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Abstract

Retinal eye fundus images are used for diagnostic pur-
poses, but despite controlled conditions in acquisition they
often suffer from uneven illumination and blur. In this work,
we propose the use of multi-channel blind deconvolution for
the restoration of blurred retinal images. The estimation of
an adequate point-spread function (PSF) is highly depen-
dent on the registration of at least two images from the same
retina, which undergo illumination compensation. We use
the bi-dimensional empirical mode decomposition (BEMD)
approach to model the illumination distribution as a sum
of non-stationary signals. The BEMD approach enables an
artifact-free compensation of the illumination in order to es-
timate an adequate PSF and carry out the best restoration
possible. Encouraging experimental results show signifi-
cant enhancement in the retinal images with increased con-
trast and visibility of subtle details like small blood vessels.

1. Introduction

Blur is one of main image quality degradations in eye
fundus images. Its main causes are: inherent optical aberra-
tions in the eye, relative camera-eye motion, and improper
focusing. The optics of the eye is part of the optical imag-
ing system and as such, eye aberrations are a common
source of image degradation. The technique for recover-
ing an original or unblurred image from a single or a set of
blurred images in the presence of a poorly determined or
unknown point spread function (PSF) is called blind decon-
volution. For the restoration of retinal images, we have pro-
posed [4] a blind deconvolution method to restore blurred
retinal images acquired several months apart, even when
structural changes had occurred in the retina.

Our restoration approach is based on multi-channel blind
deconvolution (MBD) [7]. MBD requires at least two

images of the same scene in order to recover the PSFs and
carry out the restoration. We consider as input two retinal
images acquired with a conventional fundus camera within
a time lapse that can span from several minutes to months
given by routine patient checkups. The images correspond
to the same retina but can differ with respect to illumina-
tion distribution, blur, and local structural changes given
by pathological developments. These differences cannot
solely be accounted for by the convolutional model. For
that reason, the images must be preprocessed before the
blind deconvolution stage can take place. We register the
images and compensate for uneven illumination variation.
Our work builds upon [4], the illumination distribution is
compensated by making the illumination of one image as
close as possible to the other image. This has a clear advan-
tage of being easier to compute, but it does not guarantee
a uniform illumination that provides better definition and
contrast of the retinal image, despite improving PSF esti-
mation.

In order to compensate the non-uniform illumination of
retinal images the illumination distribution has to be esti-
mated properly. However, this is not straight-forward since
the retina has several elements like the blood vessels or
the optic disc, which have different luminosity properties.
Thus, a proper illumination compensation approach should
take this into account. Illumination compensation is im-
portant not only for visualization purposes, but also often
included in the pipeline of algorithms for automated digital
image analysis [5, 2], for disease detection [1], for image
restoration or deconvolution [3], and longitudinal change
detection

2. Mathematical Model of Image Degradation

The unregistered input images, as shown in Figure 1, are
Î1 and Î2. After registration , we obtain two degraded reg-
istered images I1 and I2, which we model as originating
from an ideal sharp image. Mathematically, the degradation
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Figure 1. Two fundus images from the same retina. Both are degraded with blur and uneven illumination.

model is stated as

I1 = U ∗ h1 + n1

I2 = U ∗ h2 + n2 , (1)

where ∗ is the standard convolution, hi are called convolu-
tion kernels or PSFs, and ni are Gaussian zero-mean noise.

3. Bidimensional Empirical Mode Decomposi-
tion (BEMD)

BEMD is a two-dimensional (2-D) extension of the clas-
sical EMD [6]. The EMD method is a sifting process that
decomposes any complex signal into a finite, and often
small, number of components called intrinsic mode func-
tions (IMFs). An IMF represents a simple oscillatory mode
with the same number of extrema and zero crossings, with
its envelopes being symmetric with respect to zero.

In BEMD an image I(x, y) is decomposed into multiple
IMFs by the following sifting process:

1. Initialization: set S(x, y) = I(x, y).

2. Identify all local maxima and local minima of S(x, y).

3. Interpolate the local maxima (resp. minima) to obtain
the upper envelope emax(x, y) (resp. lower envelope
emin(x, y)).

4. Compute the mean envelope
m(x, y) = [emax + emin] /2.

5. Compute S′(x, y) = S(x, y)−m(x, y).

6. Update S(x, y) by S′(x, y).

Repeat steps 1 to 5 until the stopping criterion is met, in
this case by limiting the size of the standard deviation (SD)

computed from two consecutive sifting iteration results as:

SD =

∑
x

∑
y [S

′(x, y)− S(x, y)]2∑
x

∑
y [S(x, y)]

2 . (2)

This sifting process stops if SD is less than a threshold.
The resulting S′(x, y), denoted by c1(x, y), is considered
as the first IMF which represents the fast fluctuating compo-
nent of the image. The residue r1(x, y) = I(x, y)−c1(x, y)
is a slower fluctuating signal, which is treated as the new
input, i.e. S(x, y) = r1(x, y). The same sifting is then ap-
plied to the new input to extract the next IMF and produce
the next residue. This iteration is carried out n times until
no more IMFs can be extracted. Consequently, the original
image can be obtained by:

I(x, y) =

n∑
j=1

cj(x, y) + rn(x, y) . (3)

4. Illumination Compensation by BEMD
In this paper we propose the use of BEMD to accurately

estimate the illumination distribution of retinal images.
BEMD has the advantage that it decomposes the image in a
nonlinear way into IMFs. The first IMF contains the highest
spatial frequencies, the other IMFs contain frequencies pro-
gressively smaller and the residue represents low-frequency
information in the source image.

After decomposing the image into IMFs, the residue con-
tains the smoothest transitions in the image. We can model
these as the changes in illumination. In this way, because
the residue also has the dc content of the original image, we
can proceed to compensate the illumination in the retinal
image by subtracting the residue from the original image.
From Eq. (3) the compensated image is

I ′(x, y) = I(x, y)− rn(x, y) . (4)



Figure 2. Illumination compensation by means of BEMD. (a)-(b) Are the compensated images from Figure 1. (c)-(d) are the residue
(illumination component). Notice the increase in contrast and the uniform illumination.

5. Image restoration
The PSF estimation and image deconvolution algorithm

can be viewed as a Bayesian maximum a posteriori estima-
tion of the most probable sharp image and blur kernels. The
algorithm is basically the minimization of the functional

arg min
U,h1,h2

1

2
||U ∗ h1 − I ′1||2 +

1

2
||U ∗ h2 − I ′2||2

+λu

∫
|∇U |+ λh||I ′1 ∗ h2 − I ′2 ∗ h1||2, (5)

h1, h2 ≥ 0 ,

with respect to the latent image U and blur kernels h1 and
h2. The first and second terms measure the difference be-
tween the input blurred images and the searched image U
blurred by kernels h1 and h2. The size of this difference
is measured by L2 norm ||.|| and should be small for the
correct solution. Ideally, it should correspond to the noise
variance in the given image. I ′i are the illumination com-
pensated images. The two remaining terms are regulariza-
tion terms with positive weighting constants λu and λh. The
third term is the total variation of U . It improves stability of
the minimization and from the statistical viewpoint incor-
porates prior knowledge about the solution. The last term
is a condition linking the PSFs of both images, which also
improves the numerical stability of the minimization. For
this procedure we set λu = 1000 and λh = 10.

The functional is alternately minimized in the subspaces
corresponding to the image and the PSFs. The minimization
in the PSF subspace is equivalent to the solution of a system
of linear equations in the least squares sense with the non-

negativity constraint. In the same minimization procedure
both the PSFs and the restored image are estimated.

6. Experiments and Results
We performed several experiments on naturally degraded

images coming from the clinical practice to illustrate the ap-
propriateness of the method. The proposed method has been
tested on a dataset of 20 images with reliable results. In this
section we show two typical examples of retinal images de-
graded with uneven illumination, their compensation, and
the restoration by means of MBD.

In Figure 2 we show the same retinal images from
Figure 1 with the illumination compensation by BEMD. It
is important to highlight the increase in contrast and the
homogeneous illumination. Figure 2(c)-(d) show the esti-
mated illumination distribution.

In Figure 3 we show a detail of the restored retinal image
by deconvolution and the estimated PSFs. There is a no-
table increase in visibility of subtle details like small blood
vessels.

7. Conclusions
In this work we have proposed the use of the bidimen-

sional empirical mode decomposition as a means of com-
pensation of uneven illumination prior to restoration by
multichannel blind deconvolution. The compensation of the
illumination provided an improvement in contrast and a ho-
mogeneous illumination. In addition, the restoration by de-
convolution improves visibility of subtle details like small
blood vessels.



Figure 3. Image restoration by MBD. (a) original image with il-
lumination compensation by BEMD. (b) Restored image. (c)-(d)
Estimated PSFs for images in Fig. 2 (a)-(b). Note at the increase
in visibility of small blood vessels.
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