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Abstract—For crowded scenes, the accuracy of object-based
computer vision methods declines when the images are low-
resolution and objects have severe occlusions. Taking counting
methods for example, almost all the recent state-of-the-art
counting methods bypass explicit detection and adopt regression-
based methods to directly count the objects of interest. Among
regression-based methods, density map estimation, where the
number of objects inside a subregion is the integral of the
density map over that subregion, is especially promising because
it preserves spatial information, which makes it useful for both
counting and localization (detection and tracking). With the
power of deep convolutional neural networks (CNNs) the count-
ing performance has improved steadily. The goal of this paper is
to evaluate density maps generated by density estimation methods
on a variety of crowd analysis tasks, including counting, detec-
tion, and tracking. Most existing CNN methods produce density
maps with resolution that is smaller than the original images, due
to the downsample strides in the convolution/pooling operations.
To produce an original-resolution density map, we also evaluate
a classical CNN that uses a sliding window regressor to predict
the density for every pixel in the image. We also consider a
fully convolutional (FCNN) adaptation, with skip connections
from lower convolutional layers to compensate for loss in spatial
information during upsampling. In our experiments, we found
that the lower-resolution density maps sometimes have better
counting performance. In contrast, the original-resolution density
maps improved localization tasks, such as detection and tracking,
compared to bilinear upsampling the lower-resolution density
maps. Finally, we also propose several metrics for measuring the
quality of a density map, and relate them to experiment results
on counting and localization.

Index Terms—Convolutional Neural Networks, crowd density
map estimation, crowd counting, detection, tracking

I. INTRODUCTION

Automatic analysis of crowded scenes in images and videos
has applications in crowd management, traffic control, urban
planning, and surveillance. The number of people and how
they are spatially arranged are two useful measurements for
understanding crowded scenes. However, counting, detection
and tracking are still very challenging in low resolution
surveillance videos, where people may only be a few pixels tall
and occlusion frequently occurs – sometimes it can be very
difficult even for a human expert. Detection-based methods
can be used to count objects, but both their detection and
counting performance will decrease as the scene becomes
more crowded and the object size decreases. In contrast,
regression-based counting methods [1–6] are more suitable
for very crowded situations. However, most regression-based
methods are designed only to solve the counting task, and
cannot be used to localize the individual object in the scene.
Methods that can simultaneously count and predict the spatial

arrangement of the individuals will be more useful, since
situations where many people are crowded into a small area
are very different from those where the same number of people
are evenly spread out.

Counting using object density maps has been shown to be
effective at object counting [3, 4, 7–9]. In an object density
map, the integral over any region is the number of objects
within the corresponding region in the image. Similar to
other regression-based methods, density-based methods bypass
the difficulties caused when objects are severely occluded,
by avoiding explicit detection, while also maintaining spatial
information about the crowd, making them very effective at
solving the object counting problem, especially in situations
where objects have heavy inter-occlusion and appear in low
resolution surveillance videos. Several recent state-of-the-art
counting approaches [3, 4, 7, 8, 10] are based on density
estimation. Furthermore, several works have explored how
density maps can be directly used to localize individual objects
[11], or used as a prior for improving traditional detection and
tracking methods [12]. These works [11, 12] show the potential
of applying density maps to other crowd analysis tasks.

The performance of density-based methods highly depends
on the types of features used, and many methods use hand-
crafted features [3–5] or separately-trained random-forest fea-
tures [3, 4, 7, 9]. For very challenging tasks, e.g., very crowded
scenes with perspective distortion, it is hard to choose which
features to use. Indeed [5] used multi-source information to
improve the counting performance and improve robustness.

One advantage of using deep neural networks is its ability
to learn powerful feature representations. Recently, [8, 10, 13–
15] introduced deep learning for estimating density maps
for object counting. In [8], a CNN is alternatively trained
to predict the crowd density map of an image patch, and
predict the count within the image patch. The density map
of the image is obtained by averaging density predictions
from overlapping patches. In [10], a density map is predicted
using three CNN columns with different filter sizes, which
encourages the network to capture responses from objects
at different scales. Both [8, 10] predict a reduced-resolution
density map, due to the convolution/pooling stride in the
CNNs. Density maps obtained by [8] also have problems of
block artifacts and poor spatial compactness due to the way
that the patches are merged together to form the density map.
While these characteristics do not affect counting performance
much, they do prevent individual objects from being localized
well in the density map.

In this paper, we focus on a comparison of density map
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Figure 1: Crowd density maps for counting, detection, and tracking.
A crowd count is obtained by summing the density map predictions
within the ROI. Detections (the red dots in the figure) are obtained by
GMM-weighted clustering or an Integer Programming formulation.
Person trackers are improved by fusing (multiplying) the response of
a traditional KCF tracker with the crowd density map.

estimation methods and their performance on counting and two
localization tasks, detection and tracking (see Fig. 1). Since
existing CNN-based methods normally generate a reduced-
resolution density image, either to reduce parameters in the
fully-connected layers or due to the downsample stride in the
convolution/pooling layers, we also evaluate a full-resolution
density map produced using a classic CNN and sliding-
window to predict the density value for every pixel in the im-
age (denoted as CNN-pixel). We also test a fully-convolutional
adaptation of the CNN-pixel. To ensure its full-resolution
output, the reduced resolution density map is upsampled to the
original resolution using upsampling and convolution layers.
Skip connections from the lower convolutional layers are used
to compensate the spatial information. Various metrics are used
to evaluate the quality of the density maps, in order to reveal
why some density maps can perform better on localization
tasks. We find that density maps that are spatially compact,
well-localized, and temporally smooth are more suitable for
detection and other future applications, such as object tracking.

The contributions of this paper are four-fold: 1) we present a
comparison of existing CNN-based density estimation methods
and two classic CNN-based methods on three crowd analysis
tasks: counting, detection, and tracking; 2) we show that good
detection results can be achieved using simple methods on
high-resolution high-quality density maps; 3) we show that
high-quality density maps can be used to improve the tracking
performance of standard visual trackers in crowds; 4) we
propose several metrics on density maps as indicators for good
performance at localization tasks.

The remainder of the paper is organized as follows. Section
II reviews related work in crowd counting, and Section III
introduces our object counting method. Metrics for measuring
the quality of various kinds of density maps are discussed in
Section IV, and experimental results on counting, detecting,
and tracking are presented in Section V.

II. RELATED WORK

In this section we review crowd counting methods, and
detection and tracking methods based on density maps.

A. Regression-based Counting

Perfectly detecting all the people or tracking every person
in a video can solve the counting problem, and detection-
based [16] and tracking-based [17, 18] counting methods
have been proposed. However, their performances are often
limited by low-resolution and severe occlusion. In contrast,
regression-based counting methods directly map from the
image features to the number of people, without explicit object
detection. Such methods normally give better performance
for crowded scenes by bypassing the hard detection problem.
For regression-based methods, initial works are based on
regressing from global image features to the whole image
or input patch count [5, 19–22], discarding all the location
information, or mapping local features to crowd blob count
based on segmentation results [1, 2, 23]. These methods ignore
the distribution information of the objects within the region,
and hence cannot be used for object localization. Extracting
suitable features is a crucial part of regression-based methods:
[1] uses features related to segmentation, internal edges, and
texture; [5] uses multiple sources (confidence of head detector,
SIFT, frequency-domain analysis) because the performance of
any single source is not robust enough, especially when the
dataset contains perspective distortion and severe occlusion.

However, CNNs can be trained to extract suitable task-
specific features automatically, and are inherently multi-source
because they use many feature maps. Another advantage of
the CNN approaches is that they do not rely on foreground-
background segmentation (e.g., normally based on motion
segmentation), and hence can better handle single images or
stationary objects in a scene.

B. Density-based Counting

The concept of an object density map, where the integral
(sum) over any subregion equals the number of objects in
that region, was first proposed in [3]. The density values are
estimated from low-level features, thus sharing the advantages
of general regression-based methods, while also maintaining
location information. [3] uses a linear model to predict a
pixel’s density value from extracted features, and proposed the
Maximum Excess over Sub Array (MESA) distance, which is
the maximum counting error over all rectangular subregions,
as a learning objective function. [4] uses ridge regression
(RR), instead of the computationally costly MESA, in their
interactive counting system. Both [3] and [4] use random forest
to extract features from several modalities, including the raw
image, the difference image (with its previous frame), and the
background-subtracted image.

[7, 9] used regression random forests, generated using the
Frobenius norm as their criteria to obtain the best splits of their
nodes. [7] uses a number of standard filter bank responses
(Laplacian of Gaussian, Gaussian gradient magnitude and
eigenvalues of the structure tensor at different scales), along
with the raw image, as their input of the regression random
forest. Other than the filter channels used in [7], [9] also uses
the background subtraction result and the temporal derivative
as their input of the regression random forest. Unlike [7],
which directly regress the density patch, [9] regresses the
vector label pointing at the location of the objects within
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Methods loss function prediction output resolution feature/prediction method
MESA [3] MESA (region) pixel full random forest features, linear

Ridge regression (RR) [4] per-pixel squared-error pixel full random forest features, linear
Regression forest [7] Frobenius norm patch full regression random forests
COUNT forest [9] Frobenius norm or entropy patch full regression random forests

CNN-patch [8] per-pixel squared-error patch reshaped from FC reduced CNN
Hydra CNN [14] per-pixel squared-error patch reshaped from FC reduced CNN
CNN-boost [24] per-pixel squared-error patch reshaped from FC reduced CNN
cell-FCNN [13] per-pixel squared-error image from conv layer full FCNN

MCNN [10] per-pixel squared-error image from conv layer reduced FCNN
CNN-pixel per-pixel squared-error pixel full CNN
FCNN-skip per-pixel squared-error image from conv layer full FCNN

Table I: Comparison of methods for estimating object density maps: (top) using traditional features; (bottom) using deep learning.

(a) image (b) Ground Truth (c) MESA [3] (d) Ridge regression [4]

(e) CNN-patch [8] (f) MCNN [10] (g) FCNN-skip (ours) (h) CNN-pixel (ours)

Figure 2: Comparison of different density map methods. All the density maps are in same color scale (a particular density value corresponds
to the same color across images). The green line in the image shows the region of interest (ROI). The red dots are the ground-truth person
annotations. The density maps of [8, 10] are resized to the original resolution via bicubic interpolation.

certain radius from the patch center, saving memory. The
density patch is finally generated from predicted vector labels.

Among deep learning methods, CNN-patch [8], Hydra CNN
[14] and CNN-boost [24] use the input patch to predict a
patch of density values, which is reshaped from the output of
fully connected layer. In contrast to [8], Hydra CNN extracts
patches of different sizes and scales them to a fixed size before
feeding them to each head of the Hydra CNN, while CNN-
boost uses a second and/or a third CNN to predict the residual
error of earlier predictions. [13] uses a classical FCNN to
predict a density map for cell counting. In contrast, MCNN
[10] is an FCNN with multiple feature-extraction columns,
corresponding to different feature scales, whose output fea-
ture maps are concatenated together before feeding into later
convolution layers. In contrast to Hydra CNN [14], the three
columns in MCNN [10] use the same input patch but have
different receptive field settings to encourage different columns
to better capture objects of different sizes.

Density map estimation methods differ in their choice of
training loss function and form of prediction, which result in
different characteristics of the predicted density maps. Both the
loss and the prediction can be either pixel-wise or region-wise.
Table I summarizes the differences, and a visual comparison
can be seen in Fig. 2. For the loss function, [3] uses a region-
based loss consisting of the Maximum Excess over Sub Arrays
(MESA) distance, which is specifically designed for the count-
ing problem, and aims to keep good counting performance
over all sub-regions. However, for MESA, per-pixel recon-

struction of the density map is not the first priority so that [3]
cannot well maintain the monotonicity around the peaks and
spatial continuity in the predicted density maps (see Fig. 2),
although it is partially preserved due to neighboring pixels
being assigned to the same feature codeword and thus same
density value. Most other methods [4, 7, 8, 10, 13, 14, 24] use
a pixel-wise loss function, e.g., the squared error between the
predicted density value and the ground-truth. While per-pixel
loss does not optimize the counting error, it typically can yield
good estimators of density maps for counting.

For density map prediction, traditional methods in [3, 4]
choose a pixel-wise density prediction so as to obtain a full-
resolution density map. The density map of the whole image is
obtained by running the predictor over a sliding window in the
image. In contrast, most deep learning-based methods choose a
patch-wise or image-wise prediction to speed up the prediction
[8, 10, 13, 14, 24]. Image-wise predictions using FCNNs [10,
13, 25] are especially fast since they reuse computations.

For patch-wise predictions, as in [8], patches of density
maps are predicted for overlapping image patches. The density
map of the whole image is obtained by placing the density
patches at their image position, and then averaging pixel den-
sity values across overlapping patches. The averaging process
overcomes the double-counting problem of using overlapping
patches to some extent. However, due to the lack of context
information around the borders of the image patch, the density
predictions around the corners of the neighboring patches are
not always consistent with (as good as) those of the central
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patch. The overlapping prediction and averaging operation can
temper these artifacts, but also results in density maps that are
overly smooth (e.g., see Fig. 2e).

The current CNNs using image- or patch-wise prediction
normally only produce reduced-resolution density maps, due
to either the convolution/pooling stride operation for FCNN-
based methods, or to avoid very wide fully-connected lay-
ers for the patch-wise methods. Accurate counting does not
necessarily require original-resolution density maps, and using
reduced-resolution maps in [8, 10] can make the predictions
faster, while still achieving good counting performance. On
the other hand, accurate detection requires original resolution
maps – upsampling the reduced-resolution maps, in conjunc-
tion with averaging overlapping patches, sometimes results
in an overly spread-out density map that cannot localize
individual object well. Considering these factors, our study
will also consider full-resolution density maps produced with
CNNs, in order to obtain a complete comparison of counting
and localization tasks.

C. Detection and Tracking with Object Density Maps

Besides counting, [11, 12] have also explored using density
maps for detection and tracking problems in crowded scenes.
[11] performs detection on density maps by first obtaining
local counts from sliding windows over the density map from
[3], and then uses integer programming to recover the location
of individual objects. In contrast to [11], our predicted density
maps have clearer peaks, thus allowing for simpler methods
for detection, such as weighted GMM clustering.

[12] uses density maps in a regularization term to improve
standard detectors and tracking. In particular, a term is added
to their objective function that encourages the density map
generated from the detected locations to be similar to the
predicted density map, so as to reduce the number of false
positives and increase the recall. The density maps estimated
in [12] are predicted from the detector score map, rather
than image features, resulting in spread-out density maps.
In contrast to [12], we show that, when the density maps
are compact and focused around the people, a simple fusion
strategy can be used to combine the density map and the
response map of a visual tracker (e.g., kernel correlation filter).

III. METHODOLOGY

We consider two approaches for generating full-resolution
density maps, as shown in Figure 3. The first approach uses a
classic CNN regressor for pixel-wise density prediction, i.e.,
given an image patch, predict the density at the center pixel.
The full-resolution density map is obtained using a sliding
window to obtain density values for all pixels inside the
ROI. Although pixel-wise prediction does not explicitly model
the relationship between neighboring pixels, it still results in
smooth density maps – the pooling operation in the CNN
introduces translation invariance, and thus neighboring patches
have similar features. Thus, the pixel-wise predictions using
CNNs will tend to be smooth and can better maintain the
monotonicity, which will benefit localization tasks, such as
detection and tracking. In addition, due to the capability of
CNNs to learn feature representations, density maps predicted
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Figure 3: CNN architectures for full-resolution density maps:
(CNN-pixel) pixel-wise prediction using CNN; (FCNN-skip) fully-
convolutional NN with skip branches. Only layers with trainable
weights are shown. A multi-task framework is used for CNN-pixel,
consisting of: 1) predicting the density value at the center of the
image patch; 2) predicting the number of people in the image patch.
The two tasks share the same CNN feature extraction layers.

by CNNs are less noisy and well localized around the objects,
as compared to methods using handcrafted features (e.g., [4]).

The second approach uses a fully-convolutional NN to
perform image-wise prediction. Since the convolution/pooling
stride operations in the lower-level convolutionl layers result
in loss of spatial information (reduced resolution), subsequent
upsampling and convolution layers are used to obtain a full-
resolution density map. The FCNN also inherits the smooth-
ness property of pixel-wise prediction, but is more efficient
in the prediction stage since it reuses computations from
overlapping regions of neighboring patches.

A. Pixel-wise Architecture

Our network architecture for pixel-wise prediction (denoted
as CNN-pixel) is shown in Fig. 3 (top). The input for our
network is 33⇥33 image patch, while the output is the density
value at the center pixel of the input patch. The patch size is
selected to be similar to the size of the largest person in the
image. Image feature extraction consists of two convolution-
pooling layers, followed by 3 fully-connected layers to predict
the density value. A characteristic of the features extracted
by CNNs is its hierarchical property: higher layers learn
more abstract image features. On the contrary, crowd density
is a mid-level feature, which reflects the count and spatial
distribution of objects, and hence high-level abstract features
are not necessary. Indeed, hand-crafted low-level and local
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features work very well in previous regression-based counting
methods [1–3, 23]. Hence, instead of a very deep architecture
(e.g., [26–29]), we instead use an architecture that extracts
mid-level features while keeping the model small and efficient.

For training, a ground-truth density map is generated from
the “dot” annotations of people in the training images follow-
ing [3]. For training image In, the density map is obtained by
convolving the annotation map with a Gaussian (see Fig. 2b),

Dn(p) =
X

P2Pn

N (p;P,�2I), (1)

where p denotes a pixel location, and Pn is the set of annotated
positions for image In. N (p;P,�2I) is a Gaussian density
with mean P and isotropic covariance �2I . For an image
patch, its ground truth density value is the value of the ground-
truth density map at the center of the patch. We use the squared
Euclidean distance as the loss function,

`density(d, d̂) = (d� d̂)2, (2)

where {d, d̂} are the ground truth and predicted density values.
Similar to [8, 30, 31], we introduce an auxiliary task, which

shares the same CNN feature extraction layers of the primary
regression task, in order to guide the network to find good
image features and to make the training of the regression
task less sensitive to weight initialization and the learning
rate. We choose a classification task as our auxiliary task
because, empirically, classification is more robust to train than
regression since it only needs to decide to which class the input
belongs, rather than predicts an exact real number [32, 33].
Also, cross entropy loss for classification is less sensitive to
outliers compared to L2 loss for regression [34]. The auxiliary
task is a multi-class classification task where each class is
the count of people within the image patch. The ground-truth
count for this auxiliary task is the sum of the dot annotations
within the region of the image patch. The categorical cross
entropy is used as the loss function of the auxiliary task,

`aux(p, p̂) =
X

i

�pi log p̂i (3)

where pi is the true probability of class i (i.e., 1 if the true
class is i, and 0 otherwise), and p̂i is the predicted probability
of class i. It should be noted that the classification loss `aux
may not be a natural choice for measuring count prediction
error, since it ignores the difference between the prediction
and the true count. Nonetheless, this classification task is only
used as an auxiliary task in the training stage. At test time, the
count is estimated as the sum of the predicted density map.
The regression and classification tasks are combined into a
single weighted loss function for training,

` = �1`density(d, d̂) + �2`aux(p, p̂), (4)
where weights �1 = 100 and �2 = 1 in our implementation.

Given a novel image, we obtain the density map by predict-
ing the density values for all pixels using a sliding window
over the image.

B. Fully Convolutional Architecture

Fully convolutional neural networks (FCNNs) [13, 25, 35,
36] have gained popularity for semantic image segmentation
and other tasks requiring dense prediction because they can

efficiently predict whole segmentation maps by reusing com-
putations from overlapping patches. Efficiency can be further
increased through up-sampling with a trainable up-sample
filter. [25, 35] introduced “skip branches” to the FCNN, which
add features from the lower convolutional layers to the up-
sampled layers, in order to compensate for the loss of spatial
information due to the stride in the convolution/pooling layers.

Our CNN-pixel is adapted to a fully-convolutional architec-
ture, and includes skip-branches (see Fig. 3 bottom, denoted
as FCNN-skip) as in [25]. In particular, the two pooling
operation reduces the resolution of the density map by 4. Two
up-sampling layers are then used to obtain the density map
at the original resolution. Each up-sampling layer consists
of two parts: each pixel is replicated to a 2⇥2 region, and
then a trainable 3⇥3 convolutional layer is applied. The skip
branches pass the feature maps from a lower convolution
stage through a convolution layer, which is then added to the
density map produced by the upsampling-convolution layer.
The combination of features from different levels from a
network has been shown to be helpful in better recovering
lost spatial information [25, 35]. For semantic segmentation
in [25], the skip connections help to preserve the fine details
of the segments. For our counting task, by merging the low-
level (but high resolution) features with the high-level (but
low-resolution) features, the predicted high-resolution density
map has more accurate per-pixel predictions than both pre-
defined and learned interpolations. The skip-connections serve
as a complementary part, which resembles residual learning,
to refine the less accurate upsampled density map.

For FCNN training, we use both pixel-wise loss and patch-
wise count loss,

`pixel =
X

i,j

(di,j � d̂i,j)
2, (5)

`count =

0

@
X

i,j

di,j �
X

i,j

d̂i,j

1

A
2

, (6)

where (i, j) index each pixel in one training patch. The pixel-
wise loss ensures that the predicted density map is a per-pixel
reconstruction of the ground-truth map, while the count loss
tunes the network for the final target of counting. During
training, we initialize the FCNN using a trained CNN-pixel
model, and hence an auxiliary task is not needed. In the
prediction stage, we give the whole image as input and predict
the density map with the same resolution. Similar to CNN-
pixel, there are no block artifacts in the predicted density map
(e.g., see Fig. 2g and Fig. 10).
C. Detection from Density Maps

Detecting objects directly from density maps was first
proposed in [11]. In [11], a sliding window is passed over
the density map to calculate the object count within each
window. [11] used the density maps produced by MESA
[3]. Recovering the object locations is then a deconvolution
problem, which is implemented as a 2D integer programming
problem since there can only be a nonnegative integer number
of objects at each location.

Besides integer programming, [11] also proposed several
simple baseline methods: 1) using non-maximum suppression
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Figure 4: An example of tracking by fusing the kernel correlation
filter (KCF) response map and the crowd density map. There are
two peaks in the KCF response map, which causes the KCF tracker
to drift (blue box). Fusing the density map and the response map
downweights the erroneous peak, and thus prevents tracker drifiting
(green box). The red box is ground truth bounding box.

to find local peaks in the density map; 2) using k-means
clustering on the pixel locations with density value above a
threshold (a simple form of crowd segmentation); 3) using
Gaussian mixture model (GMM) clustering on the thresholded
density map. The latter two, k-means and GMM, only consider
the shape of the crowd blobs and ignore the density values.

Because the original-resolution density maps from CNN-
pixel have well-defined peaks similar to the ground-truth
density maps (see Fig. 2h), we also propose a modification
of GMM, where each pixel in the crowd segment is weighted
according to its density value. This weighting process makes
the GMM cluster centers move towards the high density value
region, which is more likely to be the real location of the
object. In other words, this weighting operation better tries
to find local peaks. In practice, we implement the weighting
by discretizing the density map, and then repeating pixel
locations according to their discretized density values, where
locations with high density values appear more than once.
GMM clustering is then applied to the samples.

D. Improving Tracking with Density Maps

We next describe how density maps can be used to improve
state-of-the-art tracking of people in crowds. Recently, kernel-
ized correlation filters (KCF) has been widely used for single
object tracking [37, 38]. However, tracking a person in a crowd
is still challenging for KCF due to occlusion and background
clutter, as well as low-resolution targets. Here we combine
the KCF tracker with the crowd density map so as to focus
the tracker on image regions with high object density, which
are more likely to contain the target. This effectively prevents
the tracker from drifting to the background. In particular,
our fusion strategy is to element-wise multiply the KCF
response map with the corresponding crowd density map. The
maximum response of the combined map is then selected as
the tracked position. An example is shown in Fig. 4.

IV. DENSITY MAP QUALITY

As high-quality per-pixel reproductions of the density map
will likely yield better localization (detection and tracking)
performance, in this section, we measure the quality of high-
resolution density maps using various attributes. We then relate
these measures to localization performance in the next section.

We compare the following density map methods: MESA
[3], ridge regression (RR) [4], density-patch CNN (CNN-

(a) MESA [3] (b) Ridge regression [4] (c) CNN-patch [8]

(d) MCNN [10] (e) FCNN-skip (ours) (f) CNN-pixel (ours)

Figure 5: Scatter plots of GT density and predicted density values.

patch) [8], multi-column CNN (MCNN) [10], as well as full-
resolution density maps produced by our pixel-wise CNN
(CNN-pixel) and fully-convolutional NN (FCNN-skip). We
also test MCNN followed by upsampling-convolution layers
to get full resolution density maps, denoted as MCNN-up. All
the predicted density maps are from UCSD “max” dataset (see
Section V-B) and implementation details are in Section V-A.

A. Per-pixel Reproduction

We first consider how well each method can reproduce
the per-pixel values in the ground-truth density map. Fig. 5
shows a scatter plot between the ground-truth density pixel
values and the predicted density pixel values for the various
methods. MCNN, CNN-pixel and FCNN-skip show the best
correlation between ground-truth and prediction, and are more
concentrated around the diagonal. Ridge regression (RR) tends
to over-predict the density values, because the filtering of
negative feature weights compacts the density map causing
higher density values. On the other hand, CNN-patch [8]
under-predicts the values, because the low-resolution predic-
tions and patch-wise averaging spreads out the density map
causing lower overall density values. MESA [3] predictions
are also concentrated around the diagonal, but less so than
MCNN, FCNN-skip, and CNN-pixel. This is because MESA
optimizes the count prediction error within rectangular sub-
regions of the density map, rather than per-pixel error.

B. Compactness and Localization

Compactness and localization are two important properties
for using density maps for detection and tracking. Compact-
ness means the density values are concentrated in tight regions
around a particular position, while localization means that
these positions are located near a ground-truth dot annotation.

To measure the compactness and localization, we place a
bounding box (scaled for perspective) over each dot annotation
(ground-truth position). If a density map is not compact,
then some density will leak outside the bounding boxes. The
amount of leakage can be measured by calculating the ratio
of density inside the bounding boxes to the total density in
the image, which is denoted as bounding box density ratio

(BBDR). If the prediction is localized well, then the total
predicted density inside the bounding boxes should match the
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Figure 6: Measures of compactness and localization: (a) bounding
box density ratio (BBDR). Higher values means more compact, e.g.
ridge regression prediction is the most compact. (b) bounding box
MAE (BBMAE). Lower values mean better localization.

corresponding total ground-truth density. Hence, the measure
of localization is the MAE inside all boxes, denoted as
bounding box MAE (BBMAE).

Figs. 6a and 6b plot the curves for BBDR and BBMAE by
varying the size of the bounding box. CNN-pixel has the best
localization measure (lowest BBMAE), and also has similar
compactness (BBDR) to the ground-truth. FCNN-skip also has
good localization (low BBMAE), but, in contrast, its density
maps are more spread out (low BBDR, less compact) due to its
upsampling operation. MCNN-up has slightly higher BBDR
and lower BBMAE compared with MCNN, which suggests
that the learned upsampling layer can improve compactness
and localization, over bicubic upsampling. RR has the most
compact density maps (BBDR even higher than the ground-
truth density used for training), but has poor localization (high
BBMAE) because the centroid of the local modes are shifted.

C. Temporal Smoothness

We measure temporal smoothness of the density maps and
the detection results. Density maps and detections that are
smooth in time suggest that finding each person’s trajectory
should be easier. Hence, these temporally smooth density maps
could aid object tracking. Table II shows the mean abso-
lute difference (MAD) between density maps of consecutive
frames. The temporal smoothness of deep learning methods
are better than traditional methods even though they do not
directly use frame difference information. This shows that
the CNN feature extractor produces smoothly varying feature
representations, compared to the random forest representation
used with MESA/RR. The density maps of CNN-patch are the
most temporally smooth (lowest MAD), but this is because
those maps are more spread out (less compact), which cannot
help to localize and track the object (refer to Section V-D).

To measure the temporal smoothness of the detections, we
calculate the error vector between a detection location and its
corresponding ground-truth. The error distance (ED) measures
the distance to the ground-truth, and is equal to the length of
the error vector. We also measure the length of the difference
between two consecutive error vectors corresponding to the
same ground-truth trajectory, and denote it as EDD (error
difference distance). EDD measures the stability of the de-
tected point over time, when compared to the GT trajectory.
Finally, we measure the miss rate, which is the percentage
of missed detections. Table II shows results for IntProg and
GMM-weighted. With IntProg, CNN-pixel and FCNN-skip

have similar ED, and CNN-pixel has the lowest EDD, which
indicates that the detected points are more stable over time for
CNN-pixel. Using GMM-weighted, CNN-pixel and FCNN-
skip obtain the most accurate detected positions (lowest ED),
but CNN-pixel is more temporally stable. These results suggest
that temporally smooth density maps, produced using per-
pixel prediction, could be helpful for object tracking, e.g., by
incorporating them into a tracking-by-detection framework.

D. Summary

In summary, CNN-pixel performs best on various metrics,
including compactness (BBDR), localization (BBMAE), and
temporal smoothness (EDD). In contrast, reduced-resolution
maps that require either fixed upsampling (CNN-patch and
MCNN) or learned upsampling-convolution (FCNN-skip and
MCNN-up) had worse quality metrics. The downsampling
operations in the CNN obfuscate the true position of the people
in the reduced-resolution maps. This loss of spatial information
can only be partially compensated using learned upsampling
and skip connections.

V. EXPERIMENTS

In this section we present experiments on several crowd
analysis tasks to compare density maps estimated by recent
methods, including MESA [3], ridge regression (RR) [4],
Regression forest [7], COUNT forest [9], density-patch CNN
(denoted as CNN-patch) [8], multi-column CNN (MCNN)
[10], Hydra CNN [14] and CNN-boost [24], as well as full-
resolution density maps produced by our CNN-pixel and
FCNN-skip. We first present experiments on crowd count-
ing using benchmark datasets for people and cars. We then
present experiments on people detection using density maps, to
compare the localization ability of the density maps. Next we
conduct experiments on people tracking by fusing the density
maps and visual tracker response, in order to compare the
localization ability and the temporal smoothness of the density
maps. Finally, we perform an ablation study on CNN-pixel.

A. Implementation Details

The CNN-pixel architecture appears in Fig. 3. The input
image patch is a 33⇥33 grayscale image. Every convolution
layer is followed by an across channel local response normal-
ization layer and a max pooling layer. The first convolutional
layer contains 64 5⇥5⇥1 filters (i.e., 5⇥5 filter on 1 grayscale
channel), and the max-pooling is 2⇥2 with a stride size of
2⇥2. The second convolutional layer contains 64 5⇥5⇥64
filters, and the max-pooling is 3⇥3 pooling with a stride size
of 2⇥2. When the images are high resolution and contain
large objects, as in the TRANCOS dataset [39] (640⇥480)
and WorldExpo’10 dataset [8] (720⇥576), we use a 65⇥65
image patch and add one additional convolution-pooling layer
to capture enough context information, and to keep the final
output feature map a consistent size. The CNN-pixel is trained
using the regression and classification tasks, as described
in Section III-A. The training set is constructed by densely
extracting all gray-scale patches, whose centers are inside the
ROI, from the training images. The network is trained with
standard back-propagation [40]. Momentum and weight decay
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IntProg GMM-weighted
Density maps MAD ED EDD Miss rate ED EDD Miss rate

MESA [3] 16.34 4.96±0.71 4.89±0.92 13.96% 2.90±0.74 2.63±0.81 8.69%
Ridge regression [4] 18.34 4.48±0.69 4.45±0.95 15.87% 2.91±0.81 2.33±0.76 13.14%

CNN-patch [8] 1.89 5.40±0.74 4.23±1.17 41.03% 4.84±0.91 4.50±1.45 16.66%
MCNN [10] 3.96 4.22±0.76 3.32±0.90 19.77% 3.56±0.76 2.24±0.79 10.53%
MCNN-up 3.96 4.13±0.89 3.12±1.03 16.13% 3.52±0.84 2.03±0.70 10.54%

CNN-pixel (ours) 3.96 3.61±0.72 2.90±0.83 9.82% 2.78±0.85 1.88±0.75 8.43%
FCNN-skip (ours) 4.78 3.61±0.74 3.38±1.01 13.34% 2.73±0.76 2.26±0.84 10.21%

Ground truth 3.31 3.06±0.68 2.30±1.22 2.59% 1.29±1.01 1.18±0.93 5.24%
Table II: Comparisons of temporal smoothness of density maps and detections.

are used, and one dropout layer is used after every non-output
fully connected layer (refer to Fig. 3) to reduce over-fitting.

Our FCNN-skip is adapted from the CNN-pixel model. The
structure of the lower convolutional layers and pooling layers
remains the same as CNN-pixel. As in [25], the first fully
connected layer is adapted to a convolutional layer whose filter
size is the same as the output feature map size produced by
our CNN-pixel model (9⇥9). The remaining fully connected
layers are implemented as convolutional layers using a filter
size of 1⇥1. For the skip-branches, a convolutional layer with
1⇥1⇥64 filters is applied to the lower convolutional layer, and
then merged with the density map using an element-wise sum.

The training of the FCNN-skip network is initialized with
the weights from CNN-pixel network. The weights of the
convolutional layer after up-sampling are initialized as an
average filter. The weights of the skip branches are initialized
as zeros (as in [25]), so that the training first focuses on tuning
the initial weights (from CNN-pixel) to the FCNN architecture.

In the inference stage, CNN-pixel densely extracts test
patches using the training patch size, and predicts the density
values in a pixel-wise manner. FCNN-skip takes any size
image as input and predicts the whole density map. Both CNN-
pixel and FCNN-skip density maps do not have block artifacts
caused by combining overlapping patch predictions. The count
in the region-of-interest of an image is the sum of the predicted
density map inside the region. We do not apply any post-
processing to the estimated count, cf., the ridge regression used
in [8] to remove systematic count errors. Finally, note that we
do not change the input patch size according to its location in
the scene, which is a form of perspective normalization.

B. Counting Experiments

We first compare the density estmation methods on
three crowd datasets, UCSD pedestrian, WorldExpo’10, and
UCF CC 50, and a car dataset, TRANCOS. The statistics of
the datasets are summarized in Table III, and example images
can be found in the supplementary.

Dataset Nf Res. Range Tp

UCSD [1] 2000 238⇥158 11-45 49885
WorldExpo’10 [8] 3980 720⇥576 1-253 199923
UCF CC 50 [5] 50 varies 96-4633 63974
TRANCOS [39] 1244 640⇥480 9-107 46796

Table III: Statistics of the four tested datasets. Nf is the number
of annotated images or frames; Res. is the image/frame resolution;
Range is the range of number of objects inside the ROI of a frame;
Tp is the total number of labeled objects.

1) Datasets: The UCSD dataset is a low resolution
(238⇥158) surveillance video with perspective change and

heavy occlusion between objects. It contains 2000 video
frames and 49,885 annotated pedestrians. On UCSD, we test
the performance on the traditional setting [1] and four down-
sampled splits [2]. In the first protocol [1], all frames from
601-1400 are used for model training and the remaining
1200 frames are for testing. The second protocol is based
on four downsampled training splits [2]: “maximal” (160
frames, 601:5:1400), “downscale” (80 frames, 1201:5:1600),
“upscale” (60 frames, 801:5:1100), and “minimal” (10 frames,
641:80:1361). These splits test robustness to the amount of
training data (“maximal” vs. “minimal”), and generalization
across crowd levels (e.g., “upscale” trains on small crowds, and
tests on large crowds). The corresponding test sets cover all the
frames outside the training range (e.g. 1:600 and 1401:2000
for “maximal”). The ground-truth density maps use � = 4.

The WorldExpo’10 dataset [8] is a large scale people
counting dataset captured from the Shanghai 2010 WorldExpo.
It contains 3,980 annotated images and 199,923 annotated
pedestrians from 108 different scenes. Following [8], we use a
human-like density template, which changes with perspective,
to generate the ground-truth density map, and the fractional
density value in the ROI is used as the ground-truth since there
are many people near to the ROI boundary. Models are trained
on the 103 training scenes and tested on 5 novel test scenes.

The UCF dataset [5] contains 50 very different images with
the number of people varying from 96 to 4,633. In contrast
to the previous two datasets, UCF only contains one image
for each scene, and each image has a different resolution and
camera angle. This dataset measures the accuracy, scalability
and practicality of counting methods, as well as tests how well
methods handle extreme situations. The ground-truth density
map is generated using � = 6. Following [5, 8], the evaluation
is based on 5-fold cross-validation.

The TRANCOS dataset [39] is a benchmark for vehi-
cle counting in traffic congestion situations, where partial-
occlusion frequently occurs. It has training, validation and test
sets, containing 1,244 annotated images from different scenes
and 46,796 annotated vehicles. Following the first training
strategy in [39], we use the training and validation data as the
training and validation sets for model training, and evaluate the
model on the test set. Different from the WorldExpo and UCF
datasets, TRANCOS dataset contains multiple scenes but the
same scenes appear in the training, validation, and test sets.
The ground-truth density map is generated using � = 10.

Counting predictions are evaluated using the mean absolute
error (MAE) or mean square error (MSE) with respect to
the ground truth number of people. The fractional number is
used for WorldExpo and integer number is used for the other
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Method MAE MSE
Kernel Ridge Regression [41] 2.16 7.45

Ridge Regression [22] 2.25 7.82
Gaussian Process Regression [1] 2.24 7.97

Cumulative Attribute Regression [21] 2.07 6.86
COUNT forest [9] 1.61 4.4
CNN-patch+RR [8] 1.60 3.31

MCNN [10] 1.07 1.35
CNN-boost fine-tuned using 1 boost [14] 1.10 -

CNN-pixel (ours) 1.12 2.06
FCNN-skip (ours) 1.22 2.25

Table IV: Test errors on the UCSD dataset when using the whole
training set.

datasets, following the convention.

2) UCSD pedestrian dataset: We present results on the two
experimental protocols for UCSD. The results for the first
protocol (full training set) are shown in Table IV, where the
last five CNN methods are based on density maps, and the
remaining are traditional regression-based methods. The CNN-
based density estimation methods have lower error than the
traditional methods, especially the last four methods which
reduce error by a large margin. MCNN has slightly lower
MAE than CNN-boost and CNN-pixel (1.07 vs 1.10 and 1.12).
FCNN-skip method achieves worse performance than CNN-
pixel (1.22 vs 1.12) but consumes much less time in the
prediction stage (16 ms per frame vs. 4.6 sec per frame on
UCSD). In comparison, MCNN takes 31 ms and CNN-patch
takes 37 ms per frame respectively.

Method Max Down Up Min Avg
MESA [3] 1.70 1.28 1.59 2.02 1.65

Regression forest [7] 1.70 2.16 1.61 2.20 1.92
Ridge regression [4] 1.24 1.31 1.69 1.49 1.43
COUNT forest [9] 1.43 1.30 1.59 1.62 1.49
CNN-patch+RR [8] 1.70 1.26 1.59 1.52 1.52

MCNN [10] 1.32 1.71 2.05 1.56 1.66
CCNN [14] 1.65 1.79 1.11 1.50 1.51

Hydra 2s [14] 2.22 1.93 1.37 2.38 1.98
CNN-pixel (ours) 1.26 1.35 1.59 1.49 1.42
FCNN-skip (ours) 1.24 1.38 2.13 1.83 1.65

CNN-pixel-VS 1.48 — — — —
Table V: Comparison of MAE between density-based counting meth-
ods on the UCSD dataset using 4 training splits.

Table V shows the MAE for the four training splits of
the second protocol. Here we only list results of density-
based approaches, which represent the current state-of-the-art
counting performance. Over the four splits, CNN-pixel and
RR have the lowest average MAE. MCNN and FCNN-skip,
which are both FCNNs, performs a little worse, mainly on
the “up” split, than CNN-patch and CNN-pixel but are more
computationally efficient. Examining the error heat maps in
the supplementary shows that the FCNN-skip errors are overall
larger on the “up” split, and without any systematic bias.

One advantage of CNN-based method is that they can
improve their performance with more training data. When
using the full training set (see Table IV for methods trained
with the full training set), both CNN-pixel and MCNN can
lower their MAE compared with the “max” split in Table V,
which uses only 1/5 of the training set. An example density

(a) Image (b) Ground truth (c) Prediction

(d) Large values (e) Small values (f) Negative values

Figure 7: An example density map produced by our CNN-pixel
model. Our density maps are concentrated around the ground-truth
annotations with little “leakage” of density into the background. The
sum of the negative values is very small (-0.10), and does not affect
the counting, detection or tracking performance.

Image Ground-truth Density Predicted Density

Figure 8: Results on WorldExpo dataset using our CNN-pixel model.

map estimated by our CNN-pixel model is shown in Fig. 7,
and Fig. 2 compares the density maps from different methods.

3) WorldExpo’10 dataset: The results on the World-
Expo’10 dataset [8] are shown in Table VI and Fig. 8. MCNN
has the lowest average error, while CNN-pixel, FCNN-skip
and CNN-patch without fine-tuning perform similarly. Look-
ing at the individual scenes, different methods perform better
on each scene. All the methods have larger errors on Scenes
2, 3 and 4, compared with Scenes 1 and 5. These three
scenes contain more people on average, while only 12% of
all the training frames contain large crowds (>80 people).
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Method Scene 1 Scene 2 Scene 3 Scene 4 Scene 5 Average
LBP+RR 13.6 58.9 37.1 21.8 23.4 31.0

CNN-patch [8] 10.0 15.4 15.3 25.6 4.1 14.1
CNN-patch + cross-scene fine-tuning [8] 9.8 14.1 14.3 22.2 3.7 12.9

MCNN [10] 3.4 20.6 12.9 13.0 8.1 11.6
CNN-pixel (ours) 2.9 18.6 14.1 24.6 6.9 13.4
FCNN-skip (ours) 3.9 16.9 19.3 27.7 5.6 14.7

Table VI: Mean absolute error (MAE) on WorldExpo’10 dataset.
Method MAE Std

MESA [3] 493.4 487.1
Density-aware [12] 655.7 697.8

FHSc [5] 468.0 590.3
FHSc + MRF [5] 419.5 541.6

CNN-patch [8] 467.0 498.5
MCNN [10] 377.6 509.1

Hydra 2s [14] 333.7 425.3
CNN-boost fine-tuned using 1 boost [14] 364.4 341.4

CNN-pixel (ours) 406.2 404.0
FCNN-skip (ours) 431.6 379.6

Table VII: Mean absolute error (MAE) on the UCF dataset. Std is
the standard deviation of the MAE.

(a) Image (b) Ground truth (1566) (c) Prediction (1330.9)

(d) Image (e) Ground truth (440) (f) Prediction (358.1)

Figure 9: Example results on UCF CC 50 dataset using our CNN-
pixel model. The number in parenthesis is the count.

On Scene 3, CNN-pixel under-predicts the density because
there are many people in the upper-right that are partially-
occluded by the roof, leaving just the heads visible. Because
the roof is in the ROI, the ground-truth density has non-zero
values on the roof (see Fig. 8). However, CNN-pixel predicts
zero density on the roof region (because it sees no human
parts there), which causes the count to be under-predicted.
For Scene 4, the ROI boundary cuts through a large crowd
in the background. A large portion of the density is outside
the ROI, due to the human-shaped ground-truth, where half
of the density is contributed from the small head region. As
a result CNN-pixel predictions tend to be larger due to this
confounding effect (refer to the count plot and the error heat
maps in the supplementary.).

4) UCF CC 50 dataset: The results on the UCF dataset
are presented in Table VII, and examples of our predicted
density maps appear in Fig. 9. The CNN-based methods show
their capability of handling these extremely crowded images.
Note that although there are only 40 training images, there are
still many patches of people that can be extracted to train the
CNN from scratch.

5) TRANCOS dataset: For TRANSCOS, the evaluation
metric is the Grid Average Mean absolute Error (GAME) [39],

(a) Image (b) Ground truth (58) (c) Prediction (53.85)

(d) Image (e) Ground truth (55) (f) Prediction (56.83)

(g) Image (h) Ground truth (38) (i) Prediction (47.52)

Figure 10: Example results on TRANCOS using our FCNN-skip
model. The number in parenthesis is the count.

which measures the error within grid sub-regions,

GAME(L) =
1

N

NX

n=1

4LX

l=1

|ĉln � cln| (7)

where, ĉln and cln are the estimated count and ground truth
count in region l of image In. The number of sub-regions is
determined by the level L. For L = 0, GAME(0) is equivalent
to MAE. The results are shown in Table VIII and example
predictions are presented in Fig. 10. The CNN methods surpass
the methods using traditional features by a large margin,
especially the last three in Table VIII. FCNN-skip has the
lowest MAE, GAME(1), and GAME(2) among the methods.

C. Detection Experiments

In this subsection, we test the performance of density maps
for people detection.

1) Setup: We use the integer programming method pro-
posed in [11] (IntProg), as well as 3 baselines described
in Section III-C: finding local peaks (Local-max), K-means
clustering, and GMM clustering. We also test our proposed
weighted GMM clustering (denoted as GMM-weighted).

For comparison, we run the detection algorithms on a
variety of predicted density maps, as well as the ground-
truth density map, which provides a reference for detection
using these density maps. We perform detection on density
maps of the same resolution of its input image. We use the
original resolution density maps from CNN-pixel, FCNN-
skip, MESA [3], and RR [4]. Since the predicted density
maps from MESA and RR are noisy, a Gaussian kernel is
used to smooth the density maps (std. 3 for LocalMax and
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Method GAME(0), MAE GAME(1) GAME(2) GAME(3)
Regression forest [7] + RGB Norm + Filters 17.68 19.97 23.54 25.84

MESA [3] + SIFT 13.76 16.72 20.72 24.36
HOG-2 [42] 13.29 18.05 23.65 28.41

CNN-patch [8] 11.24 12.36 14.51 18.67
Hydra 3s [14] 10.99 13.75 16.69 19.32
MCNN [10] 7.51 9.12 11.50 15.85

CNN-pixel (ours) 5.87 8.63 11.43 16.31
FCNN-skip (ours) 4.61 8.39 11.08 16.10

Table VIII: Evaluation on the TRANCOS car dataset.

std. 2 for all the other detection methods). For CNN-patch [8]
and MCNN [10], we upsample the reduced-resolution density
maps to the original resolution using bicubic interpolation. As
MCNN shows strong performance in the counting task, but
only produces reduced resolution density maps, we also test a
variant of MCNN that predicts a full-resolution density maps
(denoted as MCNN-up). Similar to FCNN-skip, two learned
upsampling-convolution layers, each with a 3 ⇥ 3 ⇥ 1 filter,
are used to upsample the MCNN predicted density map. We
follow the same evaluation procedure as [7, 11]. Detections are
uniquely paired with ground-truth locations within a matching
distance, and precision, recall, and F1 score are calculated.

2) Results: Table IX presents the detection results on
UCSD using the various density maps and detection methods.
Using IntProg with density maps from CNN-pixel or MESA
yields the best F1 score. Although the density maps from
MESA look “noisy” (e.g., see Fig. 2c), actually the location
information is preserved well by the MESA criteria, as its
BBMAE is 2nd lowest among the methods (see Fig. 6b). How-
ever, MESA density maps are less compact than most other
CNN-based methods (lower BBDR in Fig. 6a), and cannot
maintain the monotonicity (per-pixel reproduction Fig. 5), and
thus detection with GMM-weighted is worse than MCNN and
MCNN-up. Detection with CNN-pixel has higher precision
than MESA, due to the more compact density maps of CNN-
pixel, but also lower recall.

The detection result for FCNN-skip is worse than CNN-
pixel because its density maps are less compact (lower BBDR
in Fig. 6a) and less isolated due to the upsampling process.
While the upsampling and skip connections compensate for
the loss of spatial information, there is still a degradation in
detection accuracy.

Using the upsampling-convolution layers with MCNN
(MCNN-up) improves the F1 score on all methods com-
pared to MCNN, although the counting performance decreases
slightly (1.37 vs. 1.32). The improved detection performance
of MCNN-up is due to better compactness (higher BBDR) and
localization (lower BBMAE) of its density maps, compared
to MCNN (see Fig. 6). Because the objects in UCSD can
be smaller than 20 pixels, a downsample factor of 4 has a
large influence on localization – a full resolution density map
is crucial for good localization performance, as compared to
bicubic upsampling of the reduced-resolution density map.

Detection accuracy on RR maps is not as high as those by
MESA or CNN-pixel with IntProg and GMM-weighted. To
maintain positive density values, RR uses a heuristic to remove
feature dimensions with negative weight during the training
process. Most of these situations affect the boundary regions
of the density blobs (see Fig. 2d), resulting in very compact

density maps (highest BBDR in Fig. 6a). Yet, the disadvantage
of this feature removal is that it shifts the center of mass of the
density blobs, resulting in worse localization metrics (lower
BBMAE, see Fig. 6b), which affects the detection accuracy
with IntProg and GMM-weighted. On the other hand, the
density blobs are very compact, which favors the K-means
and GMM detection methods, which only consider the shape
of the density blobs.

Although CNN-patch is suitable for crowd counting, the
detection results are worse than other density maps. CNN-
patch generates a reduced-resolution density maps and also
averages overlapping density patch predictions, which smooths
out local density peaks (lowest BBDR in Fig. 6a), thus making
localization of each person more difficult.

We note that two attributes are important for good detection
performance using the tested detection methods: 1) accu-
rate peaks with good monotonicity, otherwise the detections
easily drifts; 2) having more compact (higher BBDR) and
isolated peaks reduces the search space and makes detection
of every individual object easier. Using higher quality density
maps (such as from CNN-pixel), the simple GMM-weighted
method, which considers both the shape and density of the
blobs, achieves very similar performance to the more complex
IntProg. Finally, there exists a large gap between detection on
the ground-truth density map and the predicted density maps
(e.g., using IntProg, F1 of 97.96 vs 92.89). Hence, there still is
room to improve density map methods such that the location
information is better preserved.

D. Tracking Experiments

We next test the ability of density maps to improve pedes-
trian tracking algorithms.

1) Setup: We test the fusion method described in Section
III-D to combine the response map of the kernel correlation
filter (KCF) with the crowd density map. The position in
the resulting map with the maximum response is used as
the tracked location, which is then passed to the tracker for
online updating the KCF appearance model. We test KCF
fusion with the same density maps used for the detection
experiment (all trained on UCSD “max” split), as well as the
original KCF without fusion. The performance of single person
tracking is evaluated on each person in the testing set of the
UCSD dataset (1200 frames). In particular, we plot a precision-
threshold curve, which shows the percentage of frames where
the tracking error is within a distance threshold. The tracker
is initialized with the ground truth location of a person after
they have fully entered the video.

2) Results: Fig. 11 shows the tracking performance. Fusing
the density map with the KCF response map can improve
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IntProg GMM-weighted GMM K-means Local-max
Density map R% P% F1% R% P% F1% R% P% F1% R% P% F1% R% P% F1%
MESA [3] 92.39 91.18 91.78 91.31 86.69 88.94 81.55 78.78 80.14 85.34 81.75 83.50 81.01 86.58 83.70

Ridge regression [4] 85.04 89.26 87.10 86.86 84.27 85.55 86.80 80.59 83.58 87.74 81.46 84.49 72.90 88.00 79.74
CNN-patch [8] 59.28 85.82 70.12 83.34 78.45 80.82 51.57 49.28 50.40 55.99 53.49 54.71 39.55 83.64 53.70

MCNN [10] 80.27 93.90 86.55 89.47 89.78 89.63 79.36 78.82 79.09 81.82 81.26 81.54 70.44 85.46 77.22
MCNN-up 83.87 94.87 89.03 89.46 90.84 90.14 81.20 81.68 81.44 83.70 84.19 83.95 72.49 83.34 77.54

FCNN-skip (ours) 88.29 88.19 88.24 91.77 86.20 88.90 82.44 76.92 79.59 85.40 79.69 82.45 74.77 84.54 79.35
CNN-pixel (ours) 90.19 95.75 92.89 91.57 89.82 90.69 80.05 78.38 79.20 82.68 80.95 81.81 71.19 87.12 78.36

CNN-pixel-VS 79.26 94.64 86.27 87.40 92.03 89.66 75.04 79.61 77.26 77.54 82.26 79.83 62.29 91.45 74.11
CNN-pixel (ours) [full] 88.02 97.45 92.49 89.90 92.46 91.16 78.55 80.84 79.68 80.80 83.15 81.96 73.11 86.78 79.36

GT density map 97.41 98.51 97.96 94.76 94.56 94.66 85.25 86.64 85.94 87.78 89.05 88.41 80.51 84.88 82.64
Table IX: Detection performance on UCSD dataset (“max” split) using density maps with different detection methods. For comparison,
SIFT-SVM [3] obtains an F1 score of 68.46 and region-SVM [43] obtains an F1 score of 89.53. [full] denotes training with the full 800
frames of the training set. Bold numbers indicate best performance for each detection method among the density maps.
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Figure 11: Single object tracking performance on UCSD.

tracking performance. Specifically, using CNN-pixel yields
the largest increase in precision compared to other methods
(e.g., P@4 of 0.713 for CNN-pixel vs. 0.692 for RR), due
to its density maps having better localization metric (lower
BBMAE, see Fig. 6b) and its detections are temporally most
stable (low ED and EDD in Table II). Fusion with the CNN-
patch density maps does not improve the tracker because those
density maps are too smooth, and thus the fused map does not
change much. Fusion with MCNN-up improves the tracking
performance over MCNN, because MCNN-up density maps
are more compact and better localized (see Fig. 6), resulting
in temporally more stable detections (see Table II). Again,
this shows that original resolution density maps are preferred
for localization tasks. Finally, fusing the ground-truth density
map with KCF yields the best tracking results, which marks
the upper bound of the performance for this type of fusion.

E. Summary

In summary, in the experiments, we have evaluated density
maps for counting, detection, and tracking. For counting, the
resolution of the density map does not affect much the count-
ing accuracy. Methods that produce reduced-resolution maps,
e.g., MCNN, can perform well. In contrast, using original-
resolution density maps gives better accuracy for localization
tasks, such as detection and tracking. In particular, per-pixel
generation of original-resolution density maps without using
upsampling (e.g., CNN-pixel) have higher fidelity (better
compactness and localization metrics, BBDR and BBMAE)
than those that are upsampled from reduced resolution maps

(e.g., FCNN-skip, MCNN, MCNN-up), leading to better de-
tection and tracking performance. For FCNN-skip, MCNN,
and MCNN-up, downsampling in the CNN obfuscate the true
position of the people in the reduced-resolution maps. This
loss of spatial information can only be partially compensated
using learned upsampling and skip connections.

F. Training and Architecture Variations

Next we report results of using various common strategies
for training and alternative architectures for CNN-pixel and
FCNN-skip. Experiments were run on the UCSD dataset using
the “max” split, and the results are summarized in Table X.

Method Variation MAE
CNN-pixel – 1.26
CNN-pixel varying std. with perspective 1.48
CNN-pixel fine-tuning with only regression task 1.20
CNN-pixel feature combo 1.21
CNN-pixel 256 neurons for the first FC 1.38
CNN-pixel 4 or 6 convolution layers 1.26, 1.38
CNN-pixel 6 or 12 residual blocks [29] 1.26, 1.34
CNN-pixel 2 dense blocks (2, 4 or 8 layers each) [44] 2.77, 1.82, 2.64
FCNN-skip – 1.24
FCNN-skip only pixel-wise loss 1.41
FCNN only pixel-wise loss 1.54
FCNN only count loss 1.82
FCNN hole convolution [35, 45] 1.93

Table X: Comparison of variations in training and architectures of
CNN-pixel and FCNN-skip. All the experiments are on the UCSD
dataset using the “max” split.

Data augmentation: Because we extract all the possible
image patches to train the network, no random translations
are needed when cropping patches. We also added small
random Gaussian noise and horizontally flipped the patches,
but no obvious improvement was observed. Most likely this is
because the dense patch sampling already covers many useful
permutations of the input.

CNN-pixel fine-tuning with only the regression task: As
the classification task is an auxiliary task for guiding the CNN
during training, it is possible that it could adversely affect the
training of the density regressor. Starting from a well-trained
network, we removed the classification task and fine-tuned
the network only using the regression task. However, with
fine-tuning we obtained similar regression performance (MAE:
1.20). Most likely this is because counting (implemented as
classification) and density prediction are related tasks, which
can share common image features, so it is not necessary to
explicitly fine-tune the density regressor alone.
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CNN-pixel with combined features from different con-
volution layers: A commonly used strategy to improve the
performance of CNNs is to combine features from different
convolution layers [30, 31]. We use a fully connected layer
(in contrast to the convolutional layer used in the FCNN-skip
adaptations) to collect features from different convolutional
layer and concatenate them together. Similar performance to
the original CNN-pixel was observed (MAE: 1.21).

CNN-pixel with more convolution layers: Recently, very
deep networks have been used for high-level classification and
semantic segmentation tasks [26–29]. However, we note that
density estimation task is a mid-level task, and thus does not
necessarily require very deep networks. We test CNN-pixel
variations with 4 or 6 convolution layers, with 2 pooling layers.
No gain is observed using 4 convolution layers (MAE: 1.26),
and performance decreases slightly (MAE: 1.38) when using
6 convolution layers. We also tested a ResNet version, which
replaces the convolution layers with residual blocks, and did
not see better performance (MAE: 1.26). We also tried several
versions of DenseNet [44] with 2, 4, or 8 dense layers in
each dense block. The more complicated network has poor
performance on the counting task, possibly due to the limited
training data relative to the network size. A similar trend is
also observed in [24].

CNN-pixel with smaller fully-connected layer: CNN-
pixel uses 512 neurons in the first fully-connected (FC) layer
which seems large for such a shallow network. We test a
version of CNN-pixel with fewer neurons in the first FC layer.
Using 256 neurons gives worse performance (MAE: 1.38),
possibly because more neurons are needed to capture all the
appearance variations associated with the same density value.

FCNN-skip with only pixel-wise loss: Our FCNN-skip
is trained with both the patch-wise count loss and a pixel-
wise loss. Removing the count loss from the training leads to
higher error (MAE: 1.41). This shows the benefit of including
the count loss, which focuses on reducing systematic counting
errors, which cannot be well reflected in the pixel-wise loss.

FCNN without spatial compensation: We also compared
FCNN-skip with an FCNN without skip branches (denoted as
FCNN). Here we only train with the pixel-wise loss, and the
error increases when no skip branches are used.

FCNN with only count loss: Next, we train FCNN with
only the count loss, which results in the predicted density
map spreading out, making the high density and low density
regions more similar (see Fig. 12). This leads to poor counting
performance (MAE: 1.82), and hence the pixel-wise loss is
required to maintain the structure of the density map.

Effect of Multi-task learning: We compared the effect of
different �2 on multi-task learning. For �2 ={0, 0.1, 1, 10,
100}, CNN-pixel gets MAE of {1.41, 1.27, 1.26, 1.44, 1.47}.
Using �2 = 0.1 gives similar performance to �2 = 1, while
other settings decrease the performance. Similar observations
are also reported in [30].

Effect of varying Gaussian widths: We have conducted
experiments to understand the effect of including perspective
in the ground-truth densities for UCSD. As in [8], the standard
deviation of the Gaussian is varied using the perspective map.
Results using CNN-pixel with the new density maps (denoted

(a) Count Loss (b) Pixel Loss (c) Pixel & Count Loss

Figure 12: Example of using different loss functions to train FCNN.

as “CNN-pixel-VS”) for counting, detection, and tracking are
shown in Tables V and IX, and Fig. 11. The counting results
using CNN-pixel-VS are worse than CNN-pixel (MAE 1.48 vs
1.24). Detection performance also is worse, since IntProg and
GMM-weight use the predicted count as either a constraint
or the number of clusters. For tracking, CNN-pixel-VS also
performs worse than CNN-pixel, mainly because the spread
out density maps have lower values, which decreases the
influence of the density map on the tracking response map.

FCNN using hole convolution: Another method to get
a full resolution density map is to use “hole convolution”
[35, 45], which changes all the stride sizes to one and adds
zeros into the filters of the convolutional and pooling layers.
We first adapt our CNN-pixel model to FCNN. After the
parameters have been trained, we use the hole algorithm to
predict a density map with the same resolution as the input.
This approach has poor performance (MAE: 1.93) while taking
more time than FCNN with up-sampling because it need to
compute responses for every image pixel. In contrast, using
FCNN with up-sampling is more suitable since it encourages
smooth density maps.

VI. CONCLUSION

In this work, we compare crowd density maps, produced
by different methods, on several crowd analysis tasks, in-
cluding counting, detection, and tracking. While reduced-
resolution density maps produced by fully-convolutional NN
(e.g., MCNN) perform well at counting, their accuracy dimin-
ished at localization tasks due to the loss of spatial resolution,
which could not be completely recovered using upsampling
and skip connections. In contrast, dense pixel-prediction of a
full resolution density map, using CNN-pixel, produced the
highest quality density map for localization tasks, with slight
degradation for the counting task. However, dense prediction
suffers from higher computational complexity, compared to
fully-convolutional networks.

We also proposed several metrics for measuring aspects of
the density maps to explain why those density maps with
similar counting accuracy can perform differently on detection
and tracking. These metrics can help to guide future research
in designing density map methods to estimate high quality
density maps for both counting and localization tasks.
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