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ABSTRACT: 

Dust particle artifacts are present in all imaging modalities but have more adverse consequences in 
medical images like retinal images. They could be mistaken as small lesions, such as microaneurysms. 
We propose a method for detecting and accurately segmenting dust artifacts in retinal images based 
on multi-scale template-matching on several input images and an iterative segmentation via an 
inpainting approach. The inpainting is done through dictionary learning and sparse-based 
representation. The artifact segmentation is refined by comparing the original image to the initial 
restoration. On average, 90% of the dust artifacts were detected in the test images, with state-of-the-
art restoration results. All detected artifacts were accurately segmented and removed. Even the most 
challenging artifacts located on top of blood vessels were removed. Thus, ensuring the continuity of 
the retinal structures. The proposed method successfully detects and removes dust artifacts in retinal 
images, which could be used to avoid false-positive lesion detections or as an image quality criterion. 
An implementation of the proposed algorithm can be accessed and executed through a Code Ocean 
compute capsule.  

Key words: Artifact detection, dust particle, retinal image, fundus image, image restoration, 
dictionary learning, inpainting, sensor artifact, sparse representation. 
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1. Introduction 
Retinal images are photographs of the eye fundus in which different structures of the retina can be 
distinguished, e.g., optic disc, fovea, and blood vessels. Since a wide variety of diseases manifest themselves 
in the retina by signs or anomalies [1], retinal images are a powerful tool for medical diagnosis and 
screening [2,3]. These images are acquired with eye fundus cameras, which are composed of a special 
camera attached to a low magnification microscope. Fundus cameras, like any other imaging device, may 
suffer from dust particles attached to the sensor and lenses. These particles impede light from reaching 
small regions of the sensor. As shown in Fig. 1, this phenomenon generates small dark spots in the obtained 
images that are not part of the observed scene's actual signal. Also, dead or stuck pixels may produce 
artifacts with a similar appearance. The three different retinal images show in Fig. 1 were acquired with the 
same fundus camera. However, they have small dark spots in approximately the exact location on the images 
marked with arrows. If it were not for a close side-by-side comparison, the dark spots could be mistaken as 
small retinal lesions such as microaneurysms [4].  

Dust particles can also produce unreliable counts in automated microaneurysm detection tasks, image 
restoration [5], or longitudinal change detection in retinal images [6,7] because microaneurysm sizes range 
from 10 to 125 microns in diameter [8]. The dust particle artifact problem is unavoidable and accumulative 
in clinical practice. It is possible to clean the lenses and the camera sensor, but it requires professional 
assistance and involves a lapse of inactivity. In practice, sensor cleaning is not done very often, and many 
images can be acquired before the sensor is cleaned or the technician notices the artifacts. Some cameras 
incorporate automatic defect map creation, but this does not solve the problem of contaminated images. 
Instead, it is oriented toward determining the need for maintenance [9]. 

The effect of dust particles in imaging has been described by Wilson et al. [10]. However, their work is 
focused on modeling the dust artifacts and not on their detection or removal. Li et al. [11] propose removing 
dust artifacts in focal stack image sequences by taking advantage of the slight shift in image position of dust 
artifacts relative to the focus setting. However, this detection approach requires careful scanning through 
many possible focus positions. Also, the removal stage is based on a fusion approach from the stack of 
images typically used in microscopy [12]. Alternatively, Zhou and Lin [13] propose the detection of dust 

http://www.sedoptica.es/
https://doi.org/10.1007/s11042-019-07751-6
https://doi.org/10.1007/978-981-13-1513-8_102
https://doi.org/10.1007/978-1-4419-7011-4_5
https://doi.org/10.1109/MSP.2013.2273004
https://doi.org/10.1109/STSIVA.2019.8730253
https://doi.org/10.1109/TSP.2006.881199
https://doi.org/10.1109/ICASSP.1999.760624
https://doi.org/10.1109/78.258082
https://doi.org/10.1109/TSMC.1979.4310076
https://doi.org/10.1117/12.2519053


ÓPTICA PURA Y APLICADA 

www.sedoptica.es  

 

Opt. Pura Apl. 54 (3) 1-14 (2021)  © Sociedad Española de Óptica  

 

4 

candidate regions via an optimization approach to estimate a dust-free image. The optimization scheme is 
dependent on several parameters, such as the camera settings. However, these parameters are not always 
known, and their approach may mistake retinal lesions, such as hemorrhages, for artifacts. 

Artifact detection in retinal images has been mostly focused on artifacts such as flash flares [14], image 
quality assessment [15–18], or as a previous stage for automatic retinopathy screening [19]. However, the 
detection and removal of dust particle artifacts in retinal images have not been sufficiently studied. In recent 
years, several works have been proposed to detect dust artifacts in video sequences [20–22], where the 
common assumption is that the scene may change in time, but the artifacts remain in the same position. 
Dust particles can occlude the moving objects in a scene. Therefore, by analyzing the motion flow field, 
regions with no motion are candidate artifacts. However, this approach is not directly applicable to retinal 
images since optical flow algorithms require small displacements between consecutive frames [23]. Here 
we consider the general case in which several different retinal images acquired with the same fundus 
camera have dust artifacts. 

 

 
Fig 1: Close-up from three different retinal images acquired with the same fundus camera (real sample images from clinical practice).  
The green arrows indicate the dust particle artifacts (dark spots) in approximately the same pixel locations. 

 

In this paper, we propose a method for detecting and removing dust particle artifacts in retinal images. Our 
algorithm compares detections on two or more input images to avoid false detections. This paper is a 
continuation of our previous work on dust artifact detection and removal [4]. Our new method detects more 
artifacts than the previous approach, and we now use a sparse-based inpainting approach for their removal, 
which achieves better image restoration. The algorithm proposed here can detect dust artifacts of a broader 
range of sizes and different shapes.  

Additionally, we present a methodology of iterative segmentation based on inpainting. Precise 
segmentation of artifacts is challenging, mainly due to a blurred boundary, and over-segmentation is not 
acceptable. Our new segmentation approach is based on comparing an initial restored image and the 
original input image to achieve precise artifact segmentation. The restoration yields plausible results since 
small details are preserved after artifact removal, even in fine fundus structures such as blood vessels. This 
segmentation via inpainting approach may prove useful in abnormality detection [24, 25], including 
microaneurysms [26]. Finally, to comply with modern open and reproducible research practices, the 
archived version of the code can be freely accessed and executed through Code Ocean [27].  

2. Method 
We show an overview of the proposed method in Fig. 2. The input of the algorithm is a set of retinal images 
(𝐼1, 𝐼2, … , 𝐼𝑛) acquired with the same fundus camera. The images have artifacts caused by dust particles in 
some components of the camera. 

http://www.sedoptica.es/
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The first stage consists in generating a mask M0 that contains the locations and the estimated size of the 
artifacts. The detections are obtained with a correlation-based approach. The second stage consists of 
artifact segmentation and image restoration by inpainting. The algorithm predicts the values of the missing 
regions (artifacts) with sparse-based representation. The predicted values are replaced in the original 
image to obtain restored images (𝐼1

′ , 𝐼2
′ , … , 𝐼𝑛

′ ). In the following sections, we describe the details of each stage. 

 

2.a. Dust artifact detection algorithm  

In Fig. 3, we show the block diagram of the artifact detection algorithm. It consists of two steps. First, the 
RGB input images are converted to grayscale, and the algorithm applies morphological processing to 
remove all the information that is not relevant to the artifacts. This step produces an image that contains 
only the artifacts and other small details, as shown in Fig. 4(c). In the second step, the algorithm searches 
for the dust artifacts via normalized cross-correlation, nonmaximal suppression, and discards false 
detections through spatial matching, i.e., we consider true detections those present at the same location in 
all input images. The output of this stage is a matrix M0 that contains the location and estimated size of the 
detected artifacts.  

 

 
Fig 2: Block diagram illustrating the proposed method. 𝐼𝑖  are the input images, 𝐼𝑖

′
are the restored versions. M0 is the initial 

segmentation mask resulting from the artifact detection stage. 
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Fig 3: Artifact detection algorithm diagram, where 𝐼𝑖   are the input images and M0 is the output mask with the location and size of the 
detected dust artifacts. 

 

Morphological processing for candidate artifact detection 

The algorithm performs a morphological closing (a dilation followed by erosion) to every grayscale image 
with a circular structuring element. This operation roughly removes dark details that are smaller than the 
structuring element. For the resolution of our images (2784x1846), we empirically found that a circular 
structural element of 20 pixels in diameter is large enough to cover all possible dust artifact sizes. This 
setting parameter needs to be established from sample images at the initialization stage. The dilation ⊕ of 
a gray-scale image 𝐼 by a structuring element b is defined as [28], 

 

(𝐼⨁𝑏)(𝑥, 𝑦) = max{𝐼(𝑥 − 𝑥′ , 𝑦 − 𝑦′)|(𝑥′, 𝑦′) ∈ 𝐷𝑏}, 

 

(1) 

and the erosion ⊖ of a gray-scale image I by a structuring element 𝑏 is defined as, 

 

(𝐼 ⊖ 𝑏)(𝑥, 𝑦) = min{𝐼(𝑥 − 𝑥′, 𝑦 − 𝑦′)|(𝑥′, 𝑦′) ∈ 𝐷𝑏}, 

 

(2) 

where 𝐷𝑏 is the domain of 𝑏. Therefore, the closing of an image I by a structuring element 𝑏, 

denoted as 𝐼 ∙ 𝑏, is given by 

 

𝐼 ∙ 𝑏 = (𝐼⨁𝑏) ⊖ 𝑏. 

 

(3) 

To correctly remove the artifacts at the borders of the retinal image, we pad around the image before 
applying the closing operation. The pad must be similar to the content of the image. We use symmetric 
replication which pads the array with a mirror reflection of itself. After morphological processing, the image 
is cropped to the original dimensions. 

For each input image I, the algorithm calculates the difference between the original grayscale image and the 
image after applying the closing operation as  

 

𝐽 = 𝐼 − (𝐼 ∙ 𝑏), 

 

(4) 

where J is called the difference image and only contains the small details that were removed in the closing 
step, including the dust artifacts. In Fig. 4, we illustrate the morphological processing procedure. Note that 
the artifacts are better contrasted against the background and are more easily detectable in the resulting 
difference image J, as shown in Fig. 4(c). 

 

http://www.sedoptica.es/
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Fig 4: Morphological processing for candidate artifact detection. (a) Pseudocolor original grayscale image. (b) Image after 
morphological closing. (c) Difference image J in which the artifacts are easier to identify. 

 

Artifact localization via cross-correlation, non-maxima suppression, and spatial matching  

To obtain the coordinates of the dust artifacts, the algorithm computes the normalized cross correlation 
𝛾(𝑢, 𝑣) of each difference image with a set of templates as given by  

𝛾(𝑢, 𝑣) =
∑ [𝐽(𝑥, 𝑦) − 𝐽�̅�,𝑣]𝑥,𝑦 [𝑡(𝑥 − 𝑢, 𝑦 − 𝑣) − 𝑡̅ ]

{∑ [𝐽(𝑥, 𝑦) − 𝐽�̅�,𝑣]
2

𝑥,𝑦 ∑ [𝑡(𝑥 − 𝑢, 𝑦 − 𝑣) − 𝑡̅ ]2
𝑥,𝑦 }

0.5 , (5) 

where J is the difference image, 𝐽�̅�,𝑣  is the mean of 𝐽(𝑥, 𝑦) values in the region under the template placed at 
(𝑢, 𝑣), 𝑡 is the template, and 𝑡̅  the mean of the template [29].  

To find the location of artifacts, we use templates that resemble their typical shape. Among the properties 
of these artifacts, we find that dust particles are made of a single material, and their projections are 
approximately monochromatic [12]. Dust artifacts are darker in the center, and their opacity is attenuated 
far from the center, and most of them are approximately circular in shape [9]. Moreover, since the search 
image J is a difference image, the artifact should have the minimum value in the center and increase 
smoothly from the center. Therefore, we use inverted Gaussian filters, defined as  

𝑡𝜎(𝑥, 𝑦) = −
1

2𝜋𝜎2
exp (−

𝑥2 + 𝑦2

2𝜎2
) , (6) 

where σ is the parameter that controls the width of the Gaussian. Here, we use a set of Gaussian filters with 
different σ values for detecting artifacts of different sizes. 

Every difference image J undergoes the same process. The algorithm performs one normalized cross-
correlation for each Gaussian filter with the difference image. In Fig. 5, we illustrate the multi-scale cross-
correlation with four Gaussian filters of different size. From the multi-scale correlation, the algorithm 
searches peak values that are higher than a predefined threshold via nonmaximal suppression. These peaks 
account for the artifact detection locations and the filter σ values for the artifact approximate size. If an 
artifact is detected with more than one filter, the σ value of the Gaussian filter with the highest cross-
correlation value is chosen. 

As a result, there are usually many spots detected for each input image. To distinguish between true and 
false artifacts, we assume that the true dust artifacts are in approximately the same locations on every image 
acquired with the contaminated camera. In other words, we consider true artifacts the detections common 
to all input images within a 5-pixel radius. Otherwise, detections not common to all input images are 
discarded. This condition is a cautious approach considering the consequences of possible false positives, 
e.g., detecting a microaneurysm as an artifact. 
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Fig 5: Normalized cross-correlation between the difference image J and four Gaussian filters of different size. 

 

In Figures 6(a)-(c) we show an example of dust artifact detection on the three close-ups shown in Fig. 1. The 
green lines connect the detection common to all images. The remaining detections are discarded. In Figures 
6(d)-(f) we show the detected artifacts (marked with green squares) after discarding false detections. Most 
artifacts were successfully detected, while several small artifacts were not classified as true detections 
because they were not consistently detected in all input images. Although this is a limitation of the method, 
this condition limits false positives which may hinder the overall performance of the method. The result of 
the detection stage is a matrix M0 that contains the location and estimated size of the detected artifacts. The 
matrix M0 is the same size as the input images. This matrix is one of the inputs of the segmentation and 
inpainting stage. 

 
Fig 6: (a)-(c) Candidate artifact detections on three input images. (d)-(f) Detected artifacts (marked with green squares) after 

discarding false detections. We consider true artifacts the detections common to all input images. This figure is best viewed by 
zooming in the electronic version. 

 

 

2.b. Artifact segmentation and inpainting 

Precise artifact segmentation is useful as a preprocessing stage or as an image quality estimation index [30]. 
The digital removal of the artifacts implies an estimation of the missing pixels of the image while 
maintaining the structures and other characteristics of the neighboring regions. If a digital restoration is 
performed on a medical image, this modification should be informed to the specialist assessing the image. 
However, we believe that the restored image should help the specialist or the computer-aided diagnosis 
system in reducing false-positive detections, e.g., in the detection of microaneurysms [31].  
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Inpainting  

In medical images, it is important to have well-defined inpainting criteria. In general, we can classify 
inpainting methods into three categories: (i) diffusion-based methods, (ii) exemplar-based methods, and 
(iii) hybrid methods [32]. The first category consists of methods based on parametric models or partial 
differential equations used to propagate (or diffuse) the local structures of the exterior to the interior of the 
target region. The biggest drawback of these methods is the failure to reconstruct texture. As a result, the 
reconstructed regions are smooth and lacking the surrounding texture. The second category consists of 
exemplar-based methods. These methods are defined from image patches. They assume that the statistics 
of the texture in the image are stationary (in the case of random texture) or homogeneous (in the case of a 
regular pattern). The texture to be synthesized is learned from similar regions in a texture sample or a 
known part of the image. Finally, several authors have proposed hybrid methods as approximations that 
attempt to combine the two previous categories [33]. These methods allow inpainting with texture 
information while maintaining the linear structure simultaneously. However, such methods rely on the 
statistics and structure often found in natural and human-made scenes. 

Since we deal with medical images, we have chosen an exemplar-based approach with sparse 
representation and dictionary learning to remove the dust artifacts found in retinal images, which has been 
found appropriate in a previous work [34]. The initial inpainting mask is produced from the σ values from 
the detected artifacts. We found that a value of 3σ provides an initial mask that covers the whole artifact. 
The mask is also used to avoid including the artifact pixels in the dictionary learning process. 

The first stage of the inpainting method relies on patch-based processing of the image. Let vector 𝐼 ∈ ℝ𝑁  
represent the original image of size 𝑁, and 𝑛 ≤ 𝑁 be the number of patches in the image. Let us consider 
𝐼𝑘 = 𝑅𝑘 (𝐼), in which 𝑅𝑘(. ) is an operator that extracts the kth patch from the image I, and its transpose, 
denoted by 𝑅𝑘

𝑇 (. ), is the operator that allows the reconstruction of the image 𝐼 from the set of patches  {𝐼𝑘} 
through the following equation, 

𝐼 = (∑ 𝑅𝑘
𝑇 (𝑅𝑘))

−1

(∑ 𝑅𝑘
𝑇(𝐼𝑘)). (7) 

A sparse representation seeks to determine the subspaces where the most relevant data of a signal are 
found. Resulting in a reduction of the dimensionality of the signal. The principle of a sparse representation 
relies on approximating a signal 𝐼 of dimension 𝐿 as a linear combination of a small number of signals taken 
from a base called the dictionary 𝐷 of size 𝑁 × 𝐿, which contains 𝐿 elements of length N, often called atoms 
(𝐷 = [𝑑1, 𝑑2, . . . , 𝑑𝐿]). The sparse vector 𝑥 ∈ ℝ𝐿 contains the signal representation coefficients. In our case, 
𝐼𝑘 ≈ 𝐷𝑥𝑘, we are interested in generating a patch-based sparse representation of the image given by 

𝐼 ≈ (∑ 𝑅𝑘
𝑇(𝑅𝑘))

−1

(∑ 𝑅𝑘
𝑇(𝐷𝑥𝑘)), (8) 

 

where 𝐼𝑘 has been replaced by 𝐷𝑥𝑘.  

The second stage consists in generating a dictionary from the image patches that do not contain artifacts. 
The dictionary should be compact and satisfy the condition for sparsity [35]. The dictionary learning is 
carried out by solving the following optimization problem 

min
𝐷,𝑥𝑘

∑‖𝐼𝑘 − 𝐷𝑥𝑘‖2
2, s. t.  ‖𝑥‖0 

𝑁

𝑘=1

≤ 𝑇0, 1 ≤ 𝑘 ≤ 𝑁 , (9) 

where ‖. ‖2is the ℓ2-norm, ‖. ‖0is the ℓ0-norm, and 𝑇0 limits the sparsity of the representation coefficients. 
The dictionary learning problem defined in Eq. (9) can be solved using the Method of Optimal Directions 
(MOD) [36], K-SVD [35], among others. For this problem, we used the K-SVD algorithm and Orthogonal 
Matching Pursuit (OMP) [37] algorithm to obtain the 𝑥𝑘 sparse vectors. We have found that the K-SVD 
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algorithm is simple, flexible, and works in conjunction with OMP. It is highly efficient due to effective sparse 
coding and an accelerated dictionary update method [35]. 

In the third stage, the algorithm predicts the values of the missing regions (artifacts) by constructing an 
approximate image without artifacts. Afterward, these values are replaced in the original image I to obtain 
the restored image 𝐼′. The dictionary atoms and the sparse coefficients given by �̂�𝑘 , �̂�𝑘, respectively, are the 
optimal solution. Once the sparse coefficients �̂�𝑘 for all patches and the learned dictionary atoms 
[�̂�1, �̂�2, . . . , �̂�𝐿] have been estimated, we obtain the best approximation to the original image without 
artifacts 𝐼. This approximation is based on Eq. (8), so that 

𝐼 ≈ (∑ 𝑅𝑘
𝑇(𝑅𝑘))

−1

(∑ 𝑅𝑘
𝑇(�̂��̂�𝑘  )). (10) 

Taking into account that the patches generally overlap, Eq. (10) describes a weighted average as a 
reconstruction strategy. Subsequently, an indexing approach is carried out which consists in replacing the 
missing pixels in I (original image) by the values of 𝐼  in the positions of the artifacts, thus obtaining the 
restored image  𝐼′. 

 

Artifact Segmentation Refinement  

Recent advances in inpainting techniques are mostly focused on different ways of filling the target region. 
However, they assume that the inpainting mask is correct and does not need to be updated during the 
inpainting process. A successful image restoration depends to a great extent on a precise mask. If the mask 
is too large, it will end up removing useful information. However, if the mask is too small, the algorithm will 
fail in removing the desired pixels. This issue is particularly relevant for the removal of artifacts which do 
not have a well-defined boundary. Therefore, we propose a new stage to further improve the method by 
refining the segmentation mask. 

In Fig. 7, we present an approach for updating the inpainting mask, which we call segmentation via 
inpainting (SVI). We highlight in red the new mask refinement approach. It resembles a feedback control 
loop, in which the error signal is obtained from the difference between the input signal, i.e., the original 
image I, and the corresponding restored image I output. The idea is to threshold the image difference to 
accurately segment the artifacts. The difference image is expected to have a maximum value in the center 
of the artifact and decrease rapidly from the center. For this segmentation, we found that Otsu’s method 
[38] yielded reliable results to produce a new mask Mi. This mask iteratively shrinks towards a more 
accurate segmentation of the artifact. 

In Fig. 8, we show a close-up of the image shown in Fig. 1(a). Although the locations of the artifacts in the 
initial mask M0 are correct, the size and shape of the artifacts are overestimated (Fig. 8(b)). In Fig. 8(c) we 
present the segmentation by the proposed mask refinement method. Note the improvement in the 
segmentation of the artifacts. 

 

 
Fig 7: Segmentation refinement based on inpainting. The new mask Mi is computed from the difference of the restored image and the 
original image. The final restored image is obtained from a refined inpainting mask. 

 

 

 

 

http://www.sedoptica.es/


ÓPTICA PURA Y APLICADA 

www.sedoptica.es  

 

Opt. Pura Apl. 54 (3) 1-14 (2021)  © Sociedad Española de Óptica  

 

11 

 

 

 
 

Fig 8: Segmentation of artifacts via inpainting. (a) Close-up of image shown in Fig. 1(a). (b) Initial detection and segmentation mask 
M0. (c) Refined segmentation (Mi). 

 

3. Experiments and Results 
Two experiments were carried out. The objective of the first experiment was to determine a quantitative 
measurement of dust artifact detection performance and to evaluate the image restoration qualitatively. 
The second experiment consisted of comparing the detection and restoration results of the proposed 
method with the method described in Ref. [4]. An implementation of the proposed algorithm can be 
accessed and executed through a Code Ocean compute capsule [27].  

 

3.a. Image corpus 

A set of 8 fundus images from the clinical practice were used. They were all grouped in pairs acquired in the 
same session with the same contaminated fundus camera. They are color RGB 24 bit-depth fundus images 
of size 2784 × 1846 digitized in JPEG format. 

 

3.b. Experiment 1 

All pair of retinal images were processed for artifact detection and removal with the proposed method. To 
illustrate a complete realization of the algorithm, in Fig. 9, we show a pair of retinal images from the same 
eye but with different framing. The green squares mark the detected artifacts. There are many artifacts 
located throughout the retinal images. Many are on top of retinal structures like blood vessels, the optic 
disc, and even near the macula. The artifacts were detected with four Gaussian templates with 𝜎 =
{1, 2, 3, 4}. The number of detected artifacts (> 100) and their distribution throughout the fundus image 
reveals the severity of the problem. 

 

 
Fig 9: (a) and (b) Detected artifacts (green small squares) on a pair of retinal images acquired with the same fundus camera. Both 
pictures correspond to the same eye but with different framing. The figure is best viewed by zooming in to see the artifact detections. 

 

Due to the lack of ground truth detections and a large number of artifacts present in most images, we 
cropped sample regions from the test images. These were selected to have varying amounts of artifacts and  
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located in different parts of the images. Each region was assessed by one individual by manually selecting 
the artifacts, thus obtaining the ground-truth. In Fig. 10, we show six different cases of image regions with 
artifacts. Each case has two corresponding regions from the two input images. From left to right, the first 
(image A) and third (image B) columns are the regions of the input images with the detected artifacts 
marked with green squares. The second and fourth columns are the restored versions of images A and B, 
respectively. 

In case 1 of Fig. 10, 3 out of 3 dust artifacts were successfully detected. In this case, image B has 2 dust 
artifacts located over blood vessels (pointed out by green arrows), which were correctly detected even 
though one of them is small. The dust artifact located on the blood vessel on the right side of the region was 
satisfactorily removed while keeping the vessel structure intact. Similarly, in case 2, the algorithm detected 
all 4 dust artifacts even though they do not have high contrast, and one of them occludes a blood vessel in 
image A (see the green arrow). In image A, a single artifact located on top of a blood vessel was successfully 
detected. The inpainting result was satisfactory. The other dust artifacts were located in uniform regions 
with no texture, which facilitates their detection and removal. 

Cases 3 and 4 show the detection of artifacts of different sizes, which are also occluding vessels, including 
barely noticeable ones. All artifacts were correctly detected, segmented, and removed. In case 3, 12 out of 
12 dust artifacts were detected. In case 4, 7 out of 7 artifacts were detected, including two small artifacts 
located in a dark region. In both cases, there are also artifacts located on top of blood vessels, which were 
satisfactorily restored. 

In case 5, 20 out of 30 dust artifacts of different sizes were detected. The undetected 10 artifacts have low 
contrast. The algorithm was able to remove the detected artifacts regardless of their size and appearance. 
However, the inpainting area is slightly noticeable in two artifacts at the bottom edge of the image where 
the surrounding area was darker (see the two green arrows in the restored version of image A). Probably 
because this edge region is not well represented in the learned dictionary. An extreme situation is case 6, in 
which we show a widely contaminated region. There are many dust artifacts of different sizes. The 
algorithm successfully detected 29 out of 41 dust artifacts. The undetected artifacts are mostly small and 
not well contrasted. The inpainting process removed the detected dust artifacts without leaving noticeable 
marks. 

In the six cases presented in Fig. 10, there are a total of 97 dust particle artifacts, of which 75 were detected, 
i.e., the results present a specificity of 77.32% with an average artifact detection rate of 90%. No false 
positives were obtained in the results of the dust artifacts detection phase. The false positives that might 
have resulted from the normalized cross-correlation were discarded by comparing several images taken 
with the same camera (spatial matching). Due to the complexity of the problem, this detection rate is 
sufficiently good either for image quality estimation or for the complete process of artifact detection and 
removal. However, further research with a larger dataset may be required to provide a more accurate 
detection rate. Nevertheless, from our tests, the algorithm often detects most artifacts. If used as a binary 
classifier for determining the presence of artifacts, the classification rate would be much higher. 
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Fig 10: Six cases, one for each row, of contaminated regions. For each case, the first and third image, left to right, are the input images 

with green squares that mark the detected artifacts. The second and fourth image correspond to the result after inpainting of  the first 

and third image, respectively. Dust artifact count ground truth vs detected: Case 1, 3/3; case 2, 4/4; case 3, 12/12; case 4, 7/7; case 5, 

20/30; case 6, 29/41. Green arrows point out details described in the text. 

 

3.c. Experiment 2 

In Fig. 11, we show a comparison between the results of our previous dust artifact detection method [4] 
(Fig. 11(a)) and the results of the method proposed in this paper (Fig. 11(b)). The previous method detected 
16 out of 41 artifacts, while the new method detected 29. The proposed method is better at detecting dust 
artifacts in darker regions, and at estimating the correct artifact size. The previous method used an average 
template obtained from artifacts, whereas a filter bank of templates describes better the different artifacts 
and allows for size estimation. 

To assess the restoration quality of the proposed method, in Fig. 12 we show a comparison between the 
results of the inpainting by a diffusion method [4] (Fig. 12(b)) and by the proposed sparse-based inpainting 
method (Fig. 12(c)). Note that with the diffusion method, the restoration of artifacts located on top of blood 
vessels lead to an image where vessels are smoothed out. Whereas with the proposed method, the blood 
vessel structure remains continuous without introducing new artifacts. 
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Fig 11: Dust artifact detection method comparison on case 6 from Fig. 10. Green squares mark the detected artifacts and their size. (a) 

Detected dust artifacts with previous method [4] 16/41. (b) Detected dust artifacts with the proposed method 29/41. 

 

 
Fig 12: Inpainting results. (a) Original image with artifacts. (b) Inpainting result by diffusion method from Ref. [4]. (c) Inpainting result 

by the proposed method in which the blood vessel structure remains continuous. 

 

4. Conclusions 
Dust artifact detection in retinal images is needed for preliminary image analysis to avoid false-positive 
detections or to be used as an image quality criterion. They may appear in any image region and are 
generally difficult to detect as they are small and of low contrast. The method proposed in this paper 
achieves high detection rates, precise artifact segmentation, and state-of-the-art image restoration through 
sparse-based inpainting. Using two images to confirm the presence of artifacts allows us to rule out a 
possible artifact with a microaneurysm since the artifacts maintain their positions despite the fact that the 
images are different, not being the case of the microaneurysms. The proposed iterative segmentation via 
inpainting approach enables well-defined artifact segmentation, improving the restoration results even 
under challenging regions like blood vessels. Future work involves using this method as a preprocessing 
stage in other retinal image processing algorithms. An implementation of the proposed algorithm can be 
accessed and executed through Code Ocean. 
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