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ABSTRACT: 

The calibration methods most used in fringe projection profilometry are based on models of least 
squares adjustment and stereo vision techniques. However, the geometric distortions of the projector 
and camera lenses introduce imprecision in certain regions of the 3D reconstruction. In this paper, we 
perform a comparative study between the second order polynomial adjustment method and the stereo 
calibration method applying lens distortion compensation. The experimental results show that in the 
stereo calibration the incidence of the distortions in the 3D reconstruction is significant. In contrast, 
in the proposed polynomial calibration, reconstruction errors are associated with the calibrated 
volume, typically low within the calibration volume.  
Key words: Fringe projection, stereo-vision, lens geometric distortions, polynomial calibration.  
RESUMEN: 

Los métodos de calibración más usados en perfilometría por proyección de franjas están basados en 
modelos de ajustes por mínimos cuadrados y técnicas de visión estéreo. Sin embargo, las distorsiones 
geométricas de los lentes del proyector y de la cámara introducen imprecisión en ciertas regiones de 
la reconstrucción 3D.  En este trabajo realizamos un estudio comparativo entre el método de ajuste 
polinomial de segundo orden y el método de calibración estéreo aplicando compensación de 
distorsiones. Los resultados experimentales muestran que en la calibración estéreo la incidencia de 
las distorsiones en la reconstrucción 3D es significativa. En cambio, en la calibración polinomial 
propuesta, los errores de reconstrucción están asociados al volumen calibrado. 

Palabras clave: Proyección de franjas, visión estéreo, distorsiones geométricas, calibración 
polinomial. 
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1. Introduction 

Three-dimensional (3D) scanning techniques based on fringe pattern projection and imaging have been 
extensively developed to meet the demands of many applications including, industrial inspection, 
computer-aided design, manufacturing, medical diagnosis, etc., [1]-[4]. The main advantages of these 
techniques include their non-contact nature, dense measurement, high speed, high automation degree and 
high accuracy [5], [6]. Fringe projection profilometry (FPP) consists in projecting a sinusoidal pattern onto 
an object to measure its shape and obtain a 3D digital model. The process is based on phase retrieval 
techniques from the projected patterns and a mapping from the recovered phase to the physical 
measurement values. This unit conversion, or phase-to-height mapping, depends on the geometric 
parameters of the FPP system (rotation angles and translation vectors between the projection and capture 
devices). The calibration of the FPP system is a crucial step for achieving accurate measurements. Many 
calibration methods have been proposed, however they can be broadly classified in two categories: phase-
to-height mapping methods [7]-[10] or stereo-vision methods [2], [11], [12]. In the first category, the 
relations between phase and the height of the object have to be identified and constructed either by a model-
based approach or a polynomial fit [6], [13]. These techniques often work by displacing a plane, 
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perpendicular	to	the	camera	axis,	in	accurately	known	values	and	establishing	the	phase-to-height	relation	
for	each	pixel	in	the	camera.	In	the	second	category,	the	camera	and	the	projector	form	a	calibrated	stereo	
vision	system,	in	which	the	projector	is	regarded	as	an	inverse	camera	[11],	[12],	[14]-[16].	However,	as	
opposed	 to	 a	 traditional	 stereo	 vision	 system,	 the	 fringe	 projection	 approach	 does	 not	 require	 feature	
matching.	The	camera	and	projector	pixel	correspondences	are	obtained	directly	from	the	recovered	phase,	
thus	enabling	the	triangulation	for	estimating	the	3D	coordinates	of	object’s	surface.	It	is	also	worth	noting	
that	this	approach	is	faster	and	more	flexible	in	that	accurate	displacements	are	not	required	[11],	[17],	
[18].	
In	the	majority	of	calibration	approaches,	the	authors	assume	a	linear	camera	model,	i.e.	one	without	lens	
distortions	[11].	This	is	often	done	on	the	assumption	that	the	radial	and	tangential	distortion	coefficients	
are	negligible	or	 that	 the	accuracy	of	 the	FPP	 system	 is	 sufficient	under	a	 camera	model.	However,	 the	
influence	of	the	lens	distortions	(both	camera	and	projector	lenses)	in	different	FPP	calibration	methods	
has	not	been	sufficiently	studied.	Moreover,	most	works	reported	in	the	literature	limit	the	error	analysis	
to	reprojection	error,	but	the	ultimate	test	is	to	determine	the	influence	on	3D	reconstruction	error	[17].	
In	this	work,	we	carry	out	a	comparative	study	from	a	second-degree	polynomial	and	stereo	calibration	
methods.	In	addition,	we	study	the	influence	of	lens	distortions	in	the	3D	reconstruction	by	reconstructing	
the	 same	object	 under	 the	 different	 calibration	 approaches.	 In	 the	 following	 sections	we	describe	 each	
calibration	method	with	the	calibration	results	on	our	experimental	setup.	Then	we	compare	both	methods	
by	 carrying	 out	 the	 3D	 reconstruction	 of	 a	 flat	 board	 from	 different	 orientations.	 Also,	 two	 validation	
procedures	 were	 carried	 out	 to	 validate	 the	 calibration	 methods.	 Finally,	 we	 discuss	 the	 overall	
performance	and	tradeoffs	for	selecting	the	best	calibration	approach	for	a	given	application.	
	
2.	Experimental	Setup	
In	Fig.	1	we	show	the	experimental	setup,	which	consists	of	a	monochromatic	CMOS	camera	(Basler	Ace-
1300gm;	1282x1026	-60	fps)	with	lens	Edmund	Optics-58001	with	focal	length	of	12	mm	at	F1.8,	a	DLP®	
projector	(DELL	M115HD;	1280x800	with	projection	distance	of	0.97-2.58	m.),	a	linear	translation	stage	
with	0.04mm	precision	controlled	from	a	computer,	a	checkerboard	for	calibration	with	10x10mm	squares	
and	a	PC	workstation.	To	synchronize	the	camera	and	DLP	projector,	we	duplicate	the	VGA	signal	from	the	
computer	using	a	VGA	splitter	and	connecting	the	vertical	sync	pulse	to	the	hardware	trigger	pin	of	 the	
camera	[19].	
	

	
Fig	1.	Experimental	System.	

	

3. Stereo Calibration 
In	this	work,	we	use	two	stereo	calibration	methods	based	on	a	linear	projection	model	(LPM)	proposed	by	
Zhang	and	Huang	[11],	and	the	same	method	with	the	 lens	distortion	model	added	(LDM).	The	camera-
projector	 is	considered	as	a	binocular	 framework	and	by	searching	 for	homologous	 image	points	 in	 the	
camera	 and	 projector.	 The	 3D	 coordinates	 of	 the	 measured	 points	 can	 be	 reconstructed	 once	 system	
parameters	have	been	determined.	To	compute	the	system	parameters	and	search	corresponding	points,	
horizontal	 and	 vertical	 fringes	 are	 projected	 onto	 a	 calibration	 plane	 placed	 in	 different	 positions	 and	
orientations.	In	our	case,	we	used	15	different	positions.	This	plane	is	a	checkerboard	target	with	two	colors,	
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which	are	selected	so	that	with	gray-level	projection	the	monochromatic	camera	response	to	the	two	colors	
is	similar.	However,	when	the	target	is	illuminated	with	red	light,	only	the	checkerboard	image	is	detected	
in	the	camera.	For	each	calibration	plane	position,	we	capture	the	images	shown	in	Fig.	2.	Using	the	vertical	
(Fig.	 2(b))	 and	 horizontal	 fringe	 images	 (Fig.	 2(d)),	 we	 extract	 the	 discontinuous	 phases	 by	 Fourier	
transform	profilometry	[7].	Afterward,	we	apply	a	phase	unwrapping	algorithm	using	a	centerline	image	
(Fig.	 2(c)	 and	 Fig.	 2(e))	 to	 obtain	 the	 absolute	 continuous	 phase	 maps	 in	 the	 horizontal	 and	 vertical	
directions.	
In	Fig.	3,	we	show	a	schematic	of	a	fringe	projection	stereo	system.	In	this	setup,	the	projector	is	considered	
as	a	camera	and	the	calibration	relies	on	obtaining	a	relation	between	the	projected	image	plane	( , )	
and	the	captured	image	plane	( , ).	Considering	a	point	( , , )	 in	the	checkerboard	coordinate	
system,	we	 find	 its	 corresponding	 coordinate	 in	 the	 camera	 and	 projector	 systems	 using	 the	 following	
equations,	respectively,	

	 	,	 (1)	

	 	,	 (2)	

where	 	 and	 	 are	 scaling	 factors;	 	 	 	 and	 	 are	 intrinsic	parameters	of	 the	 camera	and	 the	
projector	pinhole	model;	 	y	 	are	transformation	matrices	from	the	coordinate	system	of	
the	model	( , , )	and	the	camera	and	projector	systems,	respectively.	

	
Fig	2.	Images	captured	in	each	position	of	calibration	plane	projecting	(a)	Red	light,	(b)	Vertical	fringes,	(c)	Vertical	center	line,	(d)	

Horizontal	fringes	and	(e)	Horizontal	center	line.		
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Fig.	3.	Stereo	model	of	camera-projector	system	

	
In	this	paper,	we	consider	the	camera	and	projector	distortion	as	[8],		

	
, (3) 

where,	 ;	 ,	 and	 are	coefficients	of	radial	distortion; and are	coefficients	of	tangential	
distortion;	 	are	the	normalized	coordinates	of	the	pinhole	with	distortion	and	 the	new	
normalized	coordinate	with	distortion	compensated.	
3.a.	Camera-projector	Correspondence 

To	find	the	stereo	parameters	of	the	system,	we	must	relate	common	points	in	the	camera	and	projection	
systems.	In	addition,	these	points	must	have	a	known	position	in	the	world	or	model	coordinate	system,	in	
our	 case,	 the	 checkerboard	pattern.	 	 The	vertical	 and	horizontal	 fringe	patterns	 are	used	 to	 establish	 a	
relationship	between	the	camera	image	plane	and	the	projector	image	plane.	Recall,	that	we	consider	the	
projector	as	a	camera.	Based	on	the	Fourier	transform	[7]	we	can	extract	the	wrapped	phase	of	the	captured	
fringe	images.	Then,	we	apply	a	phase	unwrapping	algorithm	to	obtain	the	continuous	phase.	By	using	the	
central	projection	 lines,	we	obtain	 the	absolute	phase	maps	 in	horizontal	 and	vertical	directions.	These	
phase	maps	are	related	to	the	projector	coordinates	by,	

	 		 (4)	

	 	 (5)	

where,	!"	and	#"	are	the	absolute	phase	map	and	period	of	the	vertical	fringe,	respectively;	!$	and	#%	are	the	absolute	phase	map	and	the	period	of	the	horizontal	fringes,	respectively;	 	and	 	are	the	width	and	
height	of	the	fringe	patterns.	We	detect	the	corners	of	the	checkered	board	pattern	in	the	camera	image	
with	sub-pixel	precision	using	standard	feature	detection	techniques	[20].	The	phase	values	in	the	corners	
can	be	calculated	fitting	the	phase	maps	 	and	 	to	a	third-degree	polynomial	surface	and	evaluating	it	
at	the	corner	coordinates.	It	should	be	noted	that	in	the	original	work	by	Zhang	and	Huang	[11],	the	authors	
synthesize	an	artificial	projector	image	as	if	captured	by	the	projector	to	obtain	its	calibration	parameters.	
However,	 this	 is	not	necessary	and	 leads	 to	 inaccuracy.	 In	 this	work,	we	propose	 to	only	 transform	the	
subpixel	coordinates	for	obtaining	the	projector	parameters.		
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3.b.	Stereo	3D	reconstruction 

In	order	to	obtain	the	3D	reconstruction	from	the	stereo	system,	we	must	determine	the	correspondence	
between	an	observed	point	on	the	camera	and	the	projector	plane.	From	equations	(1)	and	(2),	we	need	to	
solve	 three	 non-linear	 equations	 f(.)	 to	 obtain	 the	 3D	 coordinates	 of	 a	 given	 point	 (xw,yw,zw).	 The	
reconstruction	equations	are		
	 		 (6)	

	 		 (7)	

	 		 (8)	
where	u c,	v c,	and	u p	are	known.	Therefore,	the	world	coordinates	(xw,	yw,	zw)	of	a	point	can	be	uniquely	
solved	for	the	image	point	(u c,	v c).	
3.c.	Stereo	Calibration	Results 

We	 used	 the	method	 by	 Zhang	 [21]	 and	 the	 Bouget	 camera	 calibration	 toolbox	 [20]	 for	 obtaining	 the	
intrinsic	and	extrinsic	parameters	of	the	stereo	system	with	and	without	the	distortion	model	included.	The	
parameters	obtained	for	LPM	and	LDM	are	registered	in	Table	1	and	Table	2,	respectively.	The	principal	
point	of	the	projector	in	the	v-direction,	in	both	models,	is	closer	to	the	row	numbers	of	the	projector.	Its	
values	are	793.09	and	787.15,	where	the	number	of	pixels	in	that	direction	is	800.	This	is	expected	as	these	
devices	are	manufactured	for	projecting	with	a	vertical	offset	from	the	optical	axis.	In	Fig.	4	we	show	the	
reprojection	errors	of	the	camera	and	projector	for	both	considered	models.	The	mean	reprojection	errors	
using	an	LPM	for	the	camera	and	projector	were	0.472	and	0.160	pixels,	respectively.		However,	these	errors	
are	reduced	to	0.164	and	0.135	pixels	when	the	LDM	is	added	to	LPM.	

	
Fig.	4.	Reprojection	errors	in	pixels	of	pinhole	model	proposed	for	(a)	camera	and	(b)	projector	with	LPM	and	LDM	added.	

	
Table	1.	Camera	and	projector	calibration	results	using	LPM.		

Parameters	 Camera	 Projector	
	 2314.71±9.55	 1946.06±3.52	
	 2320.92±5.58	 1949.37±3.66	
	 597.49±2.95	 643.15±1.84	
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Table	2.	Camera	and	projector	calibration	results	with	LDM	added.		
Parameters	 Camera	 Projector	

	 2277.21±3.28	 1936.11±3.11	
	 2279.43±3.30	 1935.47±3.24	
	 612.21±2.81	 606.51±3.28	
	 482.36±2.02	 787.15±2.09	
	 -0.218±0.015	 0.006±0.007	
	 0.319±0.522	 -0.251±0.087	
	 -0.021±5.107	 0.365±0.378	
	 -0.0015±0.0002	 -0.004±0.001	
	 -0.0015±0.0002	 -0.005±0.001	
	
	

	
	 	

 
4. Polynomial Calibration 
The	second	calibration	method	that	we	implemented	is	a	direct	phase-to-height	approach.	Most	phase-to-
height	methods	depend	on	the	system	geometric	parameters,	such	as	angles	and	distances	between	the	
camera	and	the	projector.	However,	often	these	parameters	are	difficult	to	determine	precisely.	Therefore,	
several	techniques	have	been	proposed	to	calibrate	the	system	indirectly	using	a	phase-depth	mapping	via	
a	 least-squares	 fit	 of	 the	 phase	 to	 height.	 Our	 polynomial	 calibration	 method	 consists	 in	 displacing	 a	
reference	plane	in	known	&'	distances,	as	shown	in	Fig.	5.	 In	each	displacement,	the	phase	difference	is	
calculated	as,	
	 ,	 (9)	

where	('	is	the	absolute	phase	map	in	each	position	plane	and	()	is	the	absolute	phase	of	the	reference	
plane.	In	this	paper,	we	use	a	second-degree	polynomial	calibration	as,	

	 	 (10)	

where	Z	is	the	height	of	a	surface	measured	from	the	reference	plane	and	*(	is	the	phase	difference	between	the	reconstructed	object	and	the	reference	plane.	Z-calibration	is	known	as	out-of-plane	calibration.		Once	
Z	is	calibrated,	an	analogous	procedure	is	performed	to	convert	the	pixel	position	in	the	image	sensor	matrix	
to	millimeters	coordinates	along	X	and	Y	directions.	 	The	polynomial	coefficients	are	calculated	for	each	
pixel	on	the	image	using	the	least	squares	method.	
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Fig.	5.		Schematic	of	the	triangulation	setup	and	different	poses	of	the	target	for	polynomial	calibration	and	planes	reconstructed	for	

distortion	analysis.	

	

4.a.	Polynomial	Calibration	Results 

The	calibration	plane	was	placed	slightly	rotated	with	respect	to	the	Z	axis	of	the	camera.	The	plane	was	
displaced	 in	 the	 Z	 direction	 of	 the	 model	 (perpendicular	 to	 the	 plane)	 with	 1.6mm	 increments	 from	
&)=	0	mm	to	&+,=	94.4	mm,	for	a	total	of	60	positions.	For	each	displaced	position,	three	Images	as	the	ones	
shown	in	Fig.	2(a)-(c)	were	captured.	The	absolute	continuous	phase	of	each	plane	was	extracted	by	Fourier	
transform	profilometry	using	the	fringe	pattern	and	the	projected	centerline.		The	checkerboard	is	used	to	
relate	the	metric	corners	coordinates	with	their	phase	values,	in	their	respective	subpixel	position	on	the	
image.	The	reference	plane	chosen	was	&-)	and	the	calibrated	volume	was	210mm	⨉	140	mm	⨉	94.4	mm	
(X,	Y,	and	Z	directions,	respectively)	with	a	fit	RMS	error	for	each	pixel,	along	the	60	positions,	shown	in	Fig.	
6.		We	observe	how	the	error	varies	across	the	field	of	view	with	relatively	high	values	near	the	border	of	
the	 captured	 image.	 This	 is	 probably	 due	 to	 a	 slight	 rotation	 between	 the	 plane	 and	 the	 displacement	
direction.	To	compensate	the	lens	distortions	it	is	necessary	to	use	the	camera	parameters	found	in	stereo	
calibration	with	LDM	and	to	rectify	the	acquired	images	before	processing	them.	
	

	
Fig.	6.	RMS	error	maps	of	(a)	X-calibration,	(b)	Y-calibration	and	(c)	Z-calibration.	

	

	

6. Experiments 
6.a	3D	Reconstruction	and	Distortion	Analysis	

To	study	the	accuracy	of	each	method	and	measure	the	influence	of	lens	distortions,	we	reconstructed	10	
planes	placed	in	different	positions	and	rotations	as	shown	in	Fig.	5.	The	planes	were	reconstructed	by	the	
stereo	 and	 polynomial	 calibration	 methods,	 with	 and	 without	 distortion	 compensation.	 For	 each	
reconstructed	plane,	an	ideal	plane	was	adjusted	using	least	squares	and	an	RMS	error	was	obtained	from	
the	subtraction	of	the	planes.	The	results	are	shown	in	Table	3.	
For	the	stereo	calibration	approach,	a	significant	reduction	of	the	RMS	error	is	observed	for	the	ten	planes	
when	we	compensate	for	the	distortions,	the	error	reduction	for	all	of	the	planes	corresponds	to	a	decrease	
in	more	 than	65%.	 In	general,	 the	10	planes	are	 reconstructed	with	a	 similar	precision	with	 respect	 to	
different	 positions	 and	 orientations.	 However,	 for	 this	 calibration	 the	 correction	 of	 the	 distortions	 is	
ultimately	necessary.	
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In	the	polynomial	calibration,	we	noticed	that	there	are	planes	that	are	reconstructed	with	a	lower	error	
than	others.	This	is	because	several	of	these	planes	are	mainly	inside	the	calibration	volume	(#	2,	#	4	and	
#5)	and	others	are	totally	or	mainly	outside	(#6,	#9,	#10).	Then,	we	find	the	RMS	errors	of	only	the	region	
of	the	planes	within	calibrated	volume.	Subsequently,	results	are	shown	in	Table	4.	We	observe	that	these	
regions	are	reconstructed	with	high	precision	and	the	error	is	similar	for	all	the	planes.	When	compensating	
the	distortions	in	these	regions	we	notice	a	slight	reduction	of	the	error	in	some	planes,	but	that	is	not	as	
significant	as	in	the	stereo	calibration.			
	
Table	3.	RMS	errors	in	millimeters	of	ten	planes	reconstructed	with	polynomial	and	stereo	calibration.	No:	without	lens	distortion	

compensation,	Yes:	with	lens	distortion	compensation.	

Stereo	calibration	 Polynomial	calibration	

Plane	 No	 Yes	 No	 Yes	
1	 0.7090	 0.2275	 0.1377	 0.1389	
2	 0.7167	 0.2293	 0.0835	 0.0815	
3	 0.7648	 0.2089	 0.1740	 0.1600	
4	 0.7571	 0.1578	 0.1010	 0.0866	
5	 0.6459	 0.1651	 0.1363	 0.1315	
6	 0.5760	 0.1574	 0.3159	 0.3137	
7	 0.5745	 0.1281	 0.1207	 0.1180	
8	 0.5028	 0.1561	 0.0997	 0.0927	
9	 0.6965	 0.1720	 0.4488	 0.4834	
10	 0.4760	 0.1527	 0.1498	 0.1484	

	
Table	4.	RMS	errors	in	millimeters	inside	polynomial	calibration	volume	of	ten	planes	reconstructed.	No:	without	lens	distortion	

compensation,	Yes:	with	lens	distortion	compensation.		Incidence:	percentage	of	plane	area	that	is	within	the	calibrated	volume.	(*)	
These	planes	are	completely	outside	the	calibration	volume.	

Plane	 No	 Yes	 Incidence	(%)	
1	 0.0468	 0.0423	 58.73	
2	 0.0504	 0.0463	 59.07	
3	 0.0612	 0.0588	 64.43	
4	 0.0586	 0.0588	 63.72	
5	 0.0686	 0.0588	 48.00	
6	 0.0563	 0.0565	 3.55	
7*	 -	 -	 0.00	
8*	 -	 -	 0.00	
9*	 -	 -	 0.00	
10	 0.0672	 0.0646	 47.81	

 
6.b	Validation	

We	carried	out	two	experiments	to	validate	the	polynomial	and	stereo	calibration	models	with	LDM.	In	the	
first	procedure,	a	plane	was	displaced	using	a	translation	unit	with	a	micrometric	screw	with	a	resolution	
of	0.001mm.	Ten	consistent	displacements	of	0.100±0.001mm	were	executed	in	perpendicular	orientation	
to	the	displaced	plane.	The	displaced	planes	were	reconstructed	and	adjusted	by	least	squares	to	an	ideal	
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plane	and	we	calculated	the	distances	between	them.	For	the	polynomial	calibration,	we	found	an	average	
displacement	 with	 standard	 deviation	 of	 0.097±0.012mm,	 while	 for	 the	 stereo	 calibration	 an	 average	
displacement	of	0.094±0.007mm	was	found,	these	measurements	correspond	to	relative	errors	of	2.6%	and	
6%,	respectively.s	
In	 the	 second	 validation	 experiment,	 we	 used	 an	 aluminum	 object	 shown	 in	 Fig.	 6a.	 The	 object	 was	
machined	 by	 a	 CNC	 (Computer	 Numerical	 Control)	 milling	machine	 with	 a	 tolerance	 of	 0.001mm.	We	
painted	 the	 object	 surface	 in	 white	 for	 improving	 the	 measurement	 conditions.	 Using	 the	 polynomial	
technique,	we	reconstructed	the	object	obtaining	the	depth	map	shown	in	Fig.	6b.	This	figure	shows	the	
presence	of	three	surface	steps	(R0,	R1,	and	R2),	where	the	reference	distances	between	the	steps	R0-R1	
and	 R0-R2	 are	 1.500±0.001mm	 and	 3.000±0.001mm,	 respectively.	 From	 the	 reconstructed	 surface,	we	
calculated	the	average	distances	with	its	standard	deviation	of	R0-R1	and	R0-R2,	were	1.505±0.061mm	and	
2.988±0.065mm,	respectively.	These	measurements	correspond	to	a	relative	error	of	0.33%	and	0.40%.	Fig.	
6c	shows	the	points	associated	with	the	red	profile	shown	in	Fig.	6b	and	the	real	references	of	the	steps	of	
the	object.			

	
Fig.	7.	(a)	Validation	pattern	object.	(b)	Depth	map	of	the	reconstructed	object.	(c)	profile	of	a	section	of	the	reconstructed	object.					

	
7.	Conclusions	
In	this	work,	we	compared	a	polynomial	and	a	stereo	calibration	method,	and	in	particular	we	studied	the	
influence	of	the	geometric	distortion	compensation	of	the	camera	and	projector	lenses	in	each	method.	The	
experimental	results	show	that	the	compensation	of	the	lens	distortions	in	the	stereo	calibration	approach	
has	an	important	effect	on	the	reconstruction	precision	with	a	decrease	of	RMS	reconstruction	error	of	over	
50%	in	most	cases.	This	is	expected	since	the	triangulation	is	based	on	a	linear	model	of	the	camera	and	the	
projector.	 In	 contrast,	 the	 compensation	 of	 geometric	 distortions	 has	 a	minor	 effect	 on	 the	 polynomial	
calibration.	Nevertheless,	we	showed	that	if	the	object	is	placed	within	the	calibration	volume	compensating	
the	distortions	does	decrease	the	reconstruction	error.		
The	polynomial	 calibration	 offers	 greater	 precision	 in	 reconstruction	 than	 the	 stereo	 calibration	 at	 the	
expense	of	a	much	more	elaborate	procedure.	Its	implementation	requires	a	precise	displacement	system,	
and	 in	certain	cases,	a	precise	alignment	of	 the	optical	systems.	Furthermore,	 in	order	 to	maintain	high	
precision,	the	calibration	volume	limits	the	location	of	the	objects	for	reconstruction.	Conversely,	the	stereo	
calibration	has	a	faster	and	more	versatile	implementation,	because	precise	displacements	are	not	required	
and	there	is	no	restriction	regarding	a	calibrated	volume.	Although	in	general,	stereo	systems	do	have	a	
depth	dependent	uncertainty.	
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