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ABSTRACT: 

Retinal fundus cameras suffer from dust particles attaching to the sensor and lens, which manifest as 
small artifacts on the images. We propose a new strategy for the detection and removal of dust particle 
artifacts in retinal images. We consider as input two or more color fundus images acquired within the 
same session, in which we assume the artifacts remain in the same position. Our method consists in 
detecting candidate artifacts via normalized cross correlation with an artifact template, performing 
segmentation via region growing, and comparing the segmentations in all images. This guarantees that 
all detections are consistent for all images. The removal stage consists in an inpainting procedure so 
that the new region does not stand out from the neighboring regions. Encouraging experimental 
results show the localization of artifacts is effective and the artifacts are successfully removed, while 
not introducing new artifacts in the color retinal images. 
Key words: dust particle artifacts, retinal image, inpainting, artifact localization, retinal image 

enhancement. 

RESUMEN: 

Las cámaras de fondo de ojo sufren de partículas de polvo que se adhieren al sensor y la lente. Éstas 
aparecen en las imágenes como pequeños artefactos. En este trabajo proponemos una nueva estrategia 
para la detección y eliminación de artefactos en imágenes de fondo ojo producidos por partículas de 
polvo. Se consideran como entrada dos o más imágenes de fondo de ojo a color adquiridas en la misma 
sesión; se asume que los artefactos no cambian de posición. El método propuesto consiste en la 
detección de artefactos mediante la correlación cruzada normalizada con una plantilla de artefactos, 
realizar la segmentación por crecimiento de regiones y comparar las segmentaciones en todas las 
imágenes. Esto garantiza que las detecciones sean consistentes para todas las imágenes. La etapa de 
eliminación consiste en un procedimiento de inpainting de tal manera que la nueva región no resalte 
respecto de las regiones vecinas. Los resultados experimentales han sido satisfactorios en los cuales 
se muestra que la localización de artefactos es efectiva y los artefactos se eliminan satisfactoriamente 
sin introducir nuevos artefactos en las imágenes retinianas a color. 
Palabras clave: imagen retiniana, artefactos en imágenes, detección de artefactos, eliminación de 

artefactos. 
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1. Introduction 
Retinal images are a useful tool for medical diagnosis since many diseases, not just ocular ones, are 
manifested in the retina by signs or anomalies [1]. Retinal fundus cameras, just like any imaging device 
suffer from dust particles attaching to the sensor and lens. These particles manifest as small artifacts or 
blemishes on the images, which may hinder its diagnostic purpose. For example, these artifacts can be 
mistaken as small lesions, such as micro-aneurysms. 

Sensor and lens dust are a common problem in digital photography. The dust particles (including atomized 
liquid stains) accumulate and block incoming light to the sensor. They produce image artifacts that typically 
appear as dark spots on the image. These artifacts and those produced by defective pixels in an image 
sensor, the so-called dead pixels, have similar effects. Since these defective pixels are permanent, some 
manufacturers provide their cameras with image processing algorithms such as the nearest neighbor 
algorithm applied to analog and digital video for bad pixel remapping. The problem with dust becomes more 
serious because it is unavoidable in common clinical practice and accumulative. This alteration of the 
captured image, in particular in retinal images, is critical to their clinical value. Sensor cleaning is possible, 
but not often done because it requires professional assistance and time lapses of inactivity. Therefore, many 
images are usually acquired before the sensor is cleaned or the technician notices the artifacts.  

The effect of dust particles in imaging has been described by Wilson et al. [2] but their work mainly 
addresses the modeling of the dust particles attaching to the lens and not their detection or removal. Zhou 
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and Lin [3], propose a dust artifact formation model and a detection and removal approach based on an 
optimization scheme. They assume that the dust particle is made of a single material, its projection onto the 
sensor should appear approximately monochromatic, and it should have color properties different than the 
surrounding region. Despite the fact that they succeed in detecting the majority of artifacts in their tests, 
their approach is mostly applicable to natural scenes.  

Artifact detection in retinal images has been mostly oriented toward imaging artifacts such as flash 
flares [4], image quality verification [5]-[7] or as a previous stage for automated diabetic retinopathy 
screening [8]. However, the detection and removal of image artifacts from sensor dust in retinal images has 
not been studied extensively. More recently several works for dust particle image artifact detection in video 
sequences have been proposed on the assumption that the scene changes in time but not the location of the 
artifacts [9], [10]. Our approach is based on this idea of several input images and the artifacts remaining in 
approximately the same location. 

 
Fig.1. Block diagram illustrating the proposed method. Ii are the input images, I'i are their restored versions. The other variables are 

intermediate outputs of every stage; their meaning is given in the text. 
 

1.a. Overview of the proposed approach 
In this paper we propose a new strategy for the detection and removal of dust particle artifacts in retinal 
images [11]. We assume that the image artifacts do not change position within several acquisitions taken 
from a given patient during their visit, for instance the first acquisition corresponding to the left eye fundus 
and the second acquisition to the right eye fundus. Hence, we can formulate an approach that compares 
detection based on two or more images. Furthermore, because of the medical importance of the images, it 
is desirable to have a low false-positive rate. In other words, the algorithm should not detect artifacts that 
are not actually artifacts. A micro-aneurysm by no means should be detected as an artifact. In this regard, 
the algorithm should be highly specific in not altering regions void from artifacts. With the use of two or 
more images for comparing detection results, the algorithm is less prone to false detections. 

An overview of the proposed approach is described in Fig. 1. We consider as input two or more color fundus 
images acquired with a conventional fundus camera within the same session, typically left and right eye 
fundus from the same patient. The images have artifacts produced from dust particles in the sensor. These 
are approximately in the same location in the image. Therefore, the first stage is to detect candidate artifacts 
and obtain their coordinates, which are stored in the matrix X. The second stage consists in segmenting 
these candidate artifacts, which is carried out via region growing and comparing the segmentations with a 
conjunction or logical AND operation. This guarantees that all detections are consistent throughout all 
images [12]-[14]. The segmentation output is a binary matrix M with ones in every pixel corresponding to 
a detected artifact and zeros elsewhere. Finally, the removal of the image artifacts is carried out by an 
inpainting procedure, which consists in smoothly interpolating from the boundaries of the artifact in such 
a way that the new region does not stand out from the neighboring regions, i.e. no new artifacts are 
introduced. This does not mean that the inpainted area would be replaced by the corresponding part of the 
ideal image. We must be aware that it would remain as part of the problem uncertainty, but at least, this 
part would appear camouflaged by the surrounding area and would not convey misleading information that 
could be mistakenly interpreted.  
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Fig.2.	(a)	and	(c)	color	retinal	images	taken	from	the	same	patient,	one	of	each	eye.	(b)	and	(d)	zoomed	regions	of	(a)	and	(c)	

respectively,	where	presence	of	artifacts	is	observed.	

	
2.	Description	of	the	Method	
In	this	section,	we	describe	every	stage	of	the	proposed	method.	To	illustrate	each	stage	we	use	the	images	

shown	in	Fig.	2.	These	correspond	to	two	images	from	the	same	patient	acquired	at	the	same	session	but	

from	different	eyes,	therefore	they	are	different	images.	However,	notice	how	the	artifacts	(dark	spots)	are	

approximately	in	the	same	position,	regardless	of	the	image	content.	They	are	color	RGB	24	bit-depth	fundus	

images	of	size	2784x1846	digitized	in	JPEG	format.	The	localization	and	segmentation	stages	are	carried-

out	processing	 the	 images	 in	gray-scale	 (a	weighted	sum	of	 the	R,	G,	B	components),	but	 the	 inpainting	

procedure	and	final	output	images	are	in	color.	

2.a.	Localization	
Localization	of	artifacts	in	images	may	be	regarded	as	a	blob	detection	task,	common	in	pattern	recognition,	

in	 that	 several	 elements	 of	 the	 images	 have	 a	 similar	 structure	 and	 need	 to	 be	 located	 and	 possibly	

segmented	[15].	A	common	approach	to	blob	detection	in	pattern	recognition	is	template	matching	via	cross	

correlation.	This	operation	determines	the	position	of	a	given	template	t	 in	an	image	f	by	calculating	the	
similarity	of	the	template	to	all	points	within	the	image.	Cross-correlation	is	calculated	as	[16]	

	
(1)	

The	cross-correlation	achieves	a	maximum	value	 in	 the	positions	where	 the	 template	exactly	matches	a	

region	in	f.	However,	cross	correlation	has	a	clear	disadvantage.	If	the	image	energy	varies	with	position,	
the	 correlation	between	 the	 template	 and	 a	bright	 area	will	 give	 a	high	 value	 as	 result	 [16].	 Therefore,	

template	matching	using	equation	(1)	often	fails.	The	problem	can	be	overcome	by	normalizing	both	the	

image	and	the	template.	This	leads	to	the	normalized	cross-correlation	(NCC)	[16]	

	

(2)	

where	!	 is	the	mean	of	the	template	!	and	"	 is	the	mean	of	"	 in	the	region	under	the	template.	The	NCC	
returns	values	in	the	interval	[−1,	1]	where	1	means	highest	correlation.	To	localize	the	blobs	we	used	the	

NCC,	given	by	equation	(2),	of	the	images	with	an	artifact	template.	As	is	often	done	for	optic	nerve	head	

c(u,v) = f (x, y)t(x −u, y− v)
x,y
∑  .  

γ (u,v) =
f (x, y)t(x −u, y− v)

x,y
∑

[ f (x, y)− fu,v ]
2 [t(x −u, y− v)− t ]2

x,y
∑

x,y
∑

 ,
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loalization	 [17],	 we	 built	 the	 template	 by	 manually	 segmenting	 four	 artifacts	 chosen	 arbitrarily	 and	

averaging	them	(Fig.	3).	

Template	matching	does	not	imply	perfect	correlation,	therefore	we	threshold	the	NCC	output	at	90%	of	

the	maximum	value	to	identify	the	regions	where	the	template	best	matches	the	image.	To	identify	local	

maxima,	we	perform	non-maximum	suppression	[18]	to	obtain	the	candidate	artifacts	coordinates.	

In	Fig.	4	we	show	the	procedure	of	applying	the	normalized	cross-correlation	between	two	input	images	

and	 the	 artifact	 template.	 The	 coordinates	 of	 the	 candidate	 artifacts	 obtained	 via	 non-maximum	

suppression	are	stored	in	matrix	Xi,	for	the	i-th	retinal	image.	The	blob	detections	for	the	images	of	Fig.	2	
are	shown	in	Fig.	5.	In	Fig.	5(a),	we	show	the	actual	artifacts	marked	with	arrows	(ground	truth).	In	Fig.	5(b)	

we	show	the	blob	detection	results,	which	are	shown	in	green	for	the	true	positives	and	in	blue	for	the	false	

positives.	When	compared	with	the	actual	artifacts,	notice	how	we	are	able	to	successfully	detect	the	most	

salient	artifacts,	while	the	missed	artifacts	are	smaller	and	more	transparent.		

	

	

Fig.	3.	The	artifact	template	was	built	by	averaging	several	artifacts.	

	

	

Fig.4.	Flowchart	of	the	normalized	cross-correlation	process	for	localizing	candidate	artifacts	in	retinal	images.	

	

2.b.	Segmentation	
After	the	localization	stage,	the	artifacts	have	to	be	segmented	for	successful	removal.	For	the	segmentation	

procedure	we	use	a	region-growing	algorithm	[15].	The	region-growing	algorithm	starts	with	a	set	of	seed	

pixels,	 from	which	 regions	 are	 created.	 First	 of	 all,	 a	 seed	 pixel	 is	 chosen	 and	 it	 is	 compared	 with	 its	

neighboring	pixels.	Those	that	comply	with	predefined	criteria	of	growth	are	added	to	the	region.	The	region	

grows	by	adding	new	neighboring	pixels	that	are	similar	to	those	that	are	already	part	of	the	region.	When	

the	growth	of	the	region	stops,	the	algorithm	chooses	another	seed	pixel	that	does	not	belong	to	any	region	

and	starts	again.	The	algorithm	enforces	 the	 following	criteria	 to	add	a	pixel	 to	a	region:	 i)	 it	must	be	a	

neighbor	of	at	 least	one	pixel	 that	 is	already	part	of	 the	region	and	 ii)	 the	difference	of	 intensity	values	

between	the	two	pixels	must	not	exceed	a	set	threshold	[15].		
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We	apply	the	region-growing	algorithm	on	the	NCC	result.	The	coordinates	in	X	from	the	localization	stage	
are	 used	 as	 seeds.	 The	 result	 from	 the	 region-growing	 algorithm	 is	 a	 binary	 mask	 M.	 These	 masks	
correspond	to	the	blobs	detected	as	potential	artifacts	for	each	input	image	as	shown	in	Fig.	6.	

It	is	important	to	mention	that	false	alarms	or	false	positives	appear.	In	order	to	eliminate	them,	we	take	

into	account	that	the	artifacts	are	in	the	same	positions	in	all	the	images.	Therefore,	the	blobs	that	actually	

correspond	to	artifacts	should	be	present	in	every	mask	M	for	each	image.	These	masks	are	compared	by	a	
logic	AND	operation	in	order	to	eliminate	false	alarms.	The	resulting	mask	is	obtained	with	the	blobs	that	

are	common	to	all	input	images.	The	final	mask	is	dilated	with	a	circular	structuring	element	to	obtain	a	

slightly	 larger	 segmentation	 area	 for	 the	 following	 inpainting	 procedure	 [19].	 Notice	 that	 in	 the	 blob	

detection	shown	in	Fig.	5,	two	of	the	smallest	artifacts	are	correctly	detected	in	the	bottom	image	(Fig.	5(d)),	

but	because	they	are	not	detected	in	the	upper	image	they	will	not	classify	as	artifacts.	There	are	also	false	

positives,	which	are	eliminated	with	this	procedure.	

	

	

Fig.5.	Ground	truth:	(a)	and	(c)	show	the	images	of	Fig.	2	(b)	and	(d),	respectively,	with	arrows	pointing	out	the	actual	artifacts.	(b)	

and	(d)	show	the	NCC	output	for	potential	artifact	location,	green	dots	indicate	the	true	positives	and	blue	dots	the	false	positives.	

	

		

	

Fig.6.	Flowchart	to	obtain	the	mask	of	detected	artifacts.	
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Fig.7.	Image	region	considered	for	inpainting.	

	
2.c.	Inpainting	
The	problem	of	artifact	removal	or	inpainting	can	be	considered	as	follows:	given	an	image	I	and	a	region	Ω	
inside	it,	modify	the	values	of	Ω	from	the	surrounding	area	ΩE,	in	such	a	way	as	to	maintain	the	texture	and	
structure	of	the	surroundings	(Fig.	7).		

There	 are	 different	 ways	 to	 approach	 the	 problem	 of	 inpainting	 since	 it	 is	 a	 difficult	 problem	 and	 the	

formulation	depends	on	the	type	of	image	of	interest.	The	method	we	propose	here	is	based	on	a	discretized	

solution	of	the	Laplace	equation	with	boundary	conditions,	given	by		

	 (3)	

where	

	
(4)	

Operating	this	way	a	smooth	interpolation	is	obtained	along	the	region	of	interest,	allowing	us	to	obtain	a	

texture	similar	to	that	of	the	surrounding	region.	The	value	of	one	pixel	in	Ω	is	replaced	by	the	average	of	
the	north,	south,	east	and	west	neighbors	that	are	not	in	Ω.	This	operation	is	performed	from	the	edge	of	Ω	
towards	the	center,	without	changing	the	values	of	the	pixels	that	surround	the	region.	

The	artifact	masks	M	are	the	actual	inpainting	masks	used	to	perform	the	removal	of	artifacts.	An	important	
advantage	of	the	mask	M	is	that	it	can	be	further	used	for	removing	artifacts	in	all	images	that	were	acquired	
in	the	same	session	and	thus	have	the	same	artifacts	in	the	same	positions.	In	other	words,	the	mask	can	be	

built	from	a	few	images,	but	many	can	be	further	processed	with	the	resulting	mask.	

The	image	artifacts	are	removed	by	processing	the	image	in	sub-windows	centered	at	the	image	artifact	

coordinates.	This	makes	the	process	suitable	for	parallel	processing.	Since	the	input	images	are	RGB	color	

images,	the	inpainting	is	carried	out	in	each	color	channel	separately	to	reduce	color	artifacts	in	the	retinal	

image.	

	

3.	Results	and	Discussion	
In	this	section	we	show	the	experimental	results	obtained	from	restoring	real	retinal	fundus	images	affected	

with	dust	particle	artifacts.	We	carried	out	four	tests	of	retinal	image	pairs	that	made	a	total	of	eight	images	

to	check	the	performance	and	efficiency	of	the	algorithm.	

In	order	to	properly	show	the	results,	the	figures	show	only	the	region	of	the	retinal	images	affected	with	

artifacts.	 In	 Fig.	 8	we	 show	a	 successful	 detection	 and	 removal	 of	 all	 artifacts.	Notice	 the	quality	 of	 the	

restoration	in	which	the	inpainted	regions	are	not	noticeable.	In	Fig.	9	we	show	an	example	of	a	dark	region	

from	a	retinal	image	in	which	seven	out	of	the	eight	artifacts	were	successfully	detected	and	removed.	The	

artifact	at	the	bottom	of	the	image	was	not	detected.	The	proposed	algorithm	is	able	to	detect	and	remove	

artifacts	in	dark	areas	without	introducing	new	artifacts.	

Fig.	 10	 (a)	 shows	 an	 image	with	 six	 artifacts	 (ground	 truth).	 Most	 artifacts	 are	 correctly	 detected	 and	

removed	without	introducing	new	artifacts	(fig.	10b),	however	the	three	smallest	artifacts	with	low	contrast	

were	not	detected.	These	small	artifacts	with	 low	contrast	are	much	more	difficult	 to	detect.	Actually,	 it	

requires	a	trained	eye	to	identify	them	as	artifacts.	They	become	evident	when	comparing	several	images.	

∇2 f = 0 ,  

	
∇2 f = ∂

2 f
∂x2 +

∂2 f
∂y2  .
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The	code	was	 implemented	 in	MATLAB	on	a	PC	 running	windows	7	 Intel	 i5	8	GB	RAM.	Processing	 two	

2784x1846	color	retinal	images	takes	on	average	20	seconds.		

	

	

Fig.8.	(a)	image	window	with	detected	artifacts	prior	to	inpainting.	(b)	Result	after	inpainting.	

	

	
Fig.9.	(a)	image	window	with	detected	artifacts	prior	to	inpainting.	(b)	Result	after	inpainting.	

	

	

Fig.10.	(a)	image	window	with	detected	artifacts	prior	to	inpainting.	(b)	Result	after	inpainting.	
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4.	Conclusions	
In	this	work	we	proposed	a	method	for	detecting	and	removing	dust	particle	artifacts	that	appear	as	dark	

spots	 in	 retinal	 fundus	 images.	 Although	 the	 inpainted	 regions	 still	 remain	 as	 a	 part	 of	 the	 problem	

uncertainty,	the	remapped	spots	would	no	longer	stand	out	among	the	surrounding	areas	thus	avoiding	the	

possibility	of	being	mistakenly	interpreted	as	signs	of	pathological	risk.			

The	localization	of	artifacts	is	effective,	it	succeeds	in	finding	the	majority	of	artifacts	in	the	retinal	images.	

The	false	alarms	are	minimized	by	the	AND-comparison	of	the	artifact	detections	and	segmentations	from	

several	input	images.	This	gives	robustness	to	the	algorithm.	The	segmentation	stage	determines	the	region	

or	 group	 of	 pixels	 of	 the	 potential	 artifacts.	 In	 our	 experiments,	 the	 inpainting	 approach	 removed	

successfully	 the	 artifacts,	 while	 not	 introducing	 new	 artifacts	 in	 the	 color	 retinal	 images.	 The	 code	 is	

sufficiently	fast,	and	is	suitable	for	parallelization,	which	can	significantly	reduce	computation	time.		
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