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ABSTRACT

Retinal images are used for diagnostic purposes by ophthalmologists. However, despite controlled conditions in
acquisition retinal images often suffer from non-uniform illumination which hinder their clinical use. In this work
we propose the compensation of the illumination by modeling the intensity as a sum of non-stationary signals
using bidimensional empirical mode decomposition (BEMD). We compare the estimation and compensation of
the background illumination with a widely used technique based retinal image pixel classification. The proposed
method has shown to provide a better estimation of the background illumination, particularly in complicated
areas such as the optic disk (usually bright) and the periphery of fundus images (usually dim).

Keywords: Medical image, retinal image, illumination compensation, empirical mode decomposition, fundus
photography, ophthalmology, image enhancement.

1. INTRODUCTION

Eye fundus photography documents the retina and is central to the clinical care and management of patients with
retinal diseases. It is widely used for population-based, large scale detection of diabetic retinopathy, glaucoma,
age-related macular degeneration, and other eye-related diseases.1 Retinal images, with typical angle of view of
30◦, are acquired with a digital fundus camera which captures the illumination reflected from the retinal surface.
Despite controlled conditions, many retinal images suffer from non-uniform illumination caused by several factors;
e.g., the curved surface of the retina, pupil dilation (highly variable among patients), the presence of diseases,
among others.2 Generally, the curved retinal surface and the geometrical configuration of the light source and
camera lead to a poorly illuminated peripheral part of the retina with respect to the central region. A retinal
image with uneven illumination is shown in Figure 1(a). Note how the periphery is poorly illuminated.

Several techniques have been used to enhance retinal images. Histogram equalization has been shown to be
inappropriate for retinal images.3 A local normalization of each pixel to zero mean and unit variance aims to
compensate lighting variation and enhance local contrast but also introduces artifacts.3 Histogram matching
between the red and green planes has been used as a preprocessing step for vessel segmentation.4 This improves
the contrast of gross dark features like vessels but reduces the contrast of bright objects and tiny dark objects
like micro-aneurysms. While most of the aforementioned methods are motivated by automated analysis as
a preprocessing stage, they are all formulated without domain knowledge of the characteristics of the retinal
image, and several despite increasing contrast and overall brightness introduce artifacts.

In order to compensate the non-uniform illumination of retinal images the illumination distribution has to be
estimated properly. However, this is not straightforward since the retina has several elements like the blood vessels
or the optic disc which have different luminosity properties. Thus, a proper illumination compensation approach
should take this into account. Illumination compensation is important not only for visualization purposes, but
also often included in the pipeline of algorithms for automated digital image analysis,6,7 for disease detection,8

for image restoration or deconvolution,9 and longitudinal change detection.10
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Figure 1. (a) Original retinal image with non-uniform illumination. Note that the illumination is worse toward the
periphery of the image. (b) Intensity profile from image (dashed line in (a)) that goes across the optic disc. (c) Background
illumination estimation with EMD. (d) Background illumination estimation from Ref. 5.

2. MOTIVATION AND RELATED WORKS

The work of Foracchia et al.5 was one of the first to propose a strategy that allowed the estimation of the
background luminosity distribution solely from the background pixels of the retinal image. Their method separates
the image into background and foreground planes using a windowing approach. The blood vessels and the optic
disc belong to the foreground. This is a valid assumption as long as the classification of pixels is correct. If
the pixels from the optic disc are classified as belonging to the background the illumination distribution is not
estimated properly. This has been pointed out by Marrugo and Millán,11 and recently in Ref. 8.

The work of Foracchia et al.5 introduced a strategy for luminosity and contrast enhancement on each color
plane of the RGB color space, independently. This approach often produced hue-shifting related artifacts, given
by the introduction of new colors to the image. Joshi et al.,12 proposed a strategy that would avoid the color
artifacts by performing the enhancement on single color plane to compensate equally every channel and ultimately
perform linear color remapping. In this paper we work directly with the green channel of the RGB fundus image
because it provides the best contrast.9 This is mainly due to the spectral absorption of the blood in this band,
which yields the dark and well contrasted blood vessels.13 We also work with intensity fundus images like in the
case of a retinal angiography as shown in Figure 5.

If we take an intensity profile along a row of the retinal image, like the one corresponding to the dashed line
of Figure 1(a) and shown in Figure 1(b), we notice that the optic disc is a bright region that does not have the
same properties or image statistics of the rest of the image. Moreover, the approach of Foracchia et al.5 uses
the Mahalanobis distance to determine whether a pixel belongs to the background by using a fixed threshold.
Akram et al.8 determined that a fixed threshold is not efficient due to the large variability of illumination and
contrast in intra/inter image. This problem has been typically circumvented with additional stages of processing
to better classify background pixels.14,15 In this paper we take a different approach by modeling the intensity
profile as a sum of non-stationary signals using empirical mode decomposition (EMD).16

In Figure 1(d) we show the background estimation from the profile in Figure 1(b) following the method of
Foracchia et al.5 On the one hand, note that while the profile follows the same general tendency of the original
profile, the region sorrounding the optic disc (the peak of the profile) is not smooth enough as it would be
expected if only non-uniform illumination effects were involved. On the other hand, the profile in Figure 1(c)
was obtained by EMD and it is much smoother around the optic disc.
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3. BIDIMENSIONAL EMPIRICAL MODE DECOMPOSITION (BEMD)

BEMD is a two-dimensional (2-D) extension of the classical EMD.17 The EMD method is a sifting process
that decomposes any complex signal into a finite, and often small, number of components called intrinsic mode
functions (IMFs). An IMF represents a simple oscillatory mode with the same number of extrema and zero
crossings, with its envelopes being symmetric with respect to zero.

In BEMD an image I(x, y) is decomposed into multiple IMFs by the following sifting process:

1. Initialization: set S(x, y) = I(x, y).

2. Identify all local maxima and local minima of S(x, y).

3. Interpolate the local maxima (resp. minima) to obtain the upper envelope emax(x, y) (resp. lower envelope
emin(x, y)).

4. Compute the mean envelope m(x, y) = [emax + emin] /2.

5. Compute S′(x, y) = S(x, y) −m(x, y).

6. Update S(x, y) by S′(x, y).

Repeat steps 1 to 5 until the stopping criterion is met, in this case by limiting the size of the standard devia-
tion (SD) computed from two consecutive sifting iteration results as

SD =

∑
x

∑
y [S′(x, y) − S(x, y)]

2∑
x

∑
y [S(x, y)]

2 . (1)

This sifting process stops if SD is less than a threshold. The resulting S′(x, y), denoted by c1(x, y), is considered
as the first IMF which represents the fast fluctuating component of the image. The residue r1(x, y) = I(x, y) −
c1(x, y) is a slower fluctuating signal, which is treated as the new input, i.e. S(x, y) = r1(x, y). The same sifting
is then applied to the new input to extract the next IMF and produce the next residue. This iteration is carried
out n times until no more IMFs can be extracted. Consequently, the original image can be obtained by:

I(x, y) =

n∑
j=1

cj(x, y) + rn(x, y) . (2)

The decomposition by sifting process of an image provides a representation that is easy to interpret. In
Figure 2 we show the EMD decomposition of the intensity profile from Figure 1(b). Note that the first IMF
has all the local space-varying high frequency content from the original signal. The other IMFs contain smaller
frequencies up to the residue which represents the smoothest variations in the image.

4. ILLUMINATION COMPENSATION BY BEMD

In this paper we propose the use of BEMD to accurately estimate the illumination distribution of retinal images.
BEMD has the advantage that it decomposes the image in a nonlinear way into IMFs. The first IMS contains the
highest spatial frequencies, the other IMFs contain frequencies progressively smaller and the residue represents
low-frequency information in the source image.

After decomposing the image into IMFs, the residue contains the smoothest transitions in the image. We
can model these as the changes in illumination. In this way, because the residue also has the dc content of the
original image, we can proceed to compensate the illumination in the retinal image by subtracting the residue
from the original image.
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Figure 2. Empirical Mode Decomposition of the intensity profile plotted in Figure. 1(b).

4.1 Implementation

The BEMD algorithm was developed in MATLAB. To carry out a fast sifting procedure the algorithm searches
for the maxima and minima by rows, columns, and diagonals. To compute the lower and upper envelopes it
estimates a 2D surface on a 2D grid based on the scattered data from the local minima and maxima using the
code from Ref. 18. The 2D surface estimation is not an interpolation, instead it is a regularized estimation in a
least squares adjustment that smoothens the surface by keeping the surface gradients as small as possible. The
stopping threshold for the sifting process was set at SD ≤ 0.2.

Despite our fast maxima/minima search, the surface fitting algorithm takes considerable time to compute.
To this end, we estimated the residue on a low-resolution version of the original image (512 × 512). This
approximation does not introduce much error in the estimation because illumination variations are smooth
and preserved through subsampling. We scaled back the residue to the original resolution and perform the
compensation. The typical execution time for a retinal image of 2000× 1500 pixels on MATLAB R2014 running
on a PC with a core i5 processor and 8 GB of RAM is 3 minutes.

5. EXPERIMENTS AND RESULTS

We performed several experiments on naturally degraded images coming from the clinical practice to illustrate
the appropriateness of the method. The proposed method has been tested on a dataset of 20 images with reliable
results. In this section we show two typical examples of retinal images degraded with uneven illumination and
their compensation.

For the purpose of illustration in Figure 3 we show the compensation of the non-uniform illumination in 1D
from the intensity profile from Figure 1(b) using the compensation by BEMD (Figure 3(b)) and following the
approach in Ref. 5 (Figure 3(c)). Note how the profile in the optic disc region is highly distorted in Figure 3(c)
when compared to the original profile. However, the illumination distribution is indeed much more uniform. The
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Figure 3. Compensation of non-uniform illumination. (a) Original intensity profile. (b) Compensation by EMD. (c) Com-
pensation following Ref. 5

compensation shown in Figure 3(b) distorts less the optic disc region and has a uniform illumination distribution,
represented in a more flat profile.

In Figure 4(b) we show the compensated retinal image of Figure 1(a) using the method from Ref. 5. Note how
the peripheral illumination has not been compensated properly. This is due to an incorrect pixel classification.
If the area surrounding the optic disc alters the classification, then the background illumination estimation fails.
In contrast, the compensated image by BEMD shown in Figure 4(a) has been significantly enhanced with a
uniform illumination distribution. In Figures 4(c)(d) we show the background illumination estimation from
each corresponding method. In Figure 4(c) we note that it represents the smooth changes in the image while
maintaining the local nature of the illumination distribution. The other estimation fails to reproduce the local
variation.

A second example is given in Figure 5 where we show the compensation of a retinal angiography. The
illumination is uniform and the blood vessels can be better appreciated in the compensated image along with
other retinal features.

6. CONCLUSIONS

In this work we have presented a method for the estimation and compensation of the non-uniform illumination in
retinal images by means of the bidimensional empirical mode decomposition. The method has shown to provide
a better estimation of the background than related works, particularly in complicated areas such as the optic disk
(usually bright) and the periphery of fundus images (usually dim). Two examples consisting of a fundus image
and an angiography have been taken to design and illustrate the application of the method. Some improvement
to speed up the computation is recommendable before its application to clinical studies.
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Figure 4. Illumination estimation and compensation for retinal image in Figure 1(a). Compensated retinal image by
(a) BEMD and (b) following Ref. 5 (c) Background illumination estimation with BEMD. (d) Background illumination
estimation from Ref. 5.

(a)

Figure 5. (a) A retinal angiography with non-uniform illumination. (b) Compensated image by BEMD.
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