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Abstract: This paper discusses on a quantitative comparison of the 
performances of different advanced algorithms for phase data de-noising. In 
order to quantify the performances, several criteria are proposed: the gain in 
the signal-to-noise ratio, the Q index, the standard deviation of the phase 
error, and the signal to distortion ratio. The proposed methodology to 
investigate de-noising algorithms is based on the use of a realistic 
simulation of noise-corrupted phase data. A database including 25 fringe 
patterns divided into 5 patterns and 5 different signal-to-noise ratios was 
generated to evaluate the selected de-noising algorithms. A total of 34 
algorithms divided into different families were evaluated. Quantitative 
appraisal leads to ranking within the considered criteria. A fairly good 
correlation between the signal-to-noise ratio gain and the quality index has 
been observed. There exists an anti-correlation between the phase error and 
the quality index which indicates that the phase errors are mainly structural 
distortions in the fringe pattern. Experimental results are thoroughly 
discussed in the paper. 
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1. Introduction 

Digital holography is an effective and robust method for imaging and metrology [1,2]. 
Holographic phase imaging measures the optical path length map associated with transparent 
specimens (transmission illumination) or opaque surfaces (reflection illumination) and 
translates this data into relevant information. The measured field of interest is related to a 
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wrapped modulo 2π phase map (also called phase fringe pattern). A limitation of digital 
holographic phase imaging is related to speckle decorrelation which occurs between two 
consecutive temporally varying digital holograms [3–5]. Note that in digital holography, the 
phase decorrelation noise may have several origins [4]. The direct consequence is that this 
decorrelation adds a high spatial frequency noise to the useful phase data. Then, robust noise 
filtering has to be implemented in order to yield measured phase fringe patterns suitable for 
quantitative measurement. Usually, and in order to preserve the 2π phase jump in the wrapped 
phase map, phase processing is carried out on the sine and cosine images calculated from the 
raw phase [6,7]. At the final step, the processed phase map has to be unwrapped in order to 
get a quantitative measurement of the measurand of interest (displacement, field, strain field, 
vibration field, etc…) with a robust noise immune algorithm [8,9]. Note that unwrapping will 
be not discussed in the paper. In this paper we aim at comparing the performances of different 
advanced algorithms for phase data de-noising. In order to quantify the performances, four 
criteria are proposed. These criteria are the gain in the signal-to-noise ratio, the Q index, the 
standard deviation of the phase error, and the signal to distortion ratio. As a general rule, 
experimental data cannot provide a comparison with an exact expected value. Then, the 
methodology we propose to investigate the de-noising algorithms is based on the use of a 
realistic simulation of noise-corrupted phase data, to apply de-noising on sine/cosine images 
of phase, and to use the above mentioned criteria to qualify the methods. 

This paper is organized as follows; in section 2, we describe the theoretical basics and the 
phase decorrelation noise in the phase measurement; section 3 discusses on the realistic 
simulation of corrupted phase. In section 4, the criteria to qualify the performances of 
algorithms are presented. Section 5 provides details on the de-noising algorithms considered 
for the study. In Section 6, the results of the benchmark are presented and discussed, and 
rankings of the methods are given. Section 7 proposes application of the best de-noising 
method to experimental data. Conclusions and perspectives to the study are drawn in section 
8. 

2. Basics of digital Fresnel holography 

A digital hologram is obtained by recording with a pixel matrix sensor the coherent mixing of 
a so-called object wave (O) and a so-called reference wave (R). The hologram is usually 
written as [1,2,10,11]: 

 2 2 * *.H R O R O RO= + + +  (1) 
In Eq. (1), the reference wave is generally written R(x,y) = aRexp[2iπ(u0x + v0y)] with 

spatial frequencies {u0,v0} (off-axis configuration), and O is the wave diffracted in the 
recording plane by the object located at distance d0 from this plane. The object wave O can be 
expressed under the Fresnel approximations by Eq. (2) [1,2,10,11] (i = √−1): 
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The object wave front at the object plane is A(X,Y) = A0(X,Y)exp[iψ0(X,Y)] and λ is the 
wavelength of light. The reconstruction of the object field at distance −d0 from the recording 
plane is given by the discrete Fresnel transform [10]: 
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Equation (3) includes the pixel coordinates (lpx,kpy) at which the digital hologram is 
recorded (l, k: integers; px, py: pixel pitches). From the numerical computation, the amplitude 
and phase of the diffracted field can be evaluated. As a general rule, and except for digital 
holographic microscopy, the object wave front is speckled. Quantitative measurement is 
carried out by a subtraction between the object phase and a “reference” phase, the reference 
being that of the object at the so-called “reference” state. The obtained phase difference is 
given modulo 2π and phase unwrapping is then required [8]. This approach is limited by the 
speckle phase decorrelation which occurs between the two states of the object. This 
decorrelation noise may have several origins: modifications at the object surface (due to 
loading such as mechanical, vibrations, heating, pneumatic,…), laser wavelength change 
between exposures (e.g. surface shape measurement), reduced number of recording pixels 
(low resolution of the sensor), defocusing of the reconstructed image (the reconstruction 
distance is “not good”), saturation of the recorded hologram, quantization effect due to a low 
number of useful bits or shot-noise if the number of photo-electrons is too low. In speckle 
metrology, the decorrelation noise due to modifications at the object surface is the main 
contribution to noise and its contribution to the noise standard deviation is much larger than 
the other error sources. The speckle phase decorrelation noise is related to the correlation 
property of the two speckle fields given at the two object states. This correlation property is 
related to the second-order probability density function of the phase [3]. Here, we note ε the 
noise induced by the speckle decorrelation between two object fields (with phases ψ1 and ψ2) 
reconstructed for two different states and Δφ the phase change due to the modifications at the 
object surface. Then we have ψ2 = ψ1 + ε + Δφ, and phase change Δφ is considered as 
deterministic. The probability density function of phase noise ε depends on the modulus of 
the complex coherence factor |μ| between the two speckle fields. Parameter |μ| indicates the 
correlation between the two speckle fields. If |μ| = 0, the fields are not correlated and their 
phase difference is uniformly distributed over range [−π, + π], thus noise is high. If |μ| = 1, the 
fields are fully correlated and the phase difference is close to 0, thus noise is weak. With β = 
|μ|cos(ε), the second-order probability density of the phase noise ε is given by [3,5]: 

 ( ) ( )
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This probability density is centered (mean value at 0) and its width depends on |μ|. Curves of 
Eq. (4) versus |μ| are given in Fig. 1. 

 
Fig. 1. plots of the probability density function vs different values of |μ|. 
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When the coherence factor increases, the probability density tends to be narrower, and for 
value of |μ|>0.99, it can be considered as quasi-Gaussian. However, for |μ|<0.99, the 
probability density is not Gaussian, and this means that the decorrelation phase noise cannot 
be assimilated to a Gaussian white noise. In addition, the decorrelation noise is closely related 
to the fringes produced by the object surface changes. When surface changes produce more 
and more fringes, then decorrelation phase noise increase and the signal-to-noise ratio (SNR) 
decreases strongly. It follows that SNR is related to the fringe number. This means that 
evaluation of filtering method for speckled phase images cannot be carried out by considering 
a simple Gaussian additive noise, as was proposed in ref [7,9,12]. Indeed, it would be not 
realistic to add Gaussian noise to any phase map to simulate decorrelation noise, and simply 
adjusting the SNR level by adjusting the standard deviation of the added Gaussian noise. In 
order to take into account this close link between fringe density and SNR, a realistic 
simulation has to be implemented. 

3. Realistic simulation of corrupted phase data 

3.1 Principle 

In order to evaluate the performances of de-noising and restoration, a realistic numerical 
simulation was developed. The goal of the simulation is to produce phase map corrupted by 
speckle decorrelation noise with the adequate probability density function. In experiments, 
the amount of speckle phase decorrelation is naturally controlled by the fringe density, which 
is related to the surface modifications. The larger the surface deformation, the higher the 
number of fringes, and hence the higher the phase decorrelation between the two states of the 
object surface. Several authors proposed a scheme to simulate speckle interferometry fringes 
[13,14]. In these previous works, the intensity distribution is of primary interest. In this paper, 
we aim at simulating phase decorrelation effects that corrupt the digital modulo 2π fringes. 
The arrangement to produce speckle phase decorrelation is given Fig. 2. The surface is 
supposed to be rough compared to the wavelength of light (visible range) and is illuminated 
by a uniform plane wave. The two lenses have the same focal length (f), and a circular 
diaphragm with radius Ru is inserted in the back focal plane of the first lens (i.e. the Fourier 
plane of the 4-f optical system). If A(x,y) = A0exp(iφ0)δ(x−x0,y−y0) (δ is the Dirac delta 
function) is the complex field of a single point in the object plane localized at (x0,y0), then the 
corresponding complex amplitude at the image point is given by the convolution equation 
according to A’(X,Y) = A(X,Y)*PSF(X,Y) (* means convolution) with PSF being the point 
spread function given by Eq. (5) [13]: 
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In Eq. (5), p(x’,y’) is the pupil function provided by the diaphragm in the back focal plane, 
i.e. p(x’,y’) = 1 if x’2 + y’2≤Ru

2 and 0 elsewhere. The value of Ru is adjusted to control the 
speckle grain size in the image plane and to simulate realistic images. From a practical point 
of view, the convolution equation can be carried out with two-dimensional fast Fourier 
transforms. The roughness is numerically simulated by considering a surface profile h(x,y) 
with roughness having Gaussian statistics and has a Dirac delta autocorrelation function. This 
random surface generates a random optical phase ψ = 2πh/λ. The surface deformation is 
simulated by using an analytical model, such as Gaussian distribution, first, second and third 
order polynomials, and Matlab function “membrane”. The surface deformation is then added 
to the surface roughness. 

In order to get phase change due to surface deformation and including speckle phase 
decorrelation, the procedure is as follows: first calculate the convolution equation with the 
random surface to produce a random “reference” speckle field in the image plane, second 
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calculate the convolution equation with the random surface to which is added the surface 
deformation to produce a random “deformed” speckle field in the image plane, last calculate 
the phase difference between the two previous speckle phases from the two calculated optical 
fields. Phase decorrelation occurs because of the spatial filtering produced by the diaphragm 
in the back focal plane. Note that the signal-to-noise ratio obtained in the phase difference 
image is related to the speckle noise and the amplitude of the deformation. As a result, the 
speckle phase decorrelation noise follows the same statistics as given in Eq. (4). 

In order to illustrate few outputs of the simulation process, Fig. 3 shows data obtained 
with an image size at 1024 × 1024 pixels, pixel pitch at px = 5μm, λ = 632.8nm, and speckle 
grain at 20μm. The size of the speckle grain is estimated by calculating the autocorrelation of 
the speckle intensity in the image plane. Figure 3(a) shows the surface deformation given in 
radians and used for input in the convolution calculation. Figure 3(b) shows the modulo 2π 
noisy phase difference that is obtained by subtracting the two phases from the two calculated 
optical fields. It can be seen that it includes the speckle phase decorrelation noise. Figure 3(c) 
exhibit the autocorrelation of the speckle intensity providing the size of the speckle grain (in 
this case grain size is at 20μm). Figure 3(d) gives the decorrelation noise calculated by 
subtracting the initial simulated modulo 2π deformation with the noisy modulo 2π phase map. 

 
Fig. 2. Arrangement to produce speckle phase decorrelation in phase change due to surface 
deformation. 

From the noise map of Fig. 3(d), the probability density of the decorrelation noise can be 
estimated. In Fig. 3(e), the red curve shows the probability density obtained from theory (Eq. 
(4)) after least square fitting, and the blue curve shows that obtained from Fig. 3(d). Finally 
Fig. 3(f) shows the cosine image of the noisy phase for which the signal-to-noise ratio (SNR) 
is estimated at 5.09dB. From the estimated probability density of the decorrelation noise in 
Fig. 3(e), the fit with Eq. (4) leads to the coherence factor |μ|. In this example, it is estimated 
to |μ| = 0.915, and the standard deviation of the decorrelation phase noise is σ = 0.657rad. 
Figures 3(b) and 3(e) shows that the noise simulation is quite realistic and corresponds to 
what is observed in real experiments. Note that the coherence factor can be used as a quality 
marker for the measurement in high-speed holographic interferometry [4,5]. 
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Fig. 3. Examples of outputs from the numerical simulation, (a) surface deformation in radians, 
(b) modulo 2π noisy phase map including the speckle phase decorrelation, (c) autocorrelation 
of the speckle intensity providing the size of the speckle grain, (d) decorrelation noise, (e) 
probability density of the decorrelation noise (red: theoretical Eq. (4), blue: obtained from Fig. 
3(d), and 3(f) cosine image of the noisy phase, the signal-to-noise ratio in this image is 5.08dB. 

3.2 Database for benchmark 

The database for the benchmark consists of simulated fringe images in which the type of the 
fringe pattern and the noise level are controlled. The use of several fringe pattern permits to 
consider a certain “fringe diversity” so as to establish statistics on the obtained results. For 
this purpose, we chose five different fringe patterns. In addition, five values for the SNR were 
simulated by decreasing the SNR value with adding to the simulation a wavelength change. 
This helps to simulated degraded phase images according to real experimental conditions for 
which a lot of limiting factors may influence the quality of the measurement [5]. The five 
SNR values are 7.31dB, 6.10dB, 5.08dB, 4.03dB and 3.10dB, respectively for the five rows. 
Figure 4 shows for one of the fringe pattern, the set of data for the five SNR values. For a 
given SNR, each row shows respectively the cosine of the noisy phase (Figs. 4(a), 4(f), 4(k), 
4(p), 4(u)), the sine of the noisy phase (Figs. 4(b), 4(g), 4(l), 4(q), 4(v)), the modulo 2π 
deformation phase maps (Figs. 4(c), 4(h), 4(m), 4(r), 4(w)), the modulo 2π noisy deformation 
phase maps (Figs. 4(d), 4(i), 4(n), 4(s), 4(x)), and the the noise maps extracted from the 
simulation (Figs. 4(e), 4(j), 4(o), 4(t), 4(y)). 

Figure 5 shows the 5 fringe patterns of the set of data for one SNR value. Figures 5(a)–
5(e) show the cosine of the simulated deformation phase. Figures 5(f)–5(j) show the cosine of 
the noisy deformation phase for SNR at respectively 3.10dB, 3.59dB, 3.34dB, 3.66dB and 
3.65 dB, thus an average value at 3.46dB. Figures 5(k)–5(o) show the simulated modulo 2π 
deformation phase maps. In Figs. 5(p)–5(t) the modulo 2π noisy deformation phase maps are 
exhibited. Last, Figs. 5(u)–5(y) show the noise maps extracted from the simulation. 
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Fig. 4. Outputs from the numerical simulation for 5 different values of the SNR, respectively 
for each row at 7.31dB, 6.10dB, 5.08dB, 4.03dB and 3.10dB, (a),(f),(k),(p),(u) respectively the 
cosine of the noisy phase, (b),(g),(l),(q),(v) the sine of the noisy phase, (c),(h),(m),(r),(w) the 
modulo 2π deformation phase maps, (d),(i),(n),(s),(x) the modulo 2π noisy deformation phase 
maps, and (e),(j),(o),(t),(y) the noise maps extracted from the simulation. 
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Fig. 5. Outputs from the numerical simulation for 5 different fringe patterns, (a) to (e): cosine 
of the simulated phase, (f) to (j): cosine of the noisy phase for SNR at respectively 3.10dB, 
3.59dB, 3.34dB, 3.66dB and 3.65 dB (average value at 3.46dB), (k) to (o): simulated modulo 
2π deformation phase maps, (p) to (t): modulo 2π noisy deformation phase maps, (u) to (y): 
noise maps. 

The next section discusses on the evaluation criteria which were used to rank the different 
de-noising methods discussed in section 5. 

4. Evaluation criteria 

The de-noising methods are used to enhance the phase difference and to reduce the speckle 
decorrelation noise. As a general rule, the filtering is not applied on the raw modulo 2π phase 
because the phase jumps must be preserved. Thus, de-noising is applied on the sine and 
cosine images of the raw phase, and the enhanced modulo 2π phase is calculated by an 
arctangent formula; by this way filtering does not destroy the phase jumps which are of 
primary interest to unwrap the phase. For each test in the benchmark, four evaluation criteria 
are computed. The first one is the gain in the SNR provided by the de-noising method. Given 
the importance of cosine and sine images in the restoration process, the gain is calculated 
from the estimated SNR of the cosine and sine images of the phase. The gain in the SNR is 
defined according to Eq. (6): 

 .SNR SNR SNRG R I= −  (6) 
In Eq. (6), RSNR and ISNR are respectively the SNR measured at the output and at the input 

of the de-noising processing, and its value is given in dB unit. The residual SNR, noted RSNR, 
is defined from the original noise-free image s(i,j) and the de-noised image d(i,j) according to: 
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As a general rule, the SNR and its variants are intensively used to evaluate methods of 
image enhancement and restoration. However, such criterion has a significant drawback since 
it is based on the calculation of an average error which does not account for distortions which 
may affect the structures in the image. Thus, the same amount of error can be observed 
between two images restored for an image having a very different perceived quality. In order 
to address this drawback, Wang and Bovik proposed what they called the “quality index” 
criterion [15]. This criterion has the property of better exhibiting the quality of the perceived 
image. Equation (8) gives the useful expression to calculate the quality index: 

 2 2 2 2

2 2
.sd s d s d

index
s d s d s d

Q
σ µ µ σ σ

σ σ µ µ σ σ
=

+ +
 (8) 

In Eq. (8), µs and µd are the mean values of images s(i,j) and d(i,j), σs and σd are their 
variances and σsd their covariance. The value of Qindex is included in the interval [−1, + 1], the 
latter being reached when the two images are quite similar. Note that this criterion was also 
considered by Federico and Kaufmann in their work about de-noising speckle interferogram 
using wave atoms [16]. The third criterion is related to the error on the phase reconstruction. 
Indeed, the main goal of the phase measurement is related to metrology purpose, and then the 
phase error is an important parameter of the de-nosing method. The phase error is calculated 
by subtracting the original simulated phase deformation to the de-noised phase, and then the 
standard deviation σφ is estimated according to Eq. (9): 

 
22 .φ φ φσ ε ε= −  (9) 

In Eq. (9), εφ = Δφs− Δφf, Δφf is the enhanced phase difference and Δφs is the initial noise-
free simulated phase. The last criterion that is considered in this paper is the signal to 
distortion ratio (SDR) [17] defined by: 

 2

2

.
s

SDR
s d

=
−

 (10) 

In Eq. (10), 
2

...  means l2 norm. Note that to apply Eq. (10) we consider image s being 
the initial noisy image (and not the initial noise free image, as for the other criteria). The 
reason is that we aim also at comparing criteria that could be applied in the absence of 
information about noise, as it is mainly the case for real data sets. Note that the speckle 
contrast defined in [18–20] could be also considered. However, this criterion is not applicable 
to modulo 2π phase maps because it is too much sensitive to phase jumps. Thus, the speckle 
contrast will be not considered in this paper. The next section describes the de-noising 
processes which were considered in this study. 

5. Methods and algorithms for speckle reduction 

5.1 Spatial filtering 

Spatial filtering is the most commonly applied filtering in digital speckle pattern 
interferometry [6,7]. To preserve the phase jumps, it is applied on the sine and cosine of the 
phase. Several types of kernels can be considered: the moving average filter (not considered 
here), the median filter (efficient for impulsive noise) or the Gaussian filter. The size of the 
kernel may vary from 3 × 3 to 21 × 21 for images at 512 × 512 or 1024 × 1024 pixels. These 
filters are generally very easy to implement and they constitute reference methods to evaluate 
other more complex algorithms. 
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5.2 Wiener filtering 

The Wiener deconvolution is a mathematical operation applying a filter to eliminate the noise 
in any signal. This filtering operates in the frequency domain by trying to minimize the 
impact of noise where the SNR is bad. From a mathematical point of view, this is the 
solution, in the least square sense, of the minimization of the mean square error computed 
between the original image s(x,y) and the filtered image d(x,y), in case of linear spreading 
model with additive noise b(x,y). According to [21], the transfer function of the Wiener filter, 
W(u,v), is given by Eq. (11): 

 ( ) ( ) ( )
( ) ( ) ( )2

, ,
, .

, , ,
s

s b

H u v u v
W u v

H u v u v u v

Φ
=

Φ + Φ
 (11) 

In Eq. (11) the spreading function H(u,v) can be chosen to be unitary, Φs is the estimated 
power spectrum density of the original image and Φb is the estimated power spectrum density 
of noise. The power spectrum densities of original image and noise are not known a priori. 
The median filtering is applied on the noisy image to get estimations of both the noise and the 
original image. The original image is simply estimated by applying the median filtering on 
the noisy image. Noise is estimated by calculating the difference between the raw noisy 
image and the median filtered noisy image. 

5.3 SAR filtering 

Synthetic Aperture Radar (SAR) filtering can be applied to speckle images, because 
intrinsically SAR images include same properties as that of speckle images, the noise model 
being considered as multiplicative. Lee proposed an adaptive filter [22] is which the 
parameters are adapted according to the local statistical properties of the image to be 
processed. These parameters are estimated in a window centered on the pixel for which one 
expects restoring the correct value. Computation of the filtering can be described by Eq. (12): 

 ( ) ( ) ( ), , 1 .sd x y s x yα αµ= + −  (12) 
Parameter α = 1−Cb

2/Cs
2 depends on the ratio of the squares of the local variation 

coefficients of the image, Cs, and noise, Cb. This local variation coefficient is defined as the 
ratio of the variance between the mean square of the considered pixel values. In a region with 
homogeneous values, the local variation coefficient is low (≈0), and the filter does not modify 
the image. In the opposite case, if this variation is larger than that of the noise, the current 
value of the pixel is considered. An alternative approach was proposed by Frost [23]. The 
filter consists in an adaptive Gaussian filter kernel. The kernel parameters are adjusted 
according to the local statistics of the image by considering the local variation coefficient Cs

2. 
In the presence of an edge or a discontinuity, the coefficient increases and the Gaussian kernel 
is concentrated around the current pixel, ultimately its original value is retained. In a region 
with homogeneous values, the local variation coefficient is low (≈0), and the filter behaves as 
a simple averaging. If the variation in the observed image is less than that of the noise, α is 
equal to 0, and the average of the window is affected at the value of the pixel. 

5.4 Wavelet thresholding approaches 

Image enhancement can also be considered in the sense of a decomposition on a wavelet basis 
associated with a threshold function [24,25]. The basic idea is to apply a threshold operator 
on the wavelet coefficients computed from the image to be restored. If the wavelet basis is 
adapted to the signal contents, its representation in the wavelet coefficients space is sparse. 
This means that the highest coefficients concentrate information about the image. Then, 
applying a threshold leads to leave off the least significant coefficients which are supposed to 
be related to the noise. In such an approach, the model considers an additive noise. Using the 
wavelet transformation, the same process is applied to the coefficients. When the noise is not 
additive but multiplicative, additive signal and noise are obtained by computing the 
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logarithm. This was studied in the case of speckle noise processing in SAR images [26]. 
Multiple variants of solutions, not detailed here, are available by adjusting many parameters 
of this method: choice of the wavelet basis, number of decomposition levels, profile of the 
thresholding operator, threshold values and their different associated estimator. In this 
benchmark, we consider separable wavelets Daubechies and symlets builds from the tensor 
product of their one dimensional release, curvelets and contourlets [27,28] built in a circular 
paving plane, thus offering a wide range of orientation waveforms. Note that such an 
approach was applied to the de-noising of noisy speckle interferograms [16,29,30]. 

5.5 Non-local means method 

Non local means method (NL-means) were recently proposed [31,32]. It constitutes an 
efficient technique for the enhancement of images corrupted by additive noise. The principle 
is to consider the pixel value replacement by a weighted sum of values included in patches 
that are chosen in the neighborhood of the pixel to be processed. The weighting is obtained 
from correlations estimated between the local patch of the pixel to be processed and the patch 
of the neighborhood patches that are taken into account in the algorithm. Thus, when a patch 
is strongly correlated with the local patch of the pixel to be processed, the pixel is taken into 
account in the weighting with a coefficient evaluated from a Gaussian kernel which argument 
is the Euclidean distance between the two patches. Such method was already used with 
success for speckle images from digital holography but with a different methodology 
approach (blind criterion without a reference image) [33]. In addition, the processing of the 
phase was not considered in this previous study. 

5.6 BM3D method 

Since its introduction by Dabov [34,35], the transform-based block-matching 3-D (BM3D) 
filter is recognized as state-of-the art in image de-noising. The important point to address is 
that BM3D filter combines various efficient techniques and synthesizes major advances that 
have occurred in recent years [36]. Among them, the approaches based on the decomposition 
of the image in patches, like NL-means method [31] and the use of shrinkage operators 
applied on image transform domain as wavelet representations. The BM3D filter exploits a 
particular nonlocal image modelling through a procedure termed grouping and collaborative 
filtering. Grouping finds mutually similar 2-D image blocks and stacks them together in 3-D 
arrays. Collaborative filtering produces individual estimates of all grouped blocks by filtering 
them jointly, using transform-domain shrinkage operator of the 3-D arrays. BM3D relies both 
on local and non-local characteristics of images. It follows the presence of numerous similar 
patches and that the image is locally highly correlated. When these assumptions are verified, a 
sparse representation of the group is obtained by applying a decorrelation 3-D transform. Due 
to the particular structure of interference fringe images which are regular and contain no 
complex textures, these assumptions remain true. The sparsity of the true image determines 
the success of the shrinkage operator to separate the noise from the observation and it means 
that its energy is compactly represented in the 3-D transform domain. The previous described 
operations constitute in fact the first stage of the overall method. Estimated true image is then 
used to perform in a second stage a Wiener like filtering onto the coefficients of the 3-D 
transform of similar stacked patche group. As a final stage, an aggregation procedure is 
performed on estimated true patches in order to compute the resulting value of pixels by 
summing patches using a weighting in a similar way as uses the NL-means method. The 
BM3D algorithm is based on the optimization of a very large number of parameters, at least a 
dozen. So, it is difficult to measure the impact of various components separately. For this 
reason, we have kept the parameters suggested by authors in the given software [34]. 

5.7 2-D windowed Fourier transform filtering 

The 2-D windowed Fourier transform filter (WFT2F) method [37,38] is based on a local 
Fourier transform (FT) which can takes into account the non-stationary characteristics of the 
speckle noise. So, frequency components of a fringe pattern can be extracted from noise with 
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more accurate efficiency than with a FT computed overall phase maps, as acts, for example, 
the Wiener filter method. In a similar way than for wavelet transforms, but adapted to a 
complex representation, the filtering process consists in applying a threshold to the modulus 
of the 2-D Fourier coefficients, letting the phase unchanged. Finally, an inverse 2-D 
windowed Fourier transform (IWFT2F) of the filtered frequency domain is then computed to 
get the modulo 2π phase of the fringe pattern. The WFT2F can be seen as a projection of the 
phase map onto 2-D oscillating functions which are localized in the spatial and the frequency 
domain. The discrete version of this algorithm leads to setting eight parameters, defining the 
window size, the threshold value and six parameters for sampling of the frequency axis. For 
the quantitative appraisal, we have keep values proposed by the author [39–41] which seems 
to be well adapted to the processing of phase fringe patterns. 

5.8 SPADEDH algorithm 

SPADEDH algorithm was proposed by Memmolo in reference [17], and means SPArsity 
DEnoising of Digital Holograms. This approach considers l1 minimization algorithm and is 
able to suppress the noise components on digital holograms without any prior knowledge or 
estimation about the statistics of noise. It was applied to noisy phase maps with Gaussian 
statistics [42]. During last decade compressive sensing (CS) approaches have brought major 
improvements in many fields of applications including signal processing stages. CS appears 
as a new paradigm of sampling theory in which samples are not anymore resulting from the 
acquisition along a regular grid of the quantity to record but from a projection onto an 
operator in which the signal is sparsely represented. In order to select the coefficients from 
the representation, a sparsity measure associated to a selection algorithm must be applied. L0 
and L1 norms have been shown to be the appropriate measures. In certain conditions, L0 and 
L1 norms lead to the same solutions. There exist also two main families of selection 
algorithms: greedy and minimization algorithms. The SPADEDH algorithm is based on a 
greedy approach which is the stagewise orthogonal matching pursuit. This algorithm is able to 
suppress the noise components on digital holograms without any prior knowledge or 
estimation about the statistics of noise. It was applied to noisy phase maps with Gaussian 
statistics [43]. 

Note that other efficient de-noising approaches were proposed in the field of digital 
holography. They are based on multi-look digital holography [18,19] which addresses the 
problem by reducing the light coherence by engineering the laser source or by recording and 
incoherently combining multiple holograms after providing some type of noise decorrelation 
between the captured data. For example, in [43], this approach is combined to BM3D 
algorithms to substantially enhance the reconstructed color holographic images. In the context 
of this study, this approach cannot be applied because we aim at considering de-noising 
performances by using a single noisy fringe map. In addition, applying this approach to 
multiple phase maps supposes that one is able to perfectly reproduce the surface deformation 
between the non-correlated sets of holographic recordings. 

6. Results and discussions 

For the evaluations, we selected a total of 34 algorithms differentiated by the used methods 
and their parameters. These methods are listed hereafter. The linear filter method with a 
Gaussian kernel sized 3 × 3 and 5 × 5 was taken into account. The median filter was used 
with kernel from 3 × 3 to 21 × 21 (7 odd mask sizes). The method of Wiener filtering was 
used with a unique setting. The Lee filter has no parameter, but the Frost filter was used with 
the same sizes as the median filter. The NLmeans method was considered with three sets of 
parameters (5,7,30), (5,11,40) and (7,15,30), which respectively represent the size of the 
patch, the size of the neighborhood to search for similar patches, and the declining value of 
the Gaussian kernel used for computation of distances between patches. For stationary 
wavelet, Daubechies and symlets were used with five and three values of the regularity 
parameter (1,3,4,6,8) and (4,6,8). Note that for these two last algorithms, the decompositions 
are performed on three levels with a hard thresholding applied to the non-decimated detail 
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coefficients that are calculated for each level. Last, we considered decompositions with 
curvelet, contourlets, BM3D and WFT2F for which we have kept the parameters of the 
algorithms provided by their respective authors. Finally, we considered the SPADEDH 
algorithm which has no parameter. 

Each method was evaluated by four values representing the average of the four indices 
Qindex, GSNR, σφ, and SDR (see section 4) with the 25 images of simulated phases from the 
database. These 25 images represent five different fringe shapes and densities, and five 
different SNR of the cosine image, the SNR being in the range [3dB, 11dB] (see Fig. 4 and 
Fig. 5). 

Figure 6 summarizes the results obtained for the four indices by presenting their ranking. 
For better conciseness, 20 results were selected for which, whenever it was possible, the set of 
parameters offered the best results. However, all the methods discussed in section 5 are 
represented in the paper. The height of the vertical color bars represents values of averaged 
values over the entire database. We also represent, within each index bar, a second bar of 
different color corresponding to the standard deviation associated with the values displayed 
for the entire database. 

Figure 6(a) shows the results obtained for the average value of σφ which is certainly, for 
holographic phase imaging, the most important parameter. Note that the WFT2F method 
gives the best performance with an average value at 0.035rad, followed by curvelets at 
0.07rad, with in addition, the lowest variance with the curvelets over the whole database. This 
result confirms that given in the paper of Kaufman [16] about the efficiency of wave atoms 
based methods. The BM3D method (known as the state of the art) gives quite equivalent 
results than curvelets, but with a larger variance; this suggests that this method is more 
sensitive to changes in structures. Surprisingly we can notice that ranking exhibits good 
performances of median filters 9 × 9 and 11 × 11 at 0.09rad. They are followed by 
SPADEDH near 0.1rad. Above the average value of 0.11rad, ranking exhibits all stationary 
wavelet methods with close similar variance values, excepted for the regularity 1 which is the 
Haar wavelet. Around the value of 0.13rad are the two Frost filters. Finally beyond 0.2rad are 
the three less efficient methods, namely Gauss, Lee filter and NLmeans which also have the 
largest variances over the database. The surprise is from the NLmeans which was presented 
as close to the state of the art before the emergence of BM3D. This fact can be explained by 
considering that the fringe patterns contain areas of continuous curves which affect the search 
for similar patches in the near vicinity. Thus, the algorithm calculates averaged patches that 
include major distortions compared to the original image. 

Figure 6(b) shows results obtained for the SNR gain. The ranking exhibits strong 
similarities to that in Fig. 6(a). Note the fairly clear predominance of the WF2TF method that 
is, with an average gain at 23dB, almost 6dB upon the curvelets which is second best method 
in the ranking for the SNR gain criterion. The variances associated with median filters are 
among the lowest. As in Fig. 6(a), stationary wavelets are all in the lower dB range with very 
close variances excepted for the Haar wavelet. The Lee filter and the linear Gaussian filter 
exhibit the worst results with less than 9dB of SNR gain. 

Figure 6(c) shows the ranking obtained for the Qindex criterion. This criterion is related to 
the quality of the image within the meaning discussed in [15]. Figure 6(c) shows similarities 
with the previous criteria. Best performance is still once achieved with WFT2F method for 
which the optimal value is almost reached, just followed by SPADEDH with a Qindex value 
around 0.9. Note the good performances of the median filter methods at about 0.9 excepted 
for the 7 × 7 median filter. Curvelets, contourlets and BM3D exhibit good performances and 
very close variances. As for the other two criteria, performances of all stationary wavelets are 
similar. The Frost filter has average performances and is ranked just below the stationary 
wavelets at 0.78. This remark is also true according to the four criteria. It may also be noted 
that all wavelet methods are not influenced by variations inherent to structural changes in the 
fringe patterns as they exhibit low variances. Figure 6(d) exhibits ranking obtained for the 
SDR criterion. Even if ranking is not exactly similar to those shown on previous figures, there 
exist strong similarities particularly with the Qindex. First of all, we observe that stationary 
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wavelet family appears as a group with the same ranking and between the extreme values of 
the criteria. Frost method follows immediately this group. At the end of the ranking we find 
the Lee, Gauss and NLmeans methods. At the beginning of the ranking are WFT2F, 
SPADEDH and median filters (11 × 11 and 9 × 9). The Wiener filter constitutes the only 
strong exception according to the fact that it exhibits the best results. Finally, Contourlets, 
Curvelets, BM3D and median 7 × 7 methods appears in the same group inside interval of 
SDR values at [6.5dB; 7dB]. In order to view more details in the performance of the studied 
algorithms, Fig. 6(e) presents the evolution of the average value of σφ according to the input 
signal to noise ratio, for a selection of eight methods: median 9 × 9, curvelets, BM3D, 
Wiener, NLmeans (7,15,30), Daubechies 8, WFT2F and SPADETH. One observes curves 
with decreasing slopes, excepted for wavelet methods which all have an inflection around an 
input SNR between 6dB and 7dB. The reason is related to the calculation of the threshold for 
selection of the wavelet coefficients. The threshold is obtained from an estimate of the noise 
level included in the signal with the Donoho rule, which presupposes sufficiently high noise 
level. When this assumption is no longer true, the calculated threshold is too high and the 
threshold causes the loss of the wavelet coefficients associated with the useful signal. Then, it 
follows that the useful signal is distorted when the SNR increases. In the range [3dB,6dB] 
which corresponds to reasonably realistic conditions in digital holography, the curvelets 
method appears to be the best one, if one excepts the WFT2F method. Figure 6(e) also shows 
that this trend is slightly increased when the input SNR decreases. Beyond 7.5dB, BM3D 
filter outperforms all the other methods except the WFT2F method. One can also observe 
some noticeable variations for SPADEDH particularly with lower input SNR. This remains 
true according to Qindex and GSNR criteria. The noticeable superiority of WFT2F method can be 
understood as, first, because of its complex representation, it is spatially invariant by 
translation, unlike contourlets and curvelets, second, the waveforms that make up its 
representation include all possible orientations from the kernel of a two-dimensional fast 
Fourier transform, unlike stationary wavelets that propose only three orientations. 
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Fig. 6. (a) results obtained for the average value of σφ, (b) results obtained for the signal to 
noise ratio gain, (c) ranking obtained for Qindex, (d) ranking obtained for SDR, (e) evolution of 
the average value of σφ according to the input signal to noise ratio, (f) detail of the performance 
with the SNR gain according to the input SNR, (g) performance of the selected methods 
regarding to the Qindex, (h) performance of the selected methods according to the SDR. 

The detail of the performance with the SNR gain according to the input SNR is given in 
Fig. 6(f) for the selected eight methods. One observes curves with a slow positive slope, 
excepted for wavelets and curvelets which exhibit an inflection around 8dB for the same 
reasons as it was observed for Fig. 6(e). On one hand, one observes relative invariant results 
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for the 9 × 9 median filter which exhibits slow increase, on the other hand this method 
presents the lowest variance among all methods regarding output SNR gain as can be seen in 
Fig. 6(b). WFTF2F and BM3D methods show similar behaviors separated with about 6dB. In 
a similar way, the Wiener filter exhibits slow increase trend but with an increasing variance. 
For this method, the noise overestimation factor was set at 20 by empirical tests. By making 
this factor related to the input noise level, it would certainly be possible to improve the 
performance of this method. Furthermore, this method gives fairly good results from the point 
of view of the phase error, which is very important in the context of digital holographic 
metrology. Lastly, NL-means method exhibits a regular increasing trend with amplitude at 
7dB over the range of input SNR which is confirmed by its high variance plotted in Fig. 6(b). 

Figure 6(g) shows the performance of the selected methods according to the Qindex. The 
curves show a positive slope as a function of the input SNR, with the exception of the 
stationary wavelets where an inflection point is observed at 8dB. The WFT2F method 
outperforms all methods with a value near the maximum allowed by the index on the full 
range of the input SNR. SPADEDH exhibits very good performances with high variations for 
low input SNR below 8dB. Curvelets, median filter and BM3D present very close results with 
a smaller variance for curvelets. Then, the Wiener filter presents better results than previous 
ones with high variations from 0.6 to 0.9. Also, it can be noted that NLmeans has the largest 
variation of the amplitude across the entire range, which explains the high variance that is 
observed in Fig. 6(c). Figure 6(h) shows the performances of the selected methods according 
to SDR. As this criterion is related to the amount of noise that is removed after the de-noising 
procedure, it is highly correlated to the input SNR. So, one can observe for the selected 
methods that the related SDR curves follow a tendency which is close to the first diagonal of 
the x-y axis. The only exception is for NLmeans for which SDR values stand over the input 
SNR in a decreasing manner from the left to right of the x axis. 

Correlations between the four indices are given in Fig. 7. Figure 7(a) shows correlation 
between the phase error and the cosine Qindex. The color code is used to show a group of five 
points for each of the fringe patterns. There are 20 different methods and 5 different SNR 
values, therefore 100 points per fringe patterns are represented. A strong anti-correlation is 
observed between the two criteria. Note also that all the blue circles form an area that 
overlooks most of the other points. Blue circles correspond to the results of the methods 
applied on the first fringe pattern, which has high fringe density at its center. This makes it 
the most difficult fringe pattern to be processed. The corresponding input SNR are the lowest 
compared to other fringe patterns. 
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Fig. 7. Correlations between the four indices, (a) correlation between phase error and the 
cosine Qindex., (b) correlation between GSNR and Qindex., (c) correlation between GSNR and σφ., (d) 
correlation between SDR and σφ. 

In Fig. 7(b), there exists a certain correlation between GSNR and Qindex. The group of 25 
points that can be seen on top right of the Fig. 7(b) corresponds to the WFT2F method. The 
exponential tendency between the two criteria is due to the logarithmic definition of the SNR 
gain. The last remark is also true for Fig. 7(c). There exists an increase of the dispersion of 
the circles due to the increase of the noise level, from the right to the left in Fig. 7(a) and Fig. 
7(c), and from top to bottom in Fig. 7(a). Figure 7(c) shows the relationship between GSNR and 
σφ that appears quite similar as an anti-correlation. In a similar way, Fig. 7(d) shows an anti-
correlation between SDR and σφ but the tendency is clearly less pronounced with a certain 
amount of points which are located outside the guess curve. 
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Fig. 8. Trends for the standard deviation of the phase error, σφ, versus the input SNR for the 20 
selected methods. 

 
Fig. 9. Trends for GSNR of cosine image versus the input SNR for the 20 selected methods. 

Figure 8 to Fig. 11 respectively show the trends for σφ, GSNR of cosine image, Qindex and 
SDR versus the input SNR for the 20 selected methods. As can be seen, there already exists 
the non-monotonic trends for methods based on wavelet with a rise for σφ, (Fig. 8), and a 
decrease for GSNR (Fig. 9) and Qindex (Fig. 10) for the higher value of the input SNR. As 
observed on previous Fig. 6(h), SDR is strongly correlated to the input SNR. 
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Fig. 10. Trends for Qindex versus the input SNR for the 20 selected methods. 

 
Fig. 11. Trends for SDR versus the input SNR for the 20 selected methods. 

7. De-noising of phase fringe patterns 

As an illustration of de-noising of phase maps, Fig. 12 shows results obtained with processing 
the first fringe pattern in 1st column in Fig. 5. The input SNR is at 3.01dB for the cosine 
image. Figure 12(a), Fig. 12(c), Fig. 12(e), Fig. 12(g), Fig. 12(i) and Fig. 12(k) exhibit the 
filtered phase obtained with respectively BM3D, curvelets, NLmeans (7,15,30), 9 × 9 median, 
WFT2F and Daubechies 8. Figure 12(b), Fig. 12(d), Fig. 12(f), Fig. 12(h), Fig. 12(j) and Fig. 
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12(l) shows the corresponding residual phase noise. One clearly observes that there remains a 
large amount of noise with NLmeans method (Fig. 12(f)). Curvelets and WFT2F (resp. 
Figures 12(c) and 12(i)) exhibit the best de-noised phase images. 

 
Fig. 12. De-noising of the 1st fringe pattern of Fig. 5 (1st column), (a) processing with BM3D, 
(b) corresponding residual noise, (c) processing with curvelets, (d) corresponding residual 
noise, (e) processing with NLmeans (7,15,30), (f) corresponding residual noise, (g) 9 × 9 
median, (h) corresponding residual noise, (i) WFT2F, (j) corresponding residual noise, (k) 
Daubechie 8, (l) corresponding residual noise. 

Figure 13 shows a phase map obtained with an off-axis digital holography set-up ref [44] 
which was processed with WFT2F. Figure 13(a) exhibits the noisy experimental phase and 
Fig. 13(b) shows the result after processing by WFT2F with the same conditions as for the 
benchmark. Figure 13(c) shows the residual phase noise. 

 
Fig. 13. Experimental phase processed with WFT2F, (a) noisy phase map, (b) filtered phase 
map using WFT2F, (c) residual noise estimated from the processing. 

8. Conclusion and perspectives 

This paper presents a quantitative comparison of algorithms for speckle decorrelation phase 
noise removing in digital holography. For the evaluations, a noisy fringe pattern simulator 
generating realistic phase images has been proposed. Statistics of decorrelation noise are in 
conformity with those found in real phase data. The main advantage of the phase simulator is 
that it provides phase image including decorrelation phase noise and that filtering algorithms 
can be compared by quantitatively evaluating the noise reduction. A database, including 25 
fringe patterns divided into 5 patterns and 5 different signal-to-noise ratios, was generated to 
evaluate the selected algorithms. We have retained four evaluation criteria: the overall 
standard deviation error on the phase, the gain in the signal-to-noise ratio, the quality index 
which is an objective test rendering the sensitivity to distortions in fine image structures, and 
the signal to distortion ratio which applies without the need of reference noise-free image. 
The standard deviation phase error has the highest relevance for the point of view of digital 
holographic metrology. A total of 34 algorithms divided into different families were 
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evaluated. The selected algorithms are: the linear Gaussian filter, the median filter, the Lee 
filter, the Frost filter, the Wiener filter, the stationary wavelets including Daubechies and 
symlets wavelets, curvelets and contourlets, the NLmeans filter the BM3D filter, the WFT2F 
filter and the SPADEDH algorithm. 

In terms of phase error, it appears that the WFT2F method offers the best results with an 
average error at 0.035rad. With an average error of 0.07rad, the second position in the ranking 
is occupied by the curvelet decomposition, especially when the noise level is high. The 
BM3D filter, which currently represents the state of the art in the field of image de-noising, 
yields very similar results, and even slightly better for an input SNR 6dB higher, but with a 
higher sensitivity to the fringe pattern structures. 

A similar ranking is observed for the three other criteria, excepted for SPADEDH, 9 × 9 
and 11 × 11 median filters for which it was demonstrated their very good performance in 
terms of Qindex and SDR. Note also that these three algorithms achieve better results for the 
four criteria than stationary wavelet methods. Furthermore, a fairly good correlation between 
the SNR gain and the quality index has been observed, excepted for the Wiener filter. There 
exists an anti-correlation between the phase error and the quality index which indicates that 
the phase errors are mainly structural distortions in the fringe pattern. 

Future work include assessment of the noise level in the fringe pattern in order to 
adequately adjust the threshold which, in particular, determines the performance of the 
algorithms based on wavelets, curvelets and contourlets. A second track may consist in 
evaluating a possible phase error generated by the noise reduction methods that could be 
depending on the input noise, the ultimate goal being to get robust estimators in terms of 
phase metrology based on digital holography. 
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