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a b s t r a c t 
In sinusoidal fringe projection profilometry (FPP), many factors are known to improve measurement accuracy. 
However, the parameters of the projected fringe pattern, such as modulation and pitch, are the most basic factors. 
Some empirical principles have been described by researchers, but there is still a lack of theoretical support. In 
this study, we attempt to address this problem by providing a theoretical proof. We first build an error model for 
the FPP system. The model reveals how the pitch, modulation, and noise of the fringe pattern affect the measure- 
ment error. Combined with optical projection analysis, an optimal projection pitch is delivered that yields the best 
performance. Both simulations and experiments verify the proposed theoretical proof and optimization method, 
which will facilitate the construction of FPP systems and help users avoid empiricism and time-consuming ex- 
periments. 

1. Introduction 
Sinusoidal fringe projection profilometry (FPP) is one of the most 

popular non-contact methods for analyzing the surfaces of three- 
dimensional (3D) objects. It has been implemented extensively in ap- 
plications including industrial monitoring, computer vision, virtual re- 
ality, and biomedicine providing the advantages of high precision, high 
resolution, full field, and easy implementation [1,2] . 

There are many factors that can significantly affect the performance 
of FPP. Researchers are always exploring new ways to improve the FPP 
system by analyzing and optimizing these factors. When using a digital 
device to project fringe patterns, nonlinearity, which makes ideal sinu- 
soidal waveforms non-sinusoidal, is inevitable. To overcome this prob- 
lem, Liu et al. built a mathematical gamma model to predict its effects 
on FPP [3] . Meanwhile, Zhang and Huang [4] proposed a widely used 
lookup table approach to compensate for the phase error directly, with- 
out employing any mathematical models. Some other methods based 
on statistical analysis [5] , Fourier spectrum analysis [6] , and polynomial 
fitting [6] have been proposed to correct gamma distortion. Considering 
the bidirectional reflectance distribution function (BRDF) of the measur- 
ing surface, some researchers adjust the pixel-wise intensity of the pro- 
jected fringe patterns, which is feedback with the captured texture, to 
adapt to highly dynamic surfaces [7,8] . A phase-shifting method [1,9] is 
usually used to recover the highly accurate phase. Experiments by Jia 
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et al. have shown that higher measurement accuracy can be achieved by 
using a greater number of phase-shifting steps [10] and a similar phe- 
nomenon is shown in experiments by Cai et al. [11] . However, when 
the phase-shifting steps are above a threshold (7 is suggested in [2] ), 
there is no significant reduction in the measurement error, which was 
also verified by Zhang et al.’s experiments [12,13] . Lei and Zhang’s re- 
search has revealed the relationship between the phase error and the 
focusing level of sinusoidal patterns [14] . They found that focusing si- 
nusoidal patterns have a better performance than defocusing sinusoidal 
patterns and that defocused binary fringe patterns can achieve similar 
performance to sinusoidal patterns with the same defocus level. Other 
researchers have tried to optimize the FPP system by changing the di- 
rection of the fringe pattern. Wang and Zhang [15] demonstrated that 
horizontal and vertical fringe patterns are not usually optimal when the 
phase change is the largest at a given depth variation. They projected 
a set of horizontal and vertical fringe patterns onto a step-height object 
and found the optimal direction by analyzing two resultant phase maps. 
Zhang et al. suggested that the optimal fringes are circular-arc-shaped 
and centered at the episode, giving the best phase sensitivities over the 
whole fringe pattern [16] . Zhang et al. published state-of-the-art results 
in [12] , in which the background of the fringe pattern also has a nonlin- 
ear effect on the phase error. A lower background means that there will 
be a lower-quality fringe pattern resulting in a larger phase error within 
a certain range. In addition, the projected fringe modulation is an im- 
portant factor: it has a nonlinear negative effect on the phase error, as 
shown in Wu’s experiments [17] . Some researchers have focused their 
attention on the fringe pitch. Their results have revealed that assuming 
the pitch is appropriately selected and not below a threshold, a lower 
value of pitch leads to a smaller phase error [18,19] . Jia et al. observed 
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that if the pitch is divisible by the number of phase-shifting steps, the 
measurement results are more accurate [10] . 

Although the above-mentioned factors all improve the measurement 
accuracy in sinusoidal FPP, the major contributions come from the pro- 
jected fringe pattern. This is because, no matter how we consider op- 
timizing the FPP system, from Gamma correction, adaptation to BRDF, 
and carefully selected number of steps and direction of fringe patterns, it 
is inevitable that an appropriate projection modulation and pitch must 
be chosen. This paper attempts to optimize the sinusoidal FPP system 
from these two basic factors. Essentially, they are not independent. We 
can imagine that for a specific FPP system, it is impractical to capture a 
fringe pattern with an extremely narrow pitch and high modulation. The 
constraint is the optical transfer of the projection system. In this work, 
by analyzing the error model in the FPP and optical projection model, 
we provide the theoretical proof that there is an optimal projection pitch 
that yields the peak performance in FPP. 
2. FPP system 
2.1. Principle of the phase-shifting algorithm 

Phase-shifting methods [1] are widely used in FPP because of their 
high accuracy. In phase-shifting FPP, a series of ideal sinusoidal fringe 
patterns are generated by a computer and projected onto the measur- 
ing surface using a digital projector. The camera observes the reflected 
fringe pattern from another angle. In this process, we design the pro- 
jected fringe pattern and capture the observed fringe pattern. There is 
a nonlinear function between these two fringe patterns, which can be 
expressed as 
! " # ( $, % ) = & [ ! " ' ( $, % )] (1) 
where ! " ' ( $, % ) and ! " # ( $, % ) are the i th projection and observation fringe 
of a sequence of N -step ideal sinusoidal fringes, which can be described 
as 
! " ' ( $, % ) = ( ' ( $, % ) + ) ' ( $, % ) cos (Φ + 2 *" ∕ + , ) (2) 
and 
! " # ( $, % ) = ( # ( $, % ) + ) # ( $, % ) cos (Φ + 2 *" ∕ + , ) + - ( $, % ) (3) 
In Eqs. (2) and (3) , a p ( x, y ) and a c ( x, y ) are the respective backgrounds, 
whereas b p ( x, y ) and b c ( x, y ) are the respective modulation functions. 
In addition, N s represents the number of phase-shifting steps, generally 
N s ≥ 3; i is an integer, whereas n ( x, y ) denotes the random noise. The 
desired phase information Φ can be solved using the following equation, 
which is explained in [1,20] : 
Φ = − arctan  

⎛ 
⎜ 
⎜ 
⎜ 
⎜ ⎝ 
+ , −1 ∑
" =0 ! " # ( $, % ) sin  (2 *" ∕ + , ) 

+ , −1 ∑
" =0 ! " # ( $, % ) cos (2 *" ∕ + , ) 

⎞ 
⎟ 
⎟ 
⎟ 
⎟ ⎠ 
= arctan  ( ) # sin  Φ

) # cos Φ
) 

(4) 
The phase difference Δ.( x, y ) between the reference plane and mea- 

suring surface can be found using a phase-shifting algorithm by analyz- 
ing the observation frames. Once the phase difference map is obtained, 
depth information can be recovered from 
ℎ ( $, % ) = 0Δ.( $, % ) 2 *& 0 1 (5) 
where f 0 is the frequency of the projected fringe pattern. Here d is the 
length of the baseline, the distance between the two optical centers of 
camera and projector, and l represents the distance between the camera 
and the reference plane. 
2.2. Error analysis in FPP 

In FPP, phase information is demodulated by analyzing the grayscale 
distribution from observation frames, see Eq. (4) . However, phase er- 

rors are unavoidable, and usually consist of linear and nonlinear com- 
ponents. For the nonlinear part, a detailed analysis was given in [11] , 
whereas a proof is given in [21] that a FPP system can be approximated 
as a linear system, when the Gamma of the fringe projector is linearized, 
the relative height of the measuring surface is much smaller than the 
working distance, and the amplitudes of the sinusoidal components of 
the surface are smaller than the linearity surface height limits. 

When an FPP system has been corrected to meet the above con- 
ditions, the grayscale noise becomes the most significant part of the 
error source and has a direct effect on the measurement accuracy. In 
the N -step phase-shifting method, because a multi-frame fringe pattern 
is adopted, some noise can be offset but not random noise. We as- 
sume that random noise n ( x, y ) obeys the orthodox distribution, and 
- ( $, % ) ∈ [− + √+ , , + √+ , ] . From Eq. (4) , when 
Φ + 2 = arctan  ( ) # sin  (Φ) + + 

) # cos (Φ) − + ) (6) 
the phase error 2 has the maximum value. Then we have 
2 = arctan  ( ) # sin  (Φ) + + 

) # cos (Φ) − + ) − Φ (7) 
Suppose that 3 = N ) # ∈ [ 0 , 1 ) , then Eq. (7) can be simplified as 
2 = arctan  ( 

sin  (Φ) + 3 
cos (Φ) − 3 

) 
− Φ (8) 

Eq. (8) is derived as follows, 
12 
1Φ = 1 

1 + ( sin (Φ)+ 3 
cos (Φ)− 3 )2 cos (Φ) ( cos (Φ) − 3 ) + sin  (Φ) ( sin  (Φ) + 3 ) 

( cos (Φ) − 3 ) 2 − 1 

= 1 + 3 ( sin  (Φ) − cos (Φ) ) 
( cos (Φ) − 3 ) 2 + ( sin  (Φ) + 3 ) 2 − 1 = 1 + 3 ( sin  (Φ) − cos (Φ) ) 

2 3 2 + 1 + 2 3 ( sin  (Φ) − cos (Φ) ) − 1 
(9) 

In Eq. (10) , assume that 
% = sin  (Φ) − cos (Φ) = √2 sin  (Φ − *4 ) (10) 
owing to % ∈ [− √2 , √2 ] and k > 0, we have 
2 3 2 + 1 + 2 3 ( sin  (Φ) − cos (Φ)) ≥ 2 3 2 + 1 − 2 √2 3 = ( √2 3 − 1) 2 ≥ 0 (11) 
In Eq. (11) , only when 3 = √2 

2 and Φ= − *4 do we have 
2 3 2 + 1 + 2 3 ( sin  (Φ) − cos (Φ)) = 0 . Let 12 

1Φ = 0 , then when 2 3 2 + 1 + 
2 3 ( sin  (Φ) − cos (Φ) ) ≠ 0 , we obtain 
2 3 2 + 3 ( sin  (Φ) − cos (Φ) ) = 0 (12) 
Because k ≠0, we have 
sin  (Φ) − cos (Φ) = −2 3 (13) 
From Eq. (13) , we obtain 3 ≤ √2 

2 , and when Φ has the value 
Φ0 = arcsin  (− √2 3 ) + *4 = arccos (√2 3 ) − *4 
Eq. (8) has a maximum value of 
2 max = arctan  ( sin  ( Φ0 ) + 3 

cos ( Φ0 ) − 3 
) 
− Φ0 = arcsin  (√2 3 ) (14) 

where 3 = N ) # ∈ [0 , √2 
2 ] . If we further substitute 2 max into Eq. (5) , we 

obtain 
Δℎ max = 0 2 max 

2 *& 0 1 = 0 arcsin  
(√

2 3 )
2 *& 0 1 = ' arcsin  

(√
2 3 )

2 * tan  ( 4) (15) 
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Here, we define the computing error as 
56676 #8'9 = ' arcsin  

(√
2 3 )

2 * tan  ( 4) (16) 
and the computing error index (EI) as 
5! = ' arcsin  (√2 3 ) (17) 
2.3. Projecting process for a fringe pattern 

In a linear system, when an image i ( x, y ) is projected onto a screen, 
each point in the scene is blurred by the optics. Mathematically, the 
observed image g ( x, y ) is the result of convolving the corresponding fo- 
cused image with the optical system’s point spread function (PSF) psf ( x, 
y ): 
g( $, % ) = ',& ( $, % ) ∗ " ( $, % ) (18) 

The optical PSF is a combination of the diffraction and geomet- 
ric aberrations [22] . In practice, as an alternative to the preceding 
PSF model, a two-dimensional Gaussian approximation is often sug- 
gested [23] . It is defined as 
',& ( $, % ) = 1 

2 *:2 exp 
( 
− $ 2 + % 2 

2 :2 
) 

(19) 
In the frequency domain, the Fourier transform of the observed im- 

age is the result when the Fourier transform of the object and the optical 
transfer function (OTF) of the optical system are multiplied: 
{ 
;( <, =) = >( <, =) ? ( <, =) 
>( <, =) = exp [− *2 :2 ( <2 + =2 ) ] (20) 

where G ( <, =) and F ( <, =) are the Fourier transforms of g ( x, y ) and i ( x, 
y ), respectively; H ( <, =) is the OTF, which is also the Fourier transform 
of the PSF; < and = are the spatial frequencies in the x and y direction, 
respectively. The units of < and = are cycles per milliradian ( mrad  −1 ). 

For a linear FPP system, in the frequency domain, the projection 
pattern is an impulse response, and the observation pattern is a Gaus- 
sian distribution because the ideal sinusoidal fringe pattern is deformed 
by the measuring surface. In addition, the amplitude of ! " # will also be 
weakened because only the direct current component ( & 0 = 0 ) can pass 
without energy loss, which results in a reduction in modulation of the 
fringe pattern and an increase in measurement error. Fig. 1 (a) illustrates 
how the projected fringe pattern and observed fringe pattern appear in 
the spatial domain, whereas Fig. 1 (b) shows how the OTF affects the 
projected fringe pattern. If we use a low-frequency fringe pattern, the 
loss in modulation is definitely lower. However, this also causes a larger 
measurement error, where Eq. (16) gives the conclusion. Thus, we need 
to choose the projection frequency carefully to make it optimal. 
3. Optimal projection in FPP 
3.1. Optical transfer of a pixel array-based projection system 

Most digital projectors use a pixel array-based chip to modulate the 
light source as a projection image, including digital light processing 
(DLP), liquid crystal display (LCD), and liquid crystal on silicon (LCoS) 
projectors. According to geometric optics, as shown in Fig. 2 , when an 
object point is not completely focused, the image is blurred. The blurred 
image of a point on the image detector is circular in shape if the projec- 
tor has a circular aperture. In that case, it is called the blur circle [22] . 
We assume that the pixel on the projection chip has the diameter of @, 
the diameter of the projection blur circle is 2 R ′ , which can be found as 
A ′ = , B 

2 
[ 
1 
& − 1 

C − 1 
, 
] 
+ ,@2 C (21) 

where u is the distance between the first principal plane and the object 
plane, and v is the distance between the second principal plane and the 

Fig. 1. Projection and observed fringe pattern. (a) Projection and observed 
fringe pattern in the spatial domain. (b) Projection and observed fringe pattern 
in the frequency domain. 

Fig. 2. Projection process for a pixel array-based projector. 
image plane. The distance s , focal length f , and aperture diameter D are 
referred to together as the projector parameters. 

For a pixel array-based projector, the PSF and OTF are calculated 
using Eqs. (19) and (20) , where : is the spread parameter such that 
: = #A ′, c is a constant of proportionality ( c > 0), and c is suggested as 
1 √
2 in practice [22] . Replacing : = #A ′, then we have 

:1 = √2 ,B 
4 

[ 
1 
& − 1 

C − 1 
, 
] 
+ √2 ,@

4 C (22) 
3.2. Optical transfer of an MEMS scanning projection system 

Different from pixel array-based technology, in a micro-electro- 
mechanical system (MEMS) scanning FPP system, the fringe pattern is 
obtained by laser beam scanning instead of pixel array projection [24] . 
The laser beam in a variety of characteristic patterns or transverse modes 
that can occur as a pure single mode or, more frequently, as a mixture of 
several superposed pure modes. The electric field amplitude is described 
mathematically by a Laguerre–Gaussian function if it has circular sym- 
metry. The simplest mode consists of a single spot with a Gaussian [25] , 
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Fig. 3. Propagation characteristic of the laser beam in MEMS projection system. 
Here D 0 is the waist diameter and z R is termed the Rayleigh range. 
as shown in Fig. 3 . The actual beam propagation equations describing 
the change in beam radius D ( z ) with z . Then we have 
:2 = D ( E ) = D 0 

√ 
1 + F2 ( E − E 0 ) 2 

*D 0 2 (23) 
In this equation, the minimum beam diameter D 0 (the waist diameter) 
is located at z 0 along the propagation axis z . Here F is the wavelength 
of the laser. Fig. 3 illustrates the propagation characteristic of the laser 
beam in the MEMS projection system, where z R is termed the Rayleigh 
range. 
3.3. Optimization of the FPP system 

In Eq. (16) , if we take N as a constant variable, then measurement 
error has a positive correlation with the fringe pitch p , and negative cor- 
relation with the observation modulation b c . Therefore, a fringe pattern 
with a narrow pitch and high observation modulation delivers high mea- 
surement accuracy. However, when the value of p is very low, because 
b c has a nonlinear constraint with p and b p , it is impossible to obtain a 
high b c . It is reasonable to consider that there should be an optimal p 
leading to the best performance in FPP. Section 2.3 shows us the rela- 
tionship between projected fringe pattern and observed fringe pattern, 
whereas Sections 3.1 and 3.2 present the detailed optical constraint. 
From Eq. (20) , we have 
) # = ) ' > 0 ( <, =) = ) ' exp [− *2 :2 ( <2 + =2 ) ] (24) 

If we consider the frequency in just one direction, and take the op- 
timal fringe pitch as ' = G∕ <, replacing b c with Eq. (24) in Eq. (17) , we 
obtain 
5! = G 

<
arcsin  ( √

2 + 
) ' exp (− *2 :2 <2 )

) 
(25) 

Here, K is a constant variable related to the throw ratio if p takes the unit 
of pixels; if the unit of p is millimeters, then G = 1 . For a determined FPP 
system and measurement distance, K, N, b p , and : are constant. Thus, 
EI is a function of <. The derivative of Eq. (25) is 
1 ( 5! ) 
1<

= − G 
<2 arcsin  

( √
2 + 
) ' exp (*2 :2 <2 )) 

+ 2 √2 G+ *2 :2 
) ' √ 

1 − 2 + 2 exp ( 2 *2 :2 <2 ) 
) ' 2 

exp (*2 :2 <2 ) (26) 
If we set Eq. (26) equal to 0, from the Abel–Rufini theorem [26] we 
know that this equation has no algebraic solution. However, if given 
the coefficient we can find a numerical solution, where the EI has a 
minimum value. 

The great significance of this optimization method is that we can 
obtain the optimal projected fringe pitch by using Eqs. (22) and (26) , or 
Eqs. (23) and (26) . Before this, for a given FPP system, we can just find 
the optimal projection parameters using a series of experiments, which 
is very time-consuming. 
4. Simulations and experiments 

In this work, we create an FPP system to verify the proposed opti- 
mization theories. A DLP projector with 1280 × 800 pixels and a mono 

Fig. 4. Measurement object in our evaluation experiments. (a) Standard 3 mm 
ceramic gauge block. (b) 3D reconstruction of the standard block using FPP. 
CCD camera with 1920 × 1200 pixels are used to project and capture 
the fringe pattern. The baseline between the camera and the projector is 
150 mm. A MEMS scanning projector [24] is also employed to evaluate 
the proposed theories as it has a different projection principle, where the 
resolution is 1080 × 720. In this paper, if there is no special explanation, 
the FPP system is using the DLP projector. To evaluate the performance 
of proposed methods, a 3 mm standard ceramic gauge block ( Fig. 4 ) with 
an error of 0.1 µm is employed as a testing object with root-mean-square 
(RMS) measuring error. 
4.1. Simulations and experiments using the FPP error model 

In the previous section, we have shown that the maximum error 
of an FPP system is mainly affected by the pitch and the modulation 
of fringe patterns, which is denoted by Eq. (16) . The simulation re- 
sults are illustrated in Fig. 5 (a), where ' = 5 mm and + = 2 , whereas 
Fig. 5 (b) shows the verification experiment results with a 400 mm mea- 
surement distance. Furthermore, another experiment, see Fig. 6 , shows 
the relationship between the projected fringe pitch and measurement 
error, where the captured modulation ) # = 70 and the measurement 
distance , = 400 mm. Figs. 5 and 6 verify the error model, where the 
pitch has a linear effect on the measurement error, whereas the modu- 
lation produces a nonlinear effect. Based on the error model, additional 
experiments are implemented to verify the proposed EI in Eq. (17) . 
Fig. 7 shows an illustration of 25 experiments with different pitches 
and modulations at a measurement distance of 400 mm, which shows 
the measurement error has a linear relationship with the EI. Therefore, 
it is reasonable using the EI as the evaluation for the FPP system. 
4.2. Simulation and experiments of optimal projection of an FPP system 

We have provided a theoretical basis to demonstrate an optimal pitch 
for achieving the best performance in FPP, see Eqs. (26) and (25) . A sim- 
ulation is presented to verify the optimization method. In Eq. (25) , we 
set G = 1 , + = 5 , ) ' = 75 , and : = 1 mm; the simulation result is shown 
in Fig. 8 . When the projection pitch is 4.545 mm, the system has the best 
performance. A series of experiments are implemented to verify this con- 
clusion. We measured the height of a standard ceramic gauge block with 
different projection pitches at different measurement distances. Fig. 9 (a) 
shows the results, whereas Fig. 9 (b) gives the curve fitting (fifth-degree 
polynomials) and optimal projection pitch with the measurement dis- 
tance , = 400 mm and ) ' = 70 . Similarly, another series for an MEMS 
scanning projector was also implemented, see Fig. 10 . Owing to the 
completely different projection principle, it was necessary to perform 
another experiment on an MEMS scanning projector. In Figs. 9 and 10 , 
these experiments show the FPP system has an optimal projection pitch. 
In particular, for an MEMS scanning projection FPP system, this optimal 
value is of greater importance, because when the projected fringe pitch 
deviates from the optimal value, the measurement error will increase 
significantly. In Fig. 11 , the relationship between the projection pitch 
and measurement error again verifies the conclusion directly. 

The previous content has provided a theoretical proof, simulations, 
and experiments to demonstrate there is an optimal projection pitch. 
However, in Eqs. (22) and (23) , it is not easy to obtain some of the 

40 



T. Yang, G. Zhang and H. Li et al. Optics and Lasers in Engineering 123 (2019) 37–44 

Fig. 5. Relationship between modulation and measurement error. (a) Simulation, captured pitch ' = 5 mm and captured noise + = 2 . (b) Experimental data, 
projection pitch ' ' = 20 pixels (about 7 mm on the measuring surface). 

Fig. 6. Relationship between fringe pitch and measurement error, where ) # = 70 and measurement distance , = 400 mm. 

Fig. 7. Linear fitting of the measurement error and error index. 
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Fig. 8. Simulation of the optimal projection pitch. 

Fig. 9. Experiments on optimal projection pitch using a DLP projector. (a) Error index changing with projection pitch at different measurement distances. (b) Curve 
fitting of EI-pitch data with a measurement distance of 400 mm. Here ) ' = 70 . 

Fig. 10. The experiments on optimal projection pitch with a laser beam MEMS scanning projector FPP system. (a) Error index changing with projection pitch at 
different measurement distances. (b) Curve fitting of EI-pitch data with a measurement distance of 400 mm. Here ) ' = 70 . 
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Fig. 11. Relationship between projection pitch and measurement error at different measurement distances. (a) DLP FPP system. (b) Laser beam MEMS scanning 
projector FPP system. Here ) ' = 70 . 
parameters, such as u, f , and D 0 . Here, a simplified method is given to 
evaluate the optimal projection pitch approximately. 

For a pixel array-based projection FPP system, if the projector is well 
focused and the measuring distance is much larger than height variation 
of the measuring surface, Eq. (22) can be simplified as 
:1 = √2 ,@

4 C (27) 
In fact, the minimum response of the projector is not one physical pixel 
in the projection chip, but a 2 ×2 pixel area, which is observed in the 
experiments with DLP and LCD projectors. In practice, we recommend 
using 
:1 = 2 √2 ,@

G 96 H (28) 
where K tr is the throw ratio of the projector (note that the throw ra- 
tio varies with the focus distance in pixel array-based projectors), and 
W is the long side length of the projection chip. A quick example is 
given here. For the experimental setup, G 96 = 1 . 158 with a measuring 
distance of , = 400 mm, H = 9 . 855 mm, and @ = 0 . 01 mm, so we have 
:1 = 0 . 9981 mm. Jointly with Eq. (26) , the optimal frequency is solved 
as <1 = 0 . 1591 Hz, see Appendix A . So the projection pitch with the unit 
of pixels can be calculated as 
' 1 = 1280 G 96 

,<
= 23 . 29 pixels ≈ 23 pixels (29) 

which is close to the optimal projection pitch of 25 pixels verified by 
experiments, as shown in Fig. 9 (b). 

For an MEMS scanning projector, we still need to find z 0 and D 0 , 
which can be calculated by using the relationship between the mini- 
mum projection point size and measuring distance. In proposed MEMS 
projection FPP system, F = 650 nm, the minimum projection point size 
with two different distances is measured by using a CCD camera, thus 
we obtain I 1 ( E = 600 mm , D ( E ) = 0 . 35 mm ) and I 2 ( E = 800 mm , D ( E ) = 
0 . 47 mm ) . Then Eq. (23) is solved, where E 0 = 498 . 8 mm and D 0 = 
0 . 3316 mm . When , = 400 mm , taking Eq. (23) into Eq. (26) and solv- 
ing this equation (please refer Appendix A ), we obtain the optimal fre- 
quency of projection pattern <2 = 0 . 4491 Hz . For the MEMS FPP setup, 
G 96 = 1 . 2 , then 
' 2 = 1080 G 96 

,<
= 7 . 21 pixels ≈ 7 pixels (30) 

Fig. 10 (b) provides an illustration that the system achieves the best 
performance when the projection pitch is 7 pixels with a measuring dis- 
tance of 400 mm, which meets our optimization results (see Eq. (30) ) 
very well. 
5. Conclusion 

In this work, we first built an error model for an FPP system. This 
error model has revealed how the pitch, modulation, and noise of a 
projected fringe pattern affect the measurement error. Furthermore, the 
optical transfer has been analyzed to show the constraints between the 
projection pitch and observation modulation. Combining these compo- 
nents, a theoretical proof has been provided that there is an optimal 
projection pitch, which yields the best performance for FPP. In addi- 
tion, an a priori optimization method using the common-user accessible 
parameters has been demonstrated, which can help users to create an 
optimal FPP system without empirical speculation and time-consuming 
experiments. Finally, both simulations and experiments have verified 
the proposed theories. Going forward, we hope our work will be useful 
when setting up FPP systems. 
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Appendix A 

Here we give an example of how to find the optimal projection fre- 
quency < when we have :. Assuming , = 400 mm , with Eq. (23) we have 
:2 = 0 . 3316 

√ 
1 + 0 . 00065 2 ( E − 498 . 8 ) 2 

0 . 3454 = 0 . 3491 mm (31) 
Taking :2 = 0 . 3491 mm , G = 1 , + = 5 , and ) ' = 100 into Eq. (26) , 

then it can be simplified as 
1 ( 5 !) 
1<

= 2 . 7915 J$' (19 . 739 <2 ) √
1 . 0 − 0 . 005 J$' (39 . 478 <2 ) − (6# ,"- (0 . 070711 J$' (19 . 739 <2 )) 

<2 
(32) 

For Eq. (32) , there is no closed-form solution. Here, we suggest using 
the Newton iteration to find the numerical solution. The iterative initial 
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value is set as <0 = 1 Hz , and after 8 iterations, we obtain the optimal 
projection frequency of <2 = 0 . 4491 Hz with an iteration error of 10 −4 . 
Supplementary material 

Supplementary material associated with this article can be found, in 
the online version, at 10.1016/j.optlaseng.2019.07.001 . 
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