2.381 2.648
80 0.678 1.292 1.664 2.374 2.639

100 0.677 1.290 1.660 2.364 2.626

∞ 0.674 1.282 1.645 2.326 2.576
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Units
Definitions SI basic units

SI: Système International d’Unités

Source http://physics.nist.gov/cuu/Units

length: meter (m) length of the path traveled by light in vacuum during
1/299 792 458 second (1983).

mass: kilogram (kg) mass of the international prototype of the kilogram
(1901).

time: second (s) duration of 9 192 631 770 periods of the transition between
two hyperfine levels of the ground state of the cesium-133 atom (1967).

current: ampere (A) current in two infinitely long and thin straight parallel
conductors, placed 1 meter apart in vacuum, that exert a force on each other
of 2 × 10−7 newton per meter length (1948).

thermodynamic temperature: kelvin (K) fraction 1/273.16 of the thermody-
namic temperature of the triple point of water (1967).

amount of substance: mol (mol) amount of substance which contains as
many elementary entities as there are atoms in 0.012 kg of carbon 12. The
entities (atoms, molecules, ions, electrons, etc.) must be specified (1971).

luminous intensity: candela (cd) radiant intensity of a source that emits
monochromatic radiation of frequency 540 × 1012 Hz in a given direction,
with intensity of 1/683 W/sr (watt per steradian) (1979).

10−1 deci d 10−2 centi c 10−3 milli m
10−6 micro µ 10−9 nano n 10−12 pico p
10−15 femto f 10−18 atto a 10−21 zepto z
10−24 yocto y

101 deca da 102 hecto h 103 kilo k
106 mega M 109 giga G 1012 Tera T
1015 peta P 1018 exa E 1021 zetta Z
1024 yotta Y
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Units
Derived SI units

plane angle (circle: 2π) α, . . . radian rad
solid angle (sphere: 4π) ω, : steradian sr
area A, S m2

volume V m3

frequency ν hertz Hz = s−1

linear momentum p kg m s−1

angular momentum L, J kg m2s−1

specific mass ρ kg/m3

moment of inertia I kg m2

force F newton N = kg m s−2

torque M N m
pressure p, P pascal Pa = N/m2

viscosity η N s m−2 =
kg m−1s−1

energy E, w joule J = N m =
kg m2s−2

power P watt W = J/s
charge q, Q coulomb C = A s
electric potential V , + volt V = J/C
electric field E V/m
dielectric displacement D C/m2

capacity C farad F = C/V
resistance R ohm : = V/A
specific resistance ρ : m
conductance G siemens S = :−1

specific conductance σ , κ S/m
inductance L henry H = Wb/A
magnetic flux + weber Wb = V s
magnetic field H A/m
magnetic flux density B tesla T = Wb/m2

luminous flux + lumen lm = cd.sr
illuminance I lux lx = lm/m2

activity (radionuclide) A becquerel Bq = s−1

absorbed dosis D gray Gy = J/kg
dose equivalent H sievert Sv = J/kg
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Units

Non-SI units (incl. British, US) (see also atomic units on p. 5)

length: fermi (fm) = 10−15 m; Ångstrom (Å) = 10−10 m; mil (mil) =
0.001 in; inch (in) = 2.54 cm (exact); foot (ft) = 12 in = 0.304 8 m; yard
(yd) = 3 ft = 0.914 4 m; fathom = 6 ft = 1.828 8 m; cable = 720 ft =
185.2 m; (statute) mile = 1760 yd = 1609.34 m; nautical mile (nm) =
1852 m; astronomical unit (AU) = 1.495 978 70 ×1011 m; light year (Ly)
= 9.4605×1015 m; parsec (pc) = 3.086×1016 m.

area: barn (b) = 10−28 m2 = 100 fm2; are (a) = 100 m2; hectare (ha) =
104 m2; acre = 4840 sq. yd = 4046.87 m2; sq. mile = 640 acres = 2.59 km2.

volume: Br. fluid ounce fl oz) = 28.41 cm3; US fl. oz = 29.572 9 cm3;
US liq. pint = 16 US fl. oz = 473.2 cm3; Br. pint (pt) = 20 Br. fl. oz =
568.2 cm3; US liq. quart = 2 US liq. pt = 946.3 cm3; liter (l) = 1 dm3;
Br. quart (qt) = 2 Br. pt = 1.136 dm3; US gallon = 4 US liq. qt = 231 in3

= 3.785 4 dm3; (Br.) imperial gallon (gal) = 4 Br. qt = 4.546 dm3; bushel
= 8 imp. gal; barrel = 42 US gal.; ton = 1 m3; register ton = 100 ft3 =
2.83 m3.

mass: u (unified atomic mass unit) = 1.660 538 782(83) ×10−27 kg;
grain avdp (gr) = 64.79891 mg (exact); (Br.) drachme = (US) dram =
60 gr = 3.887 934 6 g; ounce avdp (oz) = 28.349 527 g (exact); troy ounce
(apothecary ounce) = 480 gr = 31.103 4768 g; pound avoirdupois (lb) =
16 oz = 7000 grain = 0.453 592 37 kg (exact); (Br.) stone = 14 lbs = 6.35
kg; ton = 1000 kg.

time: minute (min) = 60 s; hour (h) = 3600 s.

temperature: t degree Celsius (◦C) = t + 273.15 K; f degree Fahrenheit
(◦F) = (f − 32) × 5/9 ◦C.

velocity: knot = nautical mile/h = 0.514 44 m/s.

force: dyne (dyn) = 10−5 N; poundforce (lbf) = 4.448 22 N; kilogramforce
(kgf) = 9.806 65 N (exact).
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Units

(non SI units, continued)

pressure: mm Hg (torr) = 101 325/760 Pa (exact) = 133.322 Pa;
pound per sq. inch (psi) = 6 894.76 Pa; technical atmosphere (at) =
kgf/cm2 = 98 066.5 Pa (exact); bar (bar) = 105 Pa; normal atmosphere
(atm) = 101 325 Pa (exact).

energy: hartree (Eh) = 4.359 743 94(22) ×10−18 J; erg (erg) = 10−7 J;
thermochemical calorie (calth) = 4.184 J; 15◦ calorie (cal15) = 4.1855 J;
Int. Table calorie (calIT ) = 4.1868 J; Br. thermal unit (Btu) = 1055.87 J;
kilowatt hour (kWh) = 3.6 MJ; ton coal equiv. (tse) = 29.3 GJ; ton oil
equiv. (toe) = 45.4 GJ; m3 natural gas (average, 0 ◦C, 1 atm) = 39.4 MJ.

power: horsepower (metric, PS) = 75 kgf m/s = 735.5 W; horsepower
(mechanical, hp) = 550 lbf ft/s = 745.7 W.

viscosity: poise (p) = g cm−1s−1 = 0.1 kg m−1s−1; kinematic viscosity:
stokes (St) = 10−4 m2/s

(radio)activity, dose: curie (Ci) = 3.7×1010 Bq; röntgen (R) =
2.58×10−4 C/kg; rad (rad, rd) = 0.01 Gy; rem (rem) = 0.01 Sv.

light: stilb (sb) = cd/cm2; phot (ph) = cd cm−2sr−1.

electrostatic units (esu): c.g.s. unit of charge
(g1/2cm3/2s−1), such that 4πε0 = 1 (dimensionless): charge: 10−9/
2.997 924 58 C; current: 10−9/2.99. . . A; dipole moment: 10−11/2.99. . . C m;
debye (D) = 10−18 esu = 10−29/2.99. . . C; el. pot.: 299.7. . . V; el. field:
2.99. . . × 104 V/m.

electromagnetic units (emu): c.g.s. unit of current (g1/2cm1/2s−1), such
that µ0/4π = 1 (dimensionless): current: abampere (abamp) = 10 A;
magn. field: oerstedt (Oe) = (1/4π) abamp/cm = 103/4π A/m; magn. flux
density (“induction”): gauss (G) = 10−4 T; magn. flux: maxwell (Mx) =
10−8 Wb.
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Units

Atomic units (a.u.)

The basic a.u. are the Bohr radius a0, the electron mass me, Dirac’s constant
! and the elementary charge e: me = 1 a.u., ! = 1 a.u., c = 1/α a.u.,
e = 1 a.u., 4πε0 = 1 a.u.

mass me = 9.109 382 15(45)×10−31 kg
length a0 = 5.291 772 0859(36)×10−11 m
charge e = 1.602 176 487(40)×10−19 C
time a0/(αc) = 2.418 884 326 505(16)×10−17 s

= (4πR∞c)−1

velocity αc = 2.187 691 2541(15)×106 m/s
energy !2/(mea2

0) = e2/(4πε0a0) = α2mc2

= 2R∞hc =
(hartree) Eh = 4.359 743 94(22)×10−18 J

= 2 625.312 93(13) kJ/mol
= 627.464 850(32) kcal/mol
= 27.211 383 86(68) eV

Molecular units

This is a consistent system of units for ‘molecular’quantities, useful for
molecular modeling and simulation. Coulomb forces have an electric fac-
tor coefficient f = 1/(4πε0): F = fq1q2/r2 (see table). The unit for f is
kJ mol−1 nm e−2.

mass u = 1.660 538 86(28)×10−27 kg
length nm = 10−9 m
time ps = 10−12 s
velocity nm/ps = 1000 m/s
energy kJ/mol = 1.660 538 86×10−21 J
force kJ mol−1 nm−1 = 1.660 538 86×10−12 N
pressure kJ mol−1 nm−3 = 1.660 538 86×105

= 16.605 3886 bar
charge e = 1.602 176 53(14)×10−19 C
electric factor f = 138.935 4574(14)
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acre, 217
AE, 217
ampere, 215
analysis of variance, 48
Angstrom, 217
ANOVA, see analysis of

variance
are, 217
array methods

Python code, 170
atmosphere, 218
atto, 215
avdp, 217
average

of data series, 57
standard uncertainty, 154

barn, 217
barrel, 217
Bayes, 112
Bayesian inference, 114
becquerel, 216
Bernouilli trial, 33
bias, 138
binomial

coefficient, 33
distribution, 32, 143
Python code, 173

bivariate normal distribution, 206
block average

method, 155
Python code, 195

bootstrap method, 65
Python code, 175

box and whisker display, 8
btu, 218

cable, 217
calibration, 78

correction, 80
table, 80

calorie, 218
candela, 215
Cauchy distribution, 43
cdf, see cumulative distribution
Celsius, 217
centi, 215
central limit theorem, 41, 148
central moments, 30
characteristic function, 31, 141
chi-squared distribution, 47

cdf, 199
data sheet, 199
equation, 199
moments, 199
Python code, 184
table, 200

chi-squared test, 95
combining uncertainties, 135
compass example, 80
complementary error function, 39
confidence interval, 11, 31

Student’s t-distribution, 60
confidence limit, 31
constants, see physical constants
contour

plot for chi-square, 103
python code, 184

convolution, 141
correlation coefficient, 135

between parameters, 99
between coordinates, 91
between parameters, 90

220
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correlation length, 59, 152, 154
coulomb, 216
covariance, 135
covariance matrix, 99, 161

of parameters, 163
Python code, 187

criterion
one-sided, 64
two-sided, 64

cumulative distribution
function (cdf), 31, 32
of data, 54
Python code, 171

curie, 218

data
average, 8, 57
correlation length, 59
cumulative distribution, 54
distribution function, 54
graphical presentation, 71
histogram, 54
mean squared deviation, 8, 57
processing, 53
properties, 6
root-mean-squared deviation, 8

debye, 218
deca, 215
deci, 215
decile, 31
decimal separator, 9
degrees of freedom

chi-squared test, 96
Student’s t-distribution, 60

density function, 27
derived SI units, 216
deviation

systematic, 18
direct probability, see probability
discrete probability distribution, 27
distribution

cumulative of data, 54
distribution functions, see

probability distributions
binomial, 143
multinomial, 144

drachme, 217
dyne, 217

Eadie–Hofstee plot, 75
ellipsoid for chi-square, 164
enzyme kinetics, 75
epistemic probability, see

probability
erf, see error function
erfc, see complementary error

function
erg, 218
error, see inaccuracy
error function, 39
error propagation

in functions, 21, 136
in products, 21, 136
in sums, 21, 135
Monte Carlo, 23
with covariances, 22, 136

error sum of squares,
48, 106

errors
classification, 18
random, 19
systematic, 18, 138
truncation, 58

estimate
best fit parameters, 88
excess, 60
mean, 58
minimal variance, 158
rank-based, 64
robust, 63
sign-based, 64
skewness, 60
standard deviation, 58
unbiased, 162
variance, 58, 151
variance of the mean, 154

esu, 218
exa, 215
excess, 30

estimate, 60
expectation, 29
expected value, see

expectation
experimental design, 48
explanatory variable, 87
exponential distribution, 45
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F-distribution, 47
data sheet, 201
pdf and cdf, 201
Python code, 193
reflexive relation, 201
table, 202
use in ANOVA, 201

F-ratio, 48
F-test

on ANOVA, 49
on functional fit, 106

factorial design, 48
Fahrenheit, 217
farad, 216
fathom, 217
femto, 215
fermi, 217
fit, see least-squares fit
fit (Python code), 189
fl.oz., 217
foot, 217
Fourier transform

Python code, 194
functions

fit to data, 84
linearization, 73

FWHH, 43

gallon, 217
Gauss, 218
Gauss function, 37, 205
giga, 215
grain, 217
gray, 216

Hanes plot, 75
hartree, 219
hazard function, 45
hecto, 215
henry, 216
histogram, 54

python code, 169
horse power, 218

inaccuracy
absolute, 10
graphical estimate, 77
relative, 10

inch, 217
indicator function, 54
inverse probability, see probability
inverse survival function, 32
isf, see inverse survival function

jackknife procedure, 155
joule, 216

kelvin, 215
kgforce, 217
kilo, 215
kilogram, 215
kurtosis, 30
kWh, 218

least-squares fit, 72, 84, 160
accuracies, 98
best parameter estimates, 88
correlation coefficient, 204
covariances, 99
data sheet, 203
general, 92
general equations, 203
harmonics, Python code, 182
linear parameters a,b, 160
linear regression, 87, 161, 204
nonlinear, 93, 165
nonlinear example, 93
parameter covariances, 163, 203
Python program, 189
residuals, 85
sum of square deviations, 161
uncertainties parameters, 89
uncertainty in x, 88
urease, python code, 183
variances, 89

lifetime distributions, 45
likelihood, 86, 163
linear regression, 87, 161

uncertain x, 88
linearization of functions, 73
Lineweaver–Burk plot, 75
liter, 217
log plot

Python code, 172
log-normal distribution, 42
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Lorentz distribution, 43
lumen, 216
lux, 216

marginal distribution, 118
mass function, 27
matrix notation, 160
maxwell, 218
mean, 11, 29

estimate, 58
mean squared deviation, 57
median, 8, 11, 31
mega, 215
meter, 215
Michaelis–Menten kinetics, 75
micro, 215
mil, 217
mile, 217
milli, 215
minimal variance estimate, 158
mm Hg, 218
mode, 11
mol, 215
molar, 14
mole, 14
moment, 30
moment-generating function, 141
Monte Carlo

methods, 23
Python code, 173

msd, see mean squared deviation
multinomial distribution, 36, 144
multivariate normal distribution,

206

nautical mile, 217
newton, 216
non-SI units, 217
nonlinear fit, see least-squares fit
normal distribution, 37

bivariate, 206
characteristic function, 205
data sheet, 205
moments, 205
multivariate, 206
one-sided excess table, 208
standardized, 38

table, 205
two-sided excess table, 207

oerstedt, 218
ohm, 216
one-sided criterion, 64
ounce, 217
outliers, 63

parsec, 217
pascal, 216
pdf, see probability density

function
percentile, 8, 31
percentiles

python code, 172
peta, 215
phot, 218
physical constants

accuracies, 210
data sheet, 209
Python code, 170
table of values, 209, 210

physical probability, see
probability

pico, 215
pint, 217
pmf, 27, see probability
poise, 218
Poisson distribution, 36, 146

mean and variance, 36
population statistics, 46
posterior probability, 113
pound, 217
poundforce, 217
prior probability, 114
probability

density function, 27
direct, 111
epistemic, 111
inverse, 111
mass function, 27
physical, 111
posterior, 113
prior, 114
subjective, 111

probability density
function, 32
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probability distributions, 27
binomial, 32, 143
bivariate, 212
Cauchy, 43
cdf, 212
central moment, 30
characteristic function, 31, 141
characteristic functions, 211
chi-squared, 47
continuous, 27
cumulative, 31
data sheet, 211
discrete, 27
excess, 30
expectation, 211
exponential, 45
F-distribution, 47, 201
from Poisson to normal, 146
hazard function, 45
kurtosis, 30
life time, 45
log-normal, 42
Lorentz, 43
moment, 30
multinomial, 36
normal, 37, 205
normalization, 29
Poisson, 36, 146
properties, 29
skewness, 30
Student’s t-distribution, 47, 213
survival function, 212
Weibull, 47

probability function
meaning of, 32

probability paper, 40
probability scale, 40
propagation, see error propagation
propagation of errors, 19
propagation of uncertainties, 20
Python

array methods, 170
binomial functions, 173
block average, 195
bootstrap method, 175
chi-squared cdf, 184
covariance from B matrix, 187
covariance matrix, 187

cumulative distributions, 171
F-distribution, 193
generate contour, 184
harmonic fit, 182
histogram, 169
instructions for use, 169
logarithmic plot, 172
Monte Carlo, 173
nonlinear fit, 183
pdf by Fourier transform, 194
percentiles, 172
physical constants, 170
plotsvg, 169
program “fit”, 189
program “report”, 176
Weibull distributions, 174

quart, 217
quartile, 8, 31

röntgen, 218
rad, 218
random errors, 19
rank-based estimates, 64
rank-based methods, 63
regression

linear, 87
regression sum of squares, 48, 106
rem, 218
report (Python code), 176
residuals, 85
rms, see root-mean-squared

deviation
rms deviation, 30
rms error, see rms deviation
robust estimates, 63
root-mean-squared deviation, 57
rounding numbers, 10

s.d., see standard deviation
second, 215
separator

decimal, 9
sf, see survival function
SI units

basic, 215
derived, 216
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siemens, 216
sievert, 216
sign-based estimates, 64
significant deviation, 41
significant figures, 9
skewness, 30

estimate, 60
Snedecor, see F-distribution
SSE, see error sum of squares
SSQ, see sum of square deviations
SSR, see regression sum of squares
SST, see total sum of squares
standard deviation, 30

accuracy, 60, 157
estimate, 58
of fitted parameters, 99

standard error, see standard
uncertainty

standard uncertainty, 30
statistical weights, see weights
stilb, 218
stokes, 218
stone, 217
Student’s t-distribution,

47, 60
cdf table, 214
data sheet, 213
equation, 213
moments, 213

sufficient statistics, 116
sum of square deviations, 161
survival function, 32
systematic errors, 18, 138

exponential function, 138

t distribution, see Student’s
t-distribution

tera, 215
tesla, 216
ton, 217
torr, 218
total sum of squares, 106
trace of a matrix, 160
transpose of a matrix, 160
truncation error, 58

two-sided criterion, 64
typographical conventions, 14

uncertainties
combining, 135
propagation, 20
random, 19
systematic, 22

units
atomic, 219
basic SI units, 215
data sheet, 215
derived SI, 216
molar, 14
mole, 14
molecular, 219
non-SI, 13, 217, 218
prefixes, 215
SI, 13

variance, 30
accuracy, 157
estimate, 58, 151
estimate with correlation, 152
estimate without correlation,

151
of the mean, 154

watt, 216
weber, 216
Weibull distribution, 47

Python code, 174
weights

average, 158
unequal, 61, 158
weight factor, 62
weighted average, 62
weighted inaccuracy, 62

yard, 217
yocto, 215
yotta, 215

zepto, 215
zetta, 215
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