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ABSTRACT
This paper concerns automated cell counting and detection in microscopy images. The approach we take
is to use convolutional neural networks (CNNs) to regress a cell spatial density map across the image.
This is applicable to situations where traditional single-cell segmentation-based methods do not work
well due to cell clumping or overlaps. We make the following contributions: (i) we develop and compare
architectures for two fully convolutional regression networks (FCRNs) for this task; (ii) since the networks are
fully convolutional, they can predict a density map for an input image of arbitrary size, and we exploit this
to improve efficiency by end-to-end training on image patches; (iii) we show that FCRNs trained entirely on
synthetic data are able to give excellent predictions on microscopy images from real biological experiments
without fine-tuning, and that the performance can be further improved by fine-tuning on these real images.
Finally, (iv) by inverting feature representations, we show to what extent the information from an input
image has been encodedby feature responses in different layers.We set a new state-of-the-art performance
for cell counting on standard synthetic image benchmarks and show that the FCRNs trained entirely with
synthetic data can generalise well to real microscopy images both for cell counting and detections for the
case of overlapping cells.
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1. Introduction

Counting and detecting objects in crowded images or videos
is an extremely tedious and time-consuming task encountered
in many real-world applications, including biology (Arteta et
al. 2012, 2014, 2015; Fiaschi et al. 2012), surveillance (Chan et
al. 2008; Lempitsky & Zisserman 2010) and other applications
(Barinova et al. 2012). In this paper, we focus on cell counting
and detection in microscopy, but the developed methodology
could equally be used in other counting or detection applica-
tions. Numerous procedures in biology and medicine require
cell counting and detection, for instance: a patient’s health can
be inferred from the number of red blood cells and white blood
cells; in clinical pathology, cell counts from images can be used
for investigating hypotheses about developmental or patholog-
ical processes; and cell concentration is important in molecular
biology, where it can be used to adjust the amount of chemicals
to be applied in an experiment. While detection on its own, is
able to determine the presence (and quantity) of an object of
interest, such as cancer cells in a pathology image, furthermore,
detection can be used as seeds for further segmentation or
tracking.

Automatic cell counting can be approached from two di-
rections, one is detection-based counting (Arteta et al. 2012,
2015; Girshick et al. 2014), which requires prior detection or
segmentation; the other is based on density estimation without
the need for prior object detection or segmentation (Lempitsky
& Zisserman 2010; Fiaschi et al. 2012; Arteta et al. 2014). In our
work, we take the latter approach, and show that cell detection
can be a side benefit of the cell counting task.

CONTACT Weidi Xie weidi.xie@eng.ox.ac.uk

Following (Lempitsky & Zisserman 2010), we first cast the cell
counting problem as a supervised learning problem that tries to
learn amapping between an image I(x) and a density map D(x),
denoted as F : I(x) → D(x) (I ∈ Rm×n,D ∈ Rm×n) for a m × n
pixel image, see Figure 1. During the inference, given the input
test image, the densitymap and cell detections can be obtained,
as shown in Figure 2.

We solve this mapping problem by adapting the convolu-
tional neural networks (CNNs) (LeCun et al. 1998; Krizhevsky et
al. 2012), which has re-emerged as a mainstream tool in the
computer vision community. CNNs are also starting to become
popular in biomedical image analysis and have achieved state-
of-the-art performance in several areas, such as mitosis detec-
tion (Cireşan et al. 2013), neuronal membranes segmentation
(Cireşan et al. 2012), analysis of developing C. elegans embryos
(Ning et al. 2005), and cell segmentation (Ronneberger et al.
2015). However, they have not yet been applied to solve the
target problemhereof regression inmicroscopy cell for counting
and detection simultaneously.

One of the issues we investigate is whether networks trained
only on synthetic data can generalise to real microscopy im-
ages. (Jaderberg et al. 2014) showed that for text recognition
a CNN trained only on synthetic data gave excellent results
on real images. The great advantage of this is that it avoids
the problem of obtaining large data-sets with manual annota-
tion. These are available for natural images, e.g. ImageNet (Rus-
sakovsky et al. 2014) in the computer visionfield, but thebiomed-
ical image data is limited, expensive, and time-consuming to
annotate.

© 2016 Informa UK Limited, trading as Taylor & Francis Group
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Figure 1. The training process aims to find a mapping between I(x) and the density map D(x). (a) Red crosses on I(x) are dot annotations near the cell centres. (b) The
density map D(x) is a superposition of Gaussians at the position of each dot. Integration of the density map D(x) over specific region gives the count of cells.

In this paper, we develop a fully convolutional regression
networks (FCRNs) approach for regression of a density map. In
Section 2, we describe several related works. In Section 3, we
design and compare two alternative architectures for the FCRNs,
and discuss how the networks can be trained efficiently with
images of arbitrary sizes in an end-to-end way. In Section 4, we
present results on a standard synthetic data-set for counting,
and show that the networks trained only on synthetic data
can generalise for different kinds of microscopy images from
real biological experiments, and the performance can be further
improved by fine-tuning parameters with annotated real data.
Overall, experimental results show that FCRNs can provide state-
of-the-art cell counting for a standard synthetic data-set, as
well as the capability for cell detection. And as an extension
to our previous paper, which was published in the MICCAI 1st
Deep Learning Workshop (Weidi et al. 2015), we also propose
to visualise to what extent the information from input image
has been encoded by feature responses of different layers in the
trained networks.

2. Related work

We first review previous approaches to cell counting by density
estimation, and then turn to CNN-based methods for cell detec-
tion. We also build on fully convolutional networks for semantic
segmentation (Longet al. 2015),where the fully connected layers
of a classification net are treated as convolutions, and upsam-
pling filters combined with several skip layers are used to enable
the network to take an input of arbitrary size and produce an
output of the same size during training and inference.

2.1. Counting by density estimation

Cell counting in crowded microscopy images with density es-
timation avoids the difficult detection and segmentation of in-
dividual cells. It is a good alternative for tasks where only the

number of cells in an arbitrary region is required. Over the recent
years, several works have investigated this approach. In Lem-
pitsky and Zisserman (2010), the problem was cast as density
estimation with a supervised learning algorithm,D(x) = cTφ(x),
where D(x) represents the ground-truth density map, and φ(x)
represents the local features. The parameters c are learned by
minimising the error between the true and predicted density
mapwith quadratic programming over all possible subwindows.
In Fiaschi et al. (2012), a regression forest is used to exploit
the patch-based idea to learn structured labels, then for a new
input image, the density map is estimated by averaging over
structured, patch-based predictions. In Arteta et al. (2014), an
algorithm was proposed that allows fast interactive counting by
simply solving ridge regression with various local features.

2.2. Detection by regression

Although there has been much recent work on detection in nat-
ural images, there has been little application so far tomicroscopy
images. Approaches on natural images include detections based
on region proposal and classification networks (Girshick et al.
2014; He et al. 2014; Ren et al. 2015), sliding window and classi-
fication networks (Sermanet et al. 2014), and using modes from
heat map regression (Tompson et al. 2014; Pfister et al. 2015).

Onework that has been developed independently and shares
similar ideas to our own on detection is Yuanpu et al. (2015). In
their work, they cast the detection task as a structured regression
problem with the dot annotation near the cell centre. They train
CNN model that takes an image patch of fixed size as input
and predicts a “proximity patch” of half the resolution of the
original input patch. During training, the defined proximitymask
M corresponding to image I is calculated as,

Mij =
{

1
1+αD(i,j) if D(i, j) ≤ γ ,
0 otherwise,

(1)
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Figure 2. During the inference process, given the test image I′(x) in (a). (b) The trained model aims to predict the density map D′(x). The integration of the density map
D′(x) over a specific region gives the cell counts. (c) Cell detections in T ′(x) can be obtained by taking local maxima on the density map D′(x). (Yellow crosses).

whereD(i, j) represents the Euclidean distance from pixel (i, j) to
the nearest manually annotated cell centre (α = 0.8 and γ = 5
in their paper). Therefore, Mij gives value 1 for the cell centre,
and decreases with distance from the centre. During inference,
in order to calculate the proximity map for an entire testing
image, they propose to fuse all the generated proximity patches
together in a sliding window way. After this, the cell detection is
obtained by finding the local maximumpositions in this average
proximity map.

In contrast to this approach, our paper focuses onmodels that
enable end-to-end training and prediction of density maps for
images of arbitrary size using FCRNs. Cell counting anddetection
in the specific regionofmicroscopy images can thenbeobtained
simultaneously from the predicted density map.

3. Fully convolutional regression networks

3.1. Architecture design

Theproblem scenario of cell counting anddetection is illustrated
in Figures 1 and 2. For training, the ground truth is provided
by dot annotations, where each is represented by a Gaussian,
and a density map D(x) is formed by the superposition of these
Gaussians. The central task is to regress this density map from
the corresponding cell image I(x), then the cell count in a spe-
cific region can be obtained by integrating over D(x) and cell
detection by local maxima detection on D(x).

In this paper, we propose to solve this problem by training
FCRNs. We present two network architectures, namely FCRN-
A and FCRN-B, as shown in Figure 3. In designing the network
architectures,we consider twopoints: (i) for cell counting andde-
tection problems, cells are usually small compared to the whole
image. Therefore, deep networks that can represent highly se-
mantic information are not necessary; and (ii), based on this,
we consider only simple architectures (no skip layers). However,
since cell clumps can have very complicated shapes, we are
interested in finding out if networks of this simplicity are able
to deal with these complications and variety.

The popular CNN architecture for classification contains
convolution–ReLU–pooling (Krizhevsky et al. 2012). ReLU refers

to rectified linear units. Pooling usually refers to max pooling
and results in a shrinkage of the feature maps. However, in
order to produce density maps that have same resolution as
the input, we reinterpret the fully connected layers as convo-
lutional layers and undo the spatial reduction by performing
upsampling–convolution–ReLU, mapping the feature maps of
dense representation back to the original resolution (Figure 3).
During upsampling, we use bilinear interpolation, followed by
trainable convolution kernels that can be learnt during end-to-
end training.

Inspired by the very deep VGG-net (Simonyan & Zisserman
2015), in both regression networks, we only use small kernels
of size 3 × 3 or 5 × 5 pixels. The number of feature maps in
the higher layers is increased to compensate for the loss of
spatial information caused by max pooling. In FCRN-A, all of
the kernels are of size 3 × 3 pixels, and three max-poolings are
used to aggregate spatial information leading to an effective
receptive field of size 38 × 38 pixels (i.e. the input footprint
corresponding to each pixel in the output). FCRN-A provides
an efficient way to increase the receptive field, while contains
about 1.3 million trainable parameters. In contrast, max pooling
is used after every two convolutional layers to avoid too much
spatial information loss in FCRN-B. In this case, the number of
feature maps is increased up to 256, with this number of feature
maps then retained for the remaining layers. Comparing with
FCRN-A, in FCRN-B we train 5× 5 upsampling kernels leading to
the effective receptive field of size 32×32 pixels. In total, FCRN-B
contains about 3.6 million trainable parameters, which is about
three times as many as those in FCRN-A.

3.2. Implementation details

The implementation is based on MatConvNet (Vedaldi & Lenc
2015). During training, we cut large images into patches, for
instance, we randomly sample patches of size 100×100 pixels
from 256 × 256 images. Simple data augmentation techniques
are also used, e.g. small rotations, horizontal flipping. Before
training, each patch is normalised by subtracting its own mean
value and then dividing by the standard deviation.
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Figure 3. FCRNs in this paper (FCRN-A & FCRN-B). (a) FCRN-A is designed to use small 3 × 3 kernels for every layer. Each convolutional layer is followed by pooling. (b)
FCRN-B is designed to use fewer pooling layers than FCRN-A, 5 × 5 kernels are used. In each FCRN architecture: (1) The size of the input image or feature maps is shown
on top of each block, indicating whether pooling has been used. (2) The number of feature maps in each layer is shown at the bottom of each block. (3) The size of kernels
is shown beside the small black or red blocks. Conv – convolution; Pooling – 2 × 2 max pooling; ReLU – rectified linear units; Upsampling – bilinear upsampling.

The cost function is defined as:

l(W; X0)

= 1
M

M∑

i=1

(Yn − X (i)
n )T (Yn − X (i)

n ) (Mean Square Error) (2)

whereW are all the trainable parameters, X0 is the input patch, Y
is the ground-truth annotation with Gaussians of σ = 2 and Xn
is the predicted density map for the input patch.

The parameters of the convolution kernels are initialised with
an orthogonal basis (Saxe et al. 2014). Stochastic gradient
descent with momentum are used for optimisation. Then, the
parametersw are updated by:

%wt+1 = β%wt + (1 − β)

(
α

∂ l
∂w

)
(Include Momentum) (3)

where β is the momentum parameter. The learning rate α is
initialised as 0.01 and gradually decreased by a factor of 10.

The momentum is set to 0.9, weight decay is 0.0005 and no
dropout is used in either network. Since the non-zero region in
the ground-truth density map is really small, most of the pixels
in ground-truth density map remains to be zero. Moreover, even
for non-zero regions, the peak value of a Gaussian with σ = 2 is
only about 0.07, the networks tend to be very difficult to train. To
alleviate this problem, we simply scale the Gaussian-annotated
ground truth (Figure 1(b)) by a factor of 100, forcing the network
to fit the Gaussian shapes rather than background zeros.

After pretraining with patches, we fine-tune the parameters
with whole images to smooth the estimated density map, since
the 100 × 100 image patches sometimes may only contain part
of a cell on the boundary.

4. Experimental validation

In this section, we first determine how FCRN-A and FCRN-B are
compared with previous work on cell counting using synthetic
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data. Then, we apply the network trained only on synthetic data
to a variety of real microscopy images without fine-tuning. Fi-
nally, we compare the performance before and after fine-tuning
on real microscopy images.

In termsof cell detection,we consider it as a sidebenefit of our
main counting task. The detection results are obtained simply
by taking local maxima based on our predicted density map. We
show detection results both on synthetic data and microscopy
images from real biological experiments.

4.1. Data-set and evaluation protocol

4.1.1. Synthetic data
The synthetic data-set (Lempitsky & Zisserman 2010) consists
of 200 images of cell nuclei on fluorescence microscopy gen-
erated with (Lehmussola et al. 2007). Each synthetic image has
an average of 174 ± 64 cells. Severe overlap between instances
are often observed in this data-set, which makes it challenging
for counting or detection. As shown in Figure 4, under this
situation, it even becomes impossible for a human expert to
tell the difference between overlapping cells and a single cell.
The synthetic data-set is divided into 100 images for training
and 100 for testing, and several random splits of the training set
are used. Such splits consist of five sets of N training images and
N validation images, for N = 8, 16, 32, 64. We report the mean
absolute errors and standard deviations for FCRN-A and FCRN-B.

4.1.2. Real data
Weevaluated FCRN-A and FCRN-B on four different kinds of data;
(1) retinal pigment epithelial (RPE) cell images. The quantitative
anatomy of RPE can be important for physiology and pathophys-
iology of the visual process, especially in evaluating the effects
of aging (Panda-Jonas et al. 1996); (2) embryonic stem cells.
Cell counting is essential to monitor the differentiation process
(Faustino et al. 2009); (3) plasma cell. The relative number of
plasma cells in a bone marrow specimen is a clinical parameter
important for the diagnosis and management of plasma cell
dyscrasia (Went et al. 2006); (4) images of precursor T-Cell lym-
phoblastic lymphoma. Lymphoma is the most common blood
cancer, usually occurs when cells of the immune system grow
and multiply uncontrollably.

4.2. Evaluation on synthetic data

4.2.1. Network comparison
During testing, each image is mapped to a density map first,
then integrating over the map for a specific region gives the
count, or taking local maxima gives the cell detection of that
region (Figure 5). The performances of the two networks for cell
counting are compared in Table 1 as a function of the number of
training images.

As shown in Table 1, FCRN-A performs slightly better than
FCRN-B. The size of the receptive field turns out to be more
important than being able to providemore detailed information
over the receptive field, we hypothesis that this is because the
real difficulty in cell counting lies in regression for large cell
clumps, and a larger receptive field is required to span these. For
both networks, the performance is observed to improve using

more training images from N = 8 to N = 32, and only a small
additional increase for N to 64.

There are three key sources of error: first, from the data-
set itself. As shown in Figure 4, the annotation for the data-set
itself is noisy. In this case, the L2 regression loss tends to over-
penalise. In future research, we will investigate other regression
loss functions to address this; second, from the boundary effect
due to bilinear up-sampling. Cells on the boundary of images
tend to produce wrong predictions in this case; and the third
source of error is from very large cell clumps, where four or more
cells overlap. In this case, larger clumps can be more variable in
shape than individual cells and so are harder to regress; further,
regression for large cell clumps requires the network to have
an even larger receptive field that can cover important parts of
the entire clumps, like concavity information, or curved edges in
specific directions. Since our networks are relatively shallow and
only have a receptive field of size 38 × 38 pixels and 32 × 32
pixels, for elongated cell clumps, their curved edges can usually
be covered, and correct predictions can be expected. However,
for a roughly round cell clump with four or more cells, it can be
bigger than our largest receptive field, and this usually leads to
an incorrect prediction.

4.2.2. Comparisonwith state-of-the-art
Table 1 shows a comparison with previous methods on the
synthetic cell data-set. FCRN-A shows about 9.4% improvement
over the previous best method of Fiaschi et al. (2012) when
N = 32.

4.3. Evaluation on real data

We test both regression networks on real data-sets for counting
and detection. Here, we only show figures for results from FCRN-
A in Figures 6, 7, 8 (without fine-tuning) and Figure 9 (before
and after fine-tuning). During fine-tuning, two images of size
2500×2500 pixels, distinct from the test image, are used for fine-
tuning pre-trained FCRNs in a patch-based manner, the same
annotations following Figure 1(b) were performed manually by
one individual, each image contains over 7000 cells. It can be
seen that the performance of FCRN-A on real images can be
improved by fine-tuning, reducing the error of 33 out of 1502
(before fine-tuning) to 17 out of 1502 (after fine-tuning).

When testing FCRN-B on two data-sets of real microscopy
data, for RPE cells: Ground-truth/Estimated count = 705/699, and
for Precursor T-Cell LBL cells: Ground-truth/Estimated count =
1502/1473 (without fine-tuning). Surprisingly, FCRN-B achieves
slightly better performance on real data than FCRN-A. Our con-
jecture is that the real data contains smaller cell clumps than
synthetic data, therefore, the shape of cell clumps will not vary a
lot. The network is then able to give a good prediction evenwith
a small receptive field.

5. Inverting feature representations

5.1. Problem description

In order to understand the features that have been captured
by the deep networks, we considered the following question:
“given an encoding of an image, to what extent is it possible to
reconstruct that image?” In other words, we sought to visualise
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Figure 4. Annotation noise in the standard data-set. (a) The image from a standard synthetic data-set. For reader convenience, the rough boundaries of the cells have
beenmanually drawnwith a red ellipse. (b) Put a Gaussian at the centre of each generated cell. The highlighted upper right region contains one single cell, while the lower
left region actually contains two overlapping cells.

Figure 5. Counting inference process for pre-trained FCRNs. (a) Input image from test set. (b) Ground-truth density map. Count: 18 (Upper left), 16 (Lower right). (c)
Estimated density map from FCRN-A. Count: 17 (Upper left) 16 (Lower right). (d) Estimated density map from FCRN-B. Count: 19 (Upper left) 16 (Lower right). Red crosses
on (c) and (d) indicate cell detection results.
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Table 1.Mean absolute error and standard deviations for cell counting on the standard synthetic cell data-set (Lehmussola et al. 2007; Lempitsky & Zisserman 2010).

Method 174 ± 64 cells
N = 8 N = 16 N = 32 N = 64

Lempitsky and Zisserman (2010) 8.8 ± 1.5 6.4 ± 0.7 5.9 ± 0.5 N/A
Lempitsky and Zisserman (2010) 4.9 ± 0.7 3.8 ± 0.2 3.5 ± 0.2 N/A
Fiaschi et al. (2012) 3.4 ± 0.1 N/A 3.2 ± 0.1 N/A
Arteta et al. (2014) 4.5 ± 0.6 3.8 ± 0.3 3.5 ± 0.1 N/A
Proposed FCRN-A 3.9 ± 0.5 3.4 ± 0.2 2.9 ± 0.2 2.9 ± 0.2
Proposed FCRN-B 4.1 ± 0.5 .7 ± 0.3 3.3 ± 0.2 3.2 ± 0.2

The columns correspond to the number of training images. Standard deviation corresponds to five different draws of training and validation sets

Figure 6. FCRN-A applied on RPE cells made from stem cells. Only nucleus channel is used. Cell Count: Ground-truth vs. Estimated: 705/697. The data are from: http://sitn.
hms.harvard.edu/waves/2014/a-stem-cell-milestone-2/. (a) RPE Cells. (b) Annotated density map. (c) Estimated density map. (d) Cell detection.

Figure 7. FCRN-A applied on Embryonic Stem Cells. Only nucleus channel is used. Cell Count: Ground-truth vs. Estimated: 535/530.

how much information of the input image has been captured
by the feature representations of different layers in the deep
networks (Mahendran & Vedaldi 2015).

The problem can be formalised as a reconstruction problem
(Figure 10). Given a representation function F : RH×W×C → Rd

and a representation φ0 = φ(x0) to be inverted, the recon-
struction process aims to find another image x ∈ RH×W×C that
minimises the objective:

x∗ = argmin
x∈RH×W×C

l(φ(x),φ0) + λL2(x) (4)

l(φ(x),φ0) = ∥φ(x) − φ0∥2 (Euclidean Distance) (5)

where the loss l compares the image representation φ(x) to the
target φ0, and in our case, we choose the L2 penalty to avoid the
large pixel values.

5.2. Optimisation

Similar to training deep networks, the optimisation of Equation
(4) is also a non-convex problem. However, simple gradient
descent (GD) algorithms have been shown to be very effective.

http://sitn.hms.harvard.edu/waves/2014/a-stem-cell-milestone-2/
http://sitn.hms.harvard.edu/waves/2014/a-stem-cell-milestone-2/
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Figure 8. FCRN-A applied on Plasma Cells: Only greyscale image is used. Cell Count: Ground-truth vs. Estimated: 297/294.

Figure 9. FCRN-A applied on Precursor T-Cell. Only greyscale image is used. textitCell Count: Ground-truth vs. No fine-tuning 1502 vs. 1469. Cell Count: Ground-truth vs.
Fine-tuning 1502 vs. 1485.

Figure 10. Example of inverting feature representation for the cell clump based on layer φ2. Step 1: Feed an input image I(x) to the trained FCRN-A, and make a record
of the feature representations φ2(I(x)). Step 2: Feed a random input image I′(x) to FCRN-A, similarly, calculate feature representations φ2(I′(x)). Step 3: Optimise the
random input image I′(x)with gradient descent (GD), such that φ2(I(x)) = φ2(I′(x)). (Shown as the red arrows).
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Figure 11. Reconstruction results from feature representations in different layers of FCRN-A.

In our implementation,momentum is also used to speed up the
convergence:

%xt+1 := β%xt − ηt∇E(x) (6)

xt+1 := xt + %xt (7)

where E(x) = l(φ(x),φ0) + λL2(x) is the objective function,
weight decaying factor β = 0.9, learning rate ηt is gradually
reduced until convergence.

5.3. Reconstruction results

For simplicity, we only show the visualisation results from FCRN-
A in this paper, but the same procedure can be performed
for FCRN-B as well. In essence, CNNs were initially designed as
an hierarchical model, which aimed to extract more semantic
information as the networks get deeper. For our density map
prediction tasks, the biggest challenge is caused by the highly
overlapping cell clumps with various shapes. In Figure 11, we
show towhat extent the information fromoriginal cell clumpcan
be encoded by the feature responses of different layers, and try
to present an intuition about how the FCRNs make predictions.

As shown in Figure 11, when the networks get deeper, feature
representations for this cell clump become increasingly abstract.
Therefore, when we try to reconstruct the input image with
feature representations, reconstruction quality decreases with
the depth of networks, and only important information has been
kept by deep layers, for instance, in Conv3, edges around the cell
clump are captured, and for Conv4, which containsmost abstract
information in this network, only concavity information has been
kept for prediction.

6. Conclusions

In this paper, we have proposed FCRNs for regressing density
maps, which will later be used for both cell counting and detec-
tion tasks. The approach allows end-to-end training with images

of arbitrary sizes, and is able to perform fast inference for mi-
croscopy images. Moreover, we provide intuitive understanding
of feature representations from FCRNs by visualising to what
extent the information has been encoded different layers.
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CireşanDC,Giusti A, Gambardella LM, Schmidhuber J. 2013.Mitosis detection
in breast cancer histology images with deep neural networks. In: Medical

http://orcid.org
http://orcid.org/0000-0003-3804-2639
http://dxdoiorg/101016/jmedia201503002


292 W. XIE ET AL.

Image Computing and Computer-Assisted Intervention (MICCAI). Nagoya:
Springer; p. 411–418.

Faustino GM, GattassM, Rehen S, De Lucena CJ. 2009. Automatic embryonic
stem cells detection and counting method in fluorescence microscopy
images. In: IEEE International Symposium on Biomedical Imaging: From
Nano to Macro, 2009. ISBI’09; Boston, MA, USA. p. 799–802.

Fiaschi L, Nair R, Koethe U, Hamprecht FA. 2012. Learning to count with
regression forest and structured labels. In: 21st International Conference
on Pattern Recognition (ICPR); Tsukuba, Japan. p. 2685–2688.

Girshick R, Donahue J, Darrell T, Malik J. 2014. Rich feature hierarchies for
accurate object detection and semantic segmentation. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (CVPR);
Columbus, OH, USA. p. 580–587.

He K, Zhang X, Ren S, Sun J. 2014. Spatial pyramid pooling in deep
convolutional networks for visual recognition. In: Proceedings of the
EuropeanConferenceonComputer Vision (ECCV). Zurich: Springer; p. 346–
361.

Jaderberg M, Simonyan K, Vedaldi A, Zisserman A. 2014. Synthetic data and
artificial neural networks for natural scene text recognition. In: Workshop
on Deep Learning, Advances in Neural Information Processing Systems
(NIPS); Palais des Congrès de Montréal, Montréal Canada.

Krizhevsky A, Sutskever I, Hinton GE. 2012. ImageNet classification with
deep convolutional neural networks. In: Advances in Neural Information
ProcessingSystems (NIPS);Harrahs andHarveys, LakeTahoe. p. 1097–1105.

LeCunY, Bottou L, Bengio Y, Haffner P. 1998. Gradient-based learning applied
to document recognition. Proc IEEE. 86:2278–2324.

Lehmussola A, Ruusuvuori P, Selinummi J, Huttunen H, Yli-Harja O. 2007.
Computational framework for simulating fluorescencemicroscope images
with cell populations. IEEE Trans Med Imaging. 26:1010–1016.

Lempitsky V, Zisserman A. 2010. Learning to count objects in images. In:
Advances in Neural Information Processing Systems (NIPS); Hyatt Regency,
Vancouver, Canada. p. 1324–1332.

Long J, Shelhamer E, Darrell T. 2015. Fully convolutional networks for
semantic segmentation. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR); Boston, MA, USA. p.
3431–3440.

Mahendran A, Vedaldi A. 2015. Understanding deep image representations
by inverting them. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR); Boston, MA, USA. p. 5188–5196.

Ning F, Delhomme D, LeCun Y, Piano F, Bottou L, Barbano PE. 2005. Toward
automatic phenotyping of developing embryos from videos. IEEE Trans
Image Process. 14:1360–1371.

Panda-Jonas S, Jonas JB, Jakobczyk-ZmijaM. 1996. Retinal pigment epithelial
cell count, distribution, and correlations in normal human eyes. Am J
Ophthalmol. 121:181–189.

Pfister T, Charles J, Zisserman A. 2015. Flowing convnets for human pose
estimation in videos. In: IEEE International Conference on Computer Vision
(ICCV); Santiago, Chile.

Ren S, He K, Girshick R, Sun J. 2015. Faster r-cnn: towards real-time
object detection with region proposal networks. In: Advances in Neural
Information Processing Systems (NIPS); Palais des Congrès de Montréal,
Montréal Canada.

Ronneberger O, Fischer P, Brox T. 2015. U-net: convolutional networks
for biomedical image segmentation. In: Medical Image Computing and
Computer-Assisted Intervention (MICCAI). Munich: Springer; p. 234–241.

Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A,
Khosla A, Bernstein M, et al. 2014. Imagenet large scale visual recognition
challenge. Int J Comput Vision (IJCV). 115:211–252.

Saxe AM, McClelland JL, Ganguli S. 2014. Exact solutions to the nonlinear
dynamics of learning in deep linear neural networks. In: International
Conference on Learning Representations (ICLR); Banff, Canada.

Sermanet P, Eigen D, Zhang X, MathieuM, Fergus R, LeCun Y. 2014. Overfeat:
integrated recognition, localization and detection using convolutional
networks. In: International Conference on Learning Representations (ICLR);
Banff, Canada.

Simonyan K, Zisserman A. 2015. Very deep convolutional networks for
large-scale image recognition. In: International Conference on Learning
Representations (ICLR); San Diego, CA, USA.

Tompson JJ, Jain A, LeCun Y, Bregler C. 2014. Joint training of a convolutional
network and a graphical model for human pose estimation. In: Advances
in Neural Information Processing Systems (NIPS); Palais des Congrès de
Montréal, Montréal Canada. p. 1799–1807.

Vedaldi A, Lenc K. 2015. Matconvnet-convolutional neural networks
for matlab. In: Proceeding of the ACM International Conference on
Multimedia; Boston, MA, USA.

Weidi X, Noble JA, Zisserman A. 2015. Microscopy cell counting with fully
convolutional regression networks. In: 1st Deep Learning Workshop,
Medical Image Computing and Computer-Assisted Intervention (MICCAI);
Munich, Germany.

Went P, Mayer S, Oberholzer M, Dirnhofer S. 2006. Plasma cell quantification
in bone marrow by computer-assisted image analysis. Histol Histopathol.
21:951–956.

Yuanpu X, Fuyong X, Xiangfei K, Hai S, Lin Y. 2015. Beyond classification:
structured regression for robust cell detection using convolutional
neural network. In: Medical Image Computing and Computer-Assisted
Intervention (MICCAI). Munich: Springer; p. 358–365.


	1. Introduction
	2. Related work
	2.1. Counting by density estimation
	2.2. Detection by regression

	3. Fully convolutional regression networks
	3.1. Architecture design
	3.2. Implementation details

	4. Experimental validation
	4.1. Data-set and evaluation protocol
	4.1.1. Synthetic data
	4.1.2. Real data

	4.2. Evaluation on synthetic data
	4.2.1. Network comparison
	4.2.2. Comparison with state-of-the-art

	4.3. Evaluation on real data

	5. Inverting feature representations
	5.1. Problem description
	5.2. Optimisation
	5.3. Reconstruction results

	6. Conclusions
	Disclosure statement
	Funding
	ORCID
	References

