
Learning To Count Objects in Images

Victor Lempitsky

Visual Geometry Group
University of Oxford

Andrew Zisserman

Visual Geometry Group
University of Oxford

Abstract

We propose a new supervised learning framework for visual object counting tasks, such
as estimating the number of cells in a microscopic image or the number of humans in
surveillance video frames. We focus on the practically-attractive case when the training
images are annotated with dots (one dot per object).
Our goal is to accurately estimate the count. However, we evade the hard task of
learning to detect and localize individual object instances. Instead, we cast the problem
as that of estimating an image density whose integral over any image region gives the
count of objects within that region. Learning to infer such density can be formulated as
a minimization of a regularized risk quadratic cost function. We introduce a new loss
function, which is well-suited for such learning, and at the same time can be computed
efficiently via a maximum subarray algorithm. The learning can then be posed as a
convex quadratic program solvable with cutting-plane optimization.
The proposed framework is very flexible as it can accept any domain-specific visual
features. Once trained, our system provides accurate object counts and requires a very
small time overhead over the feature extraction step, making it a good candidate for
applications involving real-time processing or dealing with huge amount of visual data.

1 Introduction

The counting problem is the estimation of the number of objects in a still image or video frame. It arises
in many real-world applications including cell counting in microscopic images, monitoring crowds in
surveillance systems, and performing wildlife census or counting the number of trees in an aerial image
of a forest.

We take a supervised learning approach to this problem, and so require a set of training images with
annotation. The question is what level of annotation is required? Arguably, the bare minimum of anno-
tation is to provide the overall count of objects in each training image. This paper focusses on the next
level of annotation which is to specify the object position by putting a single dot on each object instance
in each image. Figure 1 gives examples of the counting problems and the dotted annotation we consider.

Dotting (pointing) is the natural way to count objects for humans, at least when the number of objects is
large. It may be argued therefore that providing dotted annotations for the training images is no harder
for a human than giving just the raw counts. On the other hand, a spatial arrangement of the dots provides
a wealth of additional information, and this paper is, in part, about how to exploit this “free lunch” (in
the context of the counting problem). Overall, it should be noted that dotted annotation is less labour-
intensive than the bounding-box annotation, let alone pixel-accurate annotation, traditionally used by the
supervised methods in the computer vision community [15]. Therefore, the dotted annotation represents
an interesting and, perhaps, under-investigated case.

This paper develops a simple and general discriminative learning-based framework for counting objects
in images. Similar to global regression methods (see below), it also evades the hard problem of detecting
all object instances in the images. However, unlike such methods, the approach also takes full and
extensive use of the spatial information contained in the dotted supervision.

The high-level idea of our approach is extremely simple: given an image I , our goal is to recover a
density function F as a real function of pixels in this image. Our notion of density function loosely

1

Figure 1: Examples of counting problems. Left — counting bacterial cells in a fluorescence-light microscopy
image (from [29]), right — counting people in a surveillance video frame (from [10]). Close-ups are shown along-
side the images. The bottom close-ups show examples of the dotted annotations (crosses). Our framework learns to
estimate the number of objects in the previously unseen images based on a set of training images of the same kind
augmented with dotted annotations.

corresponds to the physical notion of density as well as to the mathematical notion of measure. Given
the estimate F of the density function and the query about the number of objects in the entire image I , the
number of objects in the image is estimated by integrating F over the entire I . Furthermore, integrating
the density over an image subregion S ⇢ I gives an estimate of the count of objects in that subregion.

Our approach assumes that each pixel p in an image is represented by a feature vector xp and models
the density function as a linear transformation of xp: F (p) = w

T
xp. Given a set of training images,

the parameter vector w is learnt in the regularized risk framework, so that the density function estimates
for the training images matches the ground truth densities inferred from the user annotations (under
regularization on w).

The key conceptual difficulty with the density function is the discrete nature of both image observations
(pixel grid) and, in particular, the user training annotation (sparse set of dots). As a result, while it is
easy to reason about average densities over the extended image regions (e.g. the whole image), the notion
of density is not well-defined at a pixel level. Thus, given a set of dotted annotation there is no trivial
answer to the question: what should be the ground truth density for this training example. Consequently,
this local ambiguity also renders standard pixel-based distances between density functions inappropriate
for the regularized risk framework.

Our main contribution, addressing this conceptual difficulty, is a specific distance metric D between
density functions used as a loss in our framework, which we call the MESA distance (where MESA
stands for Maximum Excess over SubArrays, as well as for the geological term for the elevated plateau).
This distance possess two highly desirable properties:

1. Robustness. The MESA distance is robust to the additive local perturbations of its arguments such
as independent noise or high-frequency signal as long as the integrals (counts) of these perturbations
over larger region are close to zero. Thus, it does not matter much how exactly we define the ground
truth density locally, as long as the integrals of the ground truth density over the larger regions reflect the
counts correctly. We can then naturally define the “ground truth” density for a dotted annotation to be a
sum of normalized gaussians centered at the dots.

2. Computability. The MESA distance can be computed exactly via an efficient combinatorial algo-
rithm (maximum sub-array [8]). Plugging it into the regularized risk framework then leads to a convex
quadratic program for estimating w. While this program has a combinatorial number of linear con-
straints, the cutting-plane procedure finds the close approximation to the globally optimal w after a small
number of iterations.

The proposed approach is highly versatile. As virtually no assumptions is made about the features xp,
our framework can benefit from much of the research on good features for object detection. Thus,
the confidence maps produced by object detectors or the scene explanations resulting from fitting the
generative models can be turned into features and used by our method.

1.1 Related work.

A number of approaches tackle counting problems in an unsupervised way, performing grouping based
on self-similarities [3] or motion similarities [27]. However, the counting accuracy of such fully unsu-
pervised methods is limited, and therefore others considered approaches based on supervised learning.
Those fall into two categories:

2

Input: 6 and 10 Detection: 6 and unclear Density: 6.52 and 9.37

Figure 2: Processing results for a previously unseen image. Left – a fragment of the microscopy image. Em-
phasized are the two rectangles containing 6 and 10 cells respectively. Middle – the confidence map produced by
an SVM-based detector, 6 peaks are clearly discernible for the 1st rectangle, but the number of peaks in the 2nd
rectangle is unclear. Right – the density map, that our approach produces. The integrals over the rectangles (6.52
and 9.37) are close to the correct number of cells. (MATLAB jet colormap is used)

Counting by detection: This assumes the use of a visual object detector, that localizes individual object
instances in the image. Given the localizations of all instances, counting becomes trivial. However,
object detection is very far from being solved [15], especially for overlapping instances. In particular,
most current object detectors operate in two stages: first producing a real-valued confidence map; and
second, given such a map, a further thresholding and non-maximum suppression steps are needed to
locate peaks correspoinding to individual instances [12, 26]. More generative approaches avoid non-
maximum suppression by reasoning about relations between object parts and instances [6, 14, 20, 33,
34], but they are still geared towards a situation with a small number of objects in images and require
time-consuming inference. Alternatively, several methods assume that objects tend to be uniform and
disconnected from each other by the distinct background color, so that it is possible to localize individual
instances via a Monte-Carlo process [13], morphological analysis [5, 29] or variational optimization [25].
Methods in these groups deliver accurate counts when their underlying assumptions are met but are not
applicable in more challenging situations.

Counting by regression: These methods avoid solving the hard detection problem. Instead, a direct
mapping from some global image characteristics (mainly histograms of various features) to the number
of objects is learned. Such a standard regression problem can be addressed by a multitude of machine
learning tools (e.g. neural networks [11, 17, 22]). This approach however has to discard any available
information about the location of the objects (dots), using only its 1-dimensional statistics (total number)
for learning. As a result, a large number of training images with the supplied counts needs to be provided
during training. Finally, counting by segmentation methods [10, 28] can be regarded as hybrids of
counting-by-detection and counting-by-regression approaches. They segment the objects into separate
clusters and then regress from the global properties of each cluster to the overall number of objects in it.

2 The Framework

We now provide the detailed description of our framework starting with the description of the learning
setting and notation.

2.1 Learning to Count

We assume that a set of N training images (pixel grids) I1, I2, . . . IN is given. It is also assumed that
each pixel p in each image Ii is associated with a real-valued feature vector x

i
p 2 RK . We give the

examples of the particular choices of the feature vectors in the experimental section. It is finally assumed
that each training image Ii is annotated with a set of 2D points Pi = {P1, . . . , PC(i)}, where C(i) is the
total number of objects annotated by the user.

The density functions in our approaches are real-valued functions over pixel grids, whose integrals over
image regions should match the object counts. For a training image Ii, we define the ground truth density
function to be a kernel density estimate based on the provided points:

8p 2 Ii, F
0
i (p) =

X

P2Pi

N (p;P,�
212⇥2) . (1)

Here, p denotes a pixel, N (p;P,�
212⇥2) denotes a normalized 2D Gaussian kernel evaluated at p,

with the mean at the user-placed dot P , and an isotropic covariance matrix with � being a small value
(typically, a few pixels). With this definition, the sum of the ground truth density

P
p2Ii

F
0
i (p) over the

entire image will not match the dot count Ci exactly, as dots that lie very close to the image boundary
result in their Gaussian probability mass being partly outside the image. This is a natural and desirable

3

behaviour for most applications, as in many cases an object that lies partly outside the image boundary
should not be counted as a full object, but rather as a fraction of an object.

Given a set of training images together with their ground truth densities, we aim to learn the linear
transformation of the feature representation that approximates the density function at each pixel:

8p 2 Ii, Fi(p|w) = w
T
x

i
p , (2)

where w 2 R
K is the parameter vector of the linear transform that we aim to learn from the training

data, and Fi(·|w) is the estimate of the density function for a particular value of w. The regularized risk
framework then suggests choosing w so that it minimizes the sum of the mismatches between the ground
truth and the estimated density functions (the loss function) under regularization:

w = argmin
w

w

T
w + �

NX

i=1

D
�
F

0
i (·), Fi(·|w)

�
!

, (3)

Here, � is a standard scalar hyperparameter, controlling the regularization strength. It is the only hyper-
parameter in our framework (in addition to those that might be used during feature extraction).

After the optimal weight vector has been learned from the training data, the system can produce a density
estimate for an unseen image I by a simple linear weighting of the feature vector computed in each pixel
as suggested by (2). The problem is thus reduced to choosing the right loss function D and computing
the optimal w in (3) under that loss.

2.2 The MESA distance

The distance D in (3) measures the mismatch between the ground truth and the estimated densities (the
loss) and has a significant impact on the performance of the entire learning framework. There are two
natural choices for D:

• One can choose D to be some function of an LP metric, e.g. the L1 metric (sum of absolute per-pixel
differences) or a square of the L2 metric (sum of squared per-pixel differences). Such choices turns
(3) into standard regression problems (i.e. support vector regression and ridge regression for L1 and
L

2
2 cases respectively), where each pixel in each training image effectively provides a sample in the

training set. The problem with such loss is that it is not directly related to the real quantity that we
care about, i.e. the overall counts of objects in images. E.g. strong zero-mean noise would affect such
metric a lot, while the overall counts would be unaffected.

• As the overall counts is what we ultimately care about, one may choose D to be an absolute or
squared difference between the overall sums over the entire images for the two arguments, e.g.
D (F1(·), F2(·)) = |

P
p2I F1(p) �

P
p2I F2(p)|. The use of such a pseudometric as a loss turns

(3) into the counting-by-regression framework discussed in Section 1.1. Once again, we get either
the support vector regression (for the absolute differences) or ridge regression (for the squared differ-
ences), but now each training sample corresponds to the entire training image. Thus, although this
choice of the loss matches our ultimate goal of learning to count very well, it requires many annotated
images for training as spatial information in the annotation is discarded.

Given the significant drawbacks of both baseline distance measures, we suggest an alternative, which we
call the MESA distance. Given an image I , the MESA distance DMESA between two functions F1(p) and
F2(p) on the pixel grid is defined as the largest absolute difference between sums of F1(p) and F2(p)
over all box subarrays in I:

DMESA(F1, F2) = max
B2B

������

X

p2B

F1(p)�
X

p2B

F2(p)

������
(4)

Here, B is the set of all box subarrays of I .

The MESA distance (in fact, a metric) can be regarded as an L1 distance between combinatorially-long
vectors of subarray sums. In the 1D case, it is related to the Kolmogorov-Smirnov distance between
probability distributions [23] (in our terminology, the Kolmogorov-Smirnov distance is the maximum of
absolute differences over the subarrays with one corner fixed at top-left; thus the strict subset of B is
considered in the Kolmogorov-Smirnov case).

4

original noise added � increased dots jittered dots removed dots reshuffled

Figure 3: Comparison of distances for matching density functions. Here, the top-left image shows one of the
densities, computed as the ground truth density for a set of dots. The densities in the top row are obtained through
some perturbations of the original one. In the bottom row, we compare side-by-side the per-pixel L1 distance, the
absolute difference of overall counts, and the MESA distance between the original and the perturbed densities (the
distances are normalized across the 5 examples). The MESA distance has a unique property that it tolerates the local
modifications (noise, jitter, change of Gaussian kernel), but reacts strongly to the change in the number of objects
or their positions. In the middle row we give per-pixel plots of the differences between the respective densities and
show the boxes on which the maxima in the definition of the MESA distance are achieved.

The MESA distance has a number of desirable properties in our framework. Firstly, it is directly related
to the counting objective we want to optimize. Since the set of all subarrays include the full image,
DMESA(F1, F2) is an upper bound on the absolute difference of the overall count estimates given by the
two densities F1 and F2. Secondly, when the two density functions differ by a zero-mean high-frequency
signal or an independent zero-mean noise, the DMESA distance between them is small, because positive
and negative deviations of F1 from F2 pixels tend to cancel each other over the large regions. Thirdly,
DMESA is sensitive to the overall spatial layout of the denisities. Thus, if the difference between F1 and
F2 is a low-frequency signal, e.g. F1 and F2 are the ground truth densities corresponding to the two point
sets leaning towards two different corners of the image, then the DMESA distance between F1 and F2 is
large, even if F1 and F2 sum to the same counts over the entire image. These properties are illustrated in
Figure 3.

The final property of DMESA is that it can be computed efficiently. This is because it can be rewritten as:

DMESA(F1, F2) = max

0

@ max
B2B

X

p2B

⇣
F1(p)� F2(p)

⌘
, max

B2B

X

p2B

⇣
F2(p)� F1(p)

⌘
1

A . (5)

Computing both inner maxima in (5) then constitutes a 2D maximum subarray problem, which is finding
the box subarray of a given 2D array with the largest sum. This problem has a number of efficient
solutions. Perhaps, the simplest of the efficient ones (from [8]) is an exhaustive search over one image
dimension (e.g. for the top and bottom dimensions of the optimal subarray) combined with the dynamic
programming (Kadane’s algorithm [7]) to solve the 1D maximum subarray problem along the other
dimension in the inner loop. This approach has complexity O(|I|1.5), where |I| is the number of pixels
in the image grid. It can be further improved in practice by replacing the exhaustive search over the first
dimension with branch-and-bound [4]. More extensive algorithms that guarantee even better worst-case
complexity are known [31]. In our experiments, the algorithm [8] was sufficient, as the time bottleneck
lied in the QP solver (see below).

2.3 Optimization

We finally discuss how the optimization problem in (3) can be solved in the case when the DMESA distance
is employed. The learning problem (3) can then be rewritten as a convex quadratic program:

5

min
w,⇠1,...⇠N

w
T
w + �

NX

i=1

⇠i, subject to (6)

8i, 8B 2 Bi : ⇠i �
X

p2B

⇣
F

0
i (p)� w

T
x

i
p

⌘
, ⇠i �

X

p2B

⇣
w

T
x

i
p � F

0
i (p)

⌘
(7)

Here, ⇠i are the auxiliary slack variables (one for each training image) and Bi is the set of all subarrays in
image i. At the optimum of (6)–(7), the optimal vector ŵ is the solution of (3) while the slack variables
equal the MESA distances: ⇠̂i = DMESA

�
F

0
i (·), Fi(·|ŵ)

�
.

The number of linear constraints in (7) is combinatorial, so that a custom QP-solver cannot be applied
directly. A standard iterative cutting-plane procedure, however, overcomes this problem: one starts with
only a small subset of constraints activated (we choose 20 boxes with random dimensions in random
subset of images to initialize the process). At each iteration, the QP (6)–(7) is solved with an active
subset of constraints. Given the solution j

w,
j
⇠1, . . .

j
⇠N after the iteration j, one can find the box

subarrays corresponding to the most violated constraints among (7). To do that, for each image we find
the subarrays that maximize the right hand sides of (7), which are exactly the 2D maximum subarrays of
F

0
i (·)� Fi(·|jw) and Fi(·|jw)� F

0
i (·) respectively.

The boxes j
B

1
i and j

B
2
i corresponding to these maximum subarrays are then found for each image i. If

the respective sums
P

p2jB1
i

⇣
F

0
i (p)� j

w
T
x

i
p

⌘
and

P
p2jB2

i

⇣
j
w

T
x

i
p � F

0
i (p)

⌘
exceed j

⇠i · (1 + ✏),
the corresponding constraints are activated, and the next iteration is performed. The iterations terminate
when for all images the sums corresponding to maximum subarrays are within (1 + ✏) factor from j

⇠i

and hence no constraints are activated. In the derivation here, ✏ << 1 is a constant that promotes
convergence in a small number of iterations to the approximation of the global minimum. Setting ✏ to 0
solves the program (6)–(7) exactly, while it has been shown in similar circumstances [16] that setting ✏ to
a small finite value does not affect the generalization of the learning algorithm and brings the guarantees
of convergence in small number of steps.

3 Experiments

Our framework and several baselines were evaluated on counting tasks for two types of imagery shown in
Figure 1. We now discuss the experiments and the quantitative results. The test datasets and the densities
computed with our method can be further assessed qualitatively at the project webpage [1].

Bacterial cells in fluorescence-light microscopy images. Our first experiment is concerned with syn-
thetic images, emulating microscopic views of the colonies of bacterial cell, generated with [19] (Fig-
ure 1-left). Such synthetic images (Figure 1-left) are highly realistic and simulate such effects as cell
overlaps, shape variability, strong out-of-focus blur, vignetting, etc. For the experiments, we generated a
dataset of images (available at [1]), with the overall number of cells varying between 74 and 317. Few
annotated datasets with real cell microscopy images also exist. While it is tempting to use real rather
than synthetic imagery, all the real image datasets to the best of our knowledge are small (only few
images have annotations), and, most importantly, there always are very big discrepancies between the
annotations of different human experts. The latter effectively invalidates the use of such real datasets for
quantitative comparison of different counting approaches.

Below we discuss the comparison of the counting accuracy achieved by our approach and baseline ap-
proaches. The features used in all approaches were based on the dense SIFT descriptor [21] computing
using [32] software at each pixel of each image with the fixed SIFT frame radius (about the size of the
cell) and fixed orientation. Each algorithm was trained on N training images, while another N images
were used for the validation of metaparameters. The following approaches were considered:

1. The proposed density-based approach. A very simple feature representation was chosen: a codebook
of K entries was constructed via k-means on SIFT descriptors extracted from the hold-out 20 images.
Then each pixel is represented by a vector of length K, which is 1 at the dimension corresponding to
the entry of the SIFT descriptor at that pixel and 0 for all other dimensions. We used training images to
learn the vector w as discussed in Section 2.1. Counting is then performed by summing the values wt

assigned to the codebook entries t for all pixels in the test image. Figure 2-right gives an example of the
respective density (see also [1]).

6

Validation N = 1 N = 2 N = 4 N = 8 N = 16 N = 32
linear ridge regression counting 67.3±25.2 37.7±14.0 16.7±3.1 8.8±1.5 6.4±0.7 5.9±0.5

kernel ridge regression counting 60.4±16.5 38.7±17.0 18.6±5.0 10.4±2.5 6.0±0.8 5.2±0.3

detection counting 28.0±20.6 20.8±5.8 13.6±1.5 10.2±1.9 10.4±1.2 8.5±0.5

detection detection 20.8±3.8 20.1±5.5 15.7±2.0 15.0±4.1 11.8±3.1 12.0±0.8

detection+correction counting – 22.6±5.3 16.8±6.5 6.8±1.2 6.1±1.6 4.9±0.5

density learning counting 12.7±7.3 7.8±3.7 5.0±0.5 4.6±0.6 4.2±0.4 3.6±0.2

density learning MESA 9.5±6.1 6.3±1.2 4.9±0.6 4.9±0.7 3.8±0.2 3.5±0.2

Table 1: Mean absolute errors for cell counting on the test set of 100 fluorescent microscopy images. The
rows correspond to the methods described in the text. The second column corresponds to the error measure used
for learning meta-parameters on the validation set. The last 6 columns correspond to the numbers of images in
the training and validation sets. The average number of cells is 171±64 per image. Standard deviations in the
table correspond to 5 different draws of training and validation image sets. The proposed method (density learning)
outperforms considerably the baseline approaches (including the application-specific baseline with the error rate =
16.2) for all sizes of the training set.

’maximal’ ’downscale’ ’upscale’ ’minimal’ ’dense’ ’sparse’
Counting-by-Regression [17] 2.07 2.66 2.78 N/A N/A N/A
Counting-by-Regression [28] 1.80 2.34 2.52 4.46 N/A N/A

Counting-by-Segmentation [28] 1.53 1.64 1.84 1.31 N/A N/A
Density learning 1.70 1.28 1.59 2.02 1.78±0.39 2.06±0.59

Table 2: Mean absolute errors for people counting in the surveillance video [10]. The columns correspond to
the four scenarios (splits) reproduced from [28] (’maximal’,’downscale’,’upscale’,’minimal’) and for the two new
sets of splits (’dense’ and ’sparse’). Our method outperforms counting-by-regression methods and is competitive
with the hybrid method in [28], which uses more detailed annotation.

2. The counting-by-regression baseline. Each of the training images was described by a global histogram
of the entries occurrences for the same codebook as above. We then learned two types of regression (ridge
regression with linear and Gaussian kernels) to the number of cells in the image.

3. The counting-by-detection baseline. We trained a detector based on a linear SVM classifier. The SIFT
descriptors corresponding to the dotted pixels were considered positive examples. To sample negative
examples, we built a Delaunay triangulation on the dots and took SIFT descriptors corresponding to the
pixels at the middle of Delaunay edges. At detection time, we applied the SVM at each pixel, and then
found peaks in the resulting confidence map (e.g. Figure 2-middle) via non-maximum suppression with
the threshold ⌧ and radius ⇢ using the code [18]. We also considered a variant with the linear correction of
the obtained number to account for systematic biases (detection+correction). The slope and the intercept
of the correction for each combination of ⌧ , ⇢, and regularization strength were estimated via robust
regression on the union of the training and validation sets.

4. Application-specific method [29]. We also evaluated the software specifically designed for analyzing
cells in fluorescence-light images [29]. The counting algorithm here is based on adaptive thresholding
and morphological analysis. For this baseline, we tuned the free parameter (cell division threshold) on
the test set, and computed the mean absolute error, which was 16.2.

The meta-parameters (K, regularization strengths, Gaussian kernel width for ridge regression, ⌧ and ⇢

for non-maximum suppression) were learned in each case on the validation set. The objective minimized
during the validation was counting accuracy. For counting-by-detection, we also considered optimizing
detection accuracy (computed via Hungarian matching with the ground truth), and, for our approach, we
also considered minimizing the MESA distance with the ground truth density on the validation set.

The results for a different number N of training and validation images are given in Table 1, based on 5
random draws of training and validation sets. A hold out set of 100 images was used for testing. The
proposed method outperforms the baseline approaches for all sizes of the training set.

Pedestrians in surveillance video. Here we focus on a 2000-frames video dataset [10] from a camera
overviewing a busy pedestrian street (Figure 1-right). The authors of [10] also provided the dotted ground
truth for these frames, the position of the ground plane, and the region of interest, where the counts
should be performed. Recently, [28] performed extensive experiments on the dataset and reported the
performance of three approaches (two counting-by-regression including [17] and the hybrid approach:
split into blobs, and regress the number for each blob). The hybrid approach in [28] required more

7

detailed annotations than dotting (see [28] for details). For the sake of comparison, we adhered to the
experimental protocols described in [28], so that the performance of our method is directly comparable.

In particular, 4 train/test splits were suggested in [28]: 1) ’maximal’: train on frames 600:5:1400 (in
Matlab notation) 2) ’downscale’: train on frames 1205:5:1600 (the most crowded) 3) ’upscale’: train on
frames 805:5:1100 (the least crowded) 4) ’minimal’: train on frames 640:80:1360 (10 frames). Testing is
performed on the frames outside the training range. For future reference, we also included two additional
scenarios (’dense’ and ’sparse’) with multiple similar splits in each (permitting variance estimation).
Both scenarios are based on splitting the 2000 frames into 5 contiguous chunks of 400 frames. In each
of the two scenarios, we then performed training on one chunk and testing on the other 4. In the ”dense”
scenario we trained on 80 frames sampled from the training split with uniform spacing, while in the
’sparse’ scenario, we took just 10 frames.

Extracting features in this case is more involved as several modalities, namely the image itself, the
difference image with the previous frame, and the background subtracted image have to be combined
to achieve the best performance (a simple median filtering was used to estimate the static background
image). We used a randomized tree approach similar to [24] to get features combining these modalities.
Thus, we first extracted the primary features in each pixel including the absolute differences with the
previous frame and the background, the image intensity, and the absolute values x- and y-derivatives. On
the training subset of the smallest ’minimal’ split, we then trained a random forest [9] with 5 randomized
trees. The training objective was the regression from the appearance of each pixel and its neighborhood
to the ground truth density. For each pixel at testtime, the random forest performs a series of simple
tests comparing the value of in the particular primary channel at location defined by a particular offset
with the particular threshold, while during forest pretraining the number of the channel, the offset and
the threshold are randomized. Given the pretrained forest, each pixel p gets assigned a vector xp of
dimension equal to the total number of leaves in all trees, with ones corresponding to the leaves in each
of the five trees the pixel falls into and zeros otherwise. Finally, to account for the perspective distortion,
we multiplied xp by the square of the depth of the ground plane at p (provided with the sequence).
Within each scenario, we allocated one-fifth of the training frames to pick � and the tree depth through
validation via the MESA distance.

The quantitative comparison in Table 2, demonstrates the competitiveness of our method.

Overall comments. In both sets of experiments, we tried two strategies for setting � (kernel width in
the definition of the ground truth densities): setting � = 0 (effectively, the ground truth is then a sum of
delta-functions), and setting � = 4 (roughly comparable with object half-size in both experiments). In
the first case (cells) both strategies gave almost the same results for all N , highlighting the insensitivity
of our approach to the choice of � (see also Figure 3 on that). The results in Table 1 is for � = 0. In the
second case (pedestrians), � = 4 had an edge over � = 0, and the results in Table 2 are for that value.

At train time, we observed that the cutting plane algorithm converged in a few dozen iterations (less
than 100 for our choice ✏ = 0.01). The use of a general-purpose quadratic solver [2] meant that the
training times were considerable (from several seconds to few hours depending on the value of � and
the size of the training set). We anticipate a big reduction in training time for the purpose-built solver.
At test time, our approach introduces virtually no time overhead over feature extraction. E.g. in the case
of pedestrians, one can store the value wt computed during learning at each leaf t in each tree, so that
counting would require simply “pushing” each pixel down the forest, and summing the resulting wt from
the obtained leaves. This can be done in real-time [30].

4 Conclusion

We have presented the general framework for learning to count objects in images. While our ultimate
goal is the counting accuracy over the entire image, during the learning our approach is optimizing the
loss based on the MESA-distance. This loss involves counting accuracy over multiple subarrays of the
entire image (and not only the entire image itself). We demonstrate that given limited amount of training
data, such an approach achieves much higher accuracy than optimizing the counting accuracy over the
entire image directly (counting-by-regression). At the same time, the fact that we avoid the hard problem
of detecting and discerning individual object instances, gives our approach an edge over the counting-
by-detection method in our experiments.

Acknowledgements. This work is suppoted by EU ERC grant VisRec no. 228180. V. Lempitsky is
also supported by Microsoft Research projects in Russia. We thank Prof. Jiri Matas (CTU Prague) for
suggesting the detection+correction baseline.

8

References

[1] http://www.robots.ox.ac.uk/%7Evgg/research/counting/index.html.
[2] The MOSEK optimization software. http://www.mosek.com/.
[3] N. Ahuja and S. Todorovic. Extracting texels in 2.1d natural textures. ICCV, pp. 1–8, 2007.
[4] S. An, P. Peursum, W. Liu, and S. Venkatesh. Efficient algorithms for subwindow search in object detection

and localization. CVPR, pp. 264–271, 2009.
[5] D. Anoraganingrum. Cell segmentation with median filter and mathematical morphology operation. Image

Analysis and Processing, International Conference on, 0:1043, 1999.
[6] O. Barinova, V. Lempitsky, and P. Kohli. On the detection of multiple object instances using Hough transforms.

CVPR, 2010.
[7] J. L. Bentley. Programming pearls: Algorithm design techniques. Comm. ACM, 27(9):865–871, 1984.
[8] J. L. Bentley. Programming pearls: Perspective on performance. Comm. ACM, 27(11):1087–1092, 1984.
[9] L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

[10] A. B. Chan, Z.-S. J. Liang, and N. Vasconcelos. Privacy preserving crowd monitoring: Counting people
without people models or tracking. CVPR, 2008.

[11] S.-Y. Cho, T. W. S. Chow, and C.-T. Leung. A neural-based crowd estimation by hybrid global learning
algorithm. IEEE Transactions on Systems, Man, and Cybernetics, Part B, 29(4):535–541, 1999.

[12] C. Desai, D. Ramanan, and C. Fowlkes. Discriminative models for multi-class object layout. ICCV, 2009.
[13] X. Descombes, R. Minlos, and E. Zhizhina. Object extraction using a stochastic birth-and-death dynamics in

continuum. Journal of Mathematical Imaging and Vision, 33(3):347–359, 2009.
[14] L. Dong, V. Parameswaran, V. Ramesh, and I. Zoghlami. Fast crowd segmentation using shape indexing.

ICCV, pp. 1–8, 2007.
[15] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisser-

man. The PASCAL Visual Object Classes Challenge 2009 (VOC2009) Results.
http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2009/workshop/index.html.

[16] T. Joachims, T. Finley, and C.-N. J. Yu. Cutting-plane training of structural svms. Machine Learning, 77(1):27–
59, 2009.

[17] D. Kong, D. Gray, and H. Tao. A viewpoint invariant approach for crowd counting. ICPR (3), pp. 1187–1190,
2006.

[18] P. D. Kovesi. MATLAB and Octave functions for computer vision and image processing. School
of Computer Science & Software Engineering, The University of Western Australia. Available from:
http://www.csse.uwa.edu.au/⇠pk/research/matlabfns/.

[19] A. Lehmussola, P. Ruusuvuori, J. Selinummi, H. Huttunen, and O. Yli-Harja. Computational framework for
simulating fluorescence microscope images with cell populations. IEEE Trans. Med. Imaging, 26(7):1010–
1016, 2007.

[20] B. Leibe, A. Leonardis, and B. Schiele. Robust object detection with interleaved categorization and segmenta-
tion. International Journal of Computer Vision, 77(1-3):259–289, 2008.

[21] D. G. Lowe. Distinctive image features from scale-invariant keypoints. International Journal of Computer

Vision, 60(2):91–110, 2004.
[22] A. N. Marana, S. A. Velastin, L. F. Costa, and R. A. Lotufo. Estimation of crowd density using image process-

ing. Image Processing for Security Applications, pp. 1–8, 1997.
[23] J. Massey, Frank J. The kolmogorov-smirnov test for goodness of fit. Journal of the American Statistical

Association, 46(253):68–78, 1951.
[24] F. Moosmann, B. Triggs, and F. Jurie. Fast discriminative visual codebooks using randomized clustering

forests. NIPS, pp. 985–992, 2006.
[25] S. K. Nath, K. Palaniappan, and F. Bunyak. Cell segmentation using coupled level sets and graph-vertex

coloring. MICCAI (1), pp. 101–108, 2006.
[26] T. W. Nattkemper, H. Wersing, W. Schubert, and H. Ritter. A neural network architecture for automatic

segmentation of fluorescence micrographs. Neurocomputing, 48(1-4):357–367, 2002.
[27] V. Rabaud and S. Belongie. Counting crowded moving objects. CVPR (1), pp. 705–711, 2006.
[28] D. Ryan, S. Denman, C. Fookes, and S. Sridharan. Crowd counting using multiple local features. DICTA ’09:

Proceedings of the 2009 Digital Image Computing: Techniques and Applications, pp. 81–88, 2009.
[29] J. Selinummi, J. Seppala, O. Yli-Harja, and J. A. Puhakka. Software for quantification of labeled bacteria from

digital microscope images by automated image analysis. Biotechniques, 39(6):859–63, 2005.
[30] T. Sharp. Implementing decision trees and forests on a GPU. ECCV (4), pp. 595–608, 2008.
[31] H. Tamaki and T. Tokuyama. Algorithms for the maxium subarray problem based on matrix multiplication.

SODA, pp. 446–452, 1998.
[32] A. Vedaldi and B. Fulkerson. VLFeat: An open and portable library of computer vision algorithms.

http://www.vlfeat.org/, 2008.
[33] B. Wu, R. Nevatia, and Y. Li. Segmentation of multiple, partially occluded objects by grouping, merging,

assigning part detection responses. CVPR, 2008.
[34] T. Zhao and R. Nevatia. Bayesian human segmentation in crowded situations. CVPR (2), pp. 459–466, 2003.

9

