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Abstract 

 
In this paper, a new computation for gray level co-

occurrence matrix (GLCM) is proposed. The aim is to 
reduce the computation burden of the original GLCM 
computation. The proposed computation will be based 
on Haar wavelet transform. Haar wavelet transform is 
chosen because the resulting wavelet bands are 
strongly correlated with the orientation elements in the 
GLCM computation. The second reason is because the 
total pixel entries for Haar wavelet transform is always 
minimum. Thus, the GLCM computation burden can be 
reduced. The proposed computation is tested with the 
classification performance of the Brodatz texture 
images. Although the aim is to achieve at least similar 
performance with the original GLCM computation, the 
proposed computation gives a slightly better 
performance compare to the original GLCM 
computation.  
 
1. Introduction 
 

Gray level co-occurrence matrix (GLCM) has been 
proven to be a very powerful tool for texture image 
segmentation [1, 2]. The only shortcoming of the 
GLCM is its computational cost. Such restriction 
causes impractical implementation for pixel-by-pixel 
image processing. In the previous works, GLCM 
computational burden was reduced by two methods, at 
the computation architecture level and hardware level. 
D. A. Clausi et. al. restructures the GLCM by 
introducing a GLCLL (gray level co-occurrence linked 
list), which discard the zero value in the GLCM [3]. 
This technique gives a good improvement because 
most GLCM is a sparse matrix where most of its 
values are equals to zero. Thus the size of GLCLL is 
significantly smaller than GLCM. Then the structure of 
the GLCLL was improved in [4, 5]. Another work is 
presented in [6] where fast calculation of GLCM 
texture features relative to a window spanning an 

image in a raster manner was introduced. This 
technique was based on the fact that windows relative 
to adjacent pixels are mostly overlapping, thus the 
features related to the pixels inside the overlapping 
windows can be obtained by updating the early-
calculated values. In January 2007, S. Kiranyaz and M. 
Gabbouj proposed a novel indexing technique called 
Hierarchical Cellular Tree (HCT) to handle large data 
[7]. In his work, it was proved that the proposed 
technique is able to reduce the GLCM texture features 
computation burden.   

At the hardware level, paper presented in [8] 
implemented the GLCM texture features computation 
using FPGA. In this work, the computation speed using 
the FPGA produced a better result when compared 
with the computation on a general-purpose processor 
(Pentium 4 with 2400MHz clock speed). The 
architecture of the FPGA is then improved in [9] for 
more efficient computation.  

In this work, a new GLCM computation is proposed 
in order to reduce its computational burden. The 
GLCM computation will be based on Haar wavelet 
transform. The subsequent topics will be divided into 4 
sections. The first and second sections will discuss 
briefly on the introduction of GLCM and Haar wavelet 
transform respectively. The third section will discuss 
the proposed GLCM computation, which is based on 
Haar wavelet transform. In the last section, the 
performance of the proposed technique is measured 
and compared with the original computation.     
 
2. Gray Level Co-Occurrence Matrix 
 

GLCM is a matrix that describes the frequency of 
one gray level appearing in a specified spatial linear 
relationship with another gray level within the area of 
investigation [10]. Here, the co-occurrence matrix is 
computed based on two parameters, which are the 
relative distance between the pixel pair d  measured in 
pixel number and their relative orientation φ . 
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Normally, φ  is quantized in four directions (00, 450, 
900 and 1350) [10]. In practice, for each d , the 
resulting values for the four directions are averaged 
out. To show how the computation is done, for image 
I , let m  represent the gray level of pixels ),( yx  and 
n  represent the gray level of pixels 

),( 10 φφ dydx ±±  with L  level of gray tones where 
10 −≤≤ Mx , 10 −≤≤ Ny  and 1,0 −≤≤ Lnm . 

From these representations, the gray level co-
occurrence matrix nmC ,  for distance d  and direction 

φ  can be defined as 
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where 1{.} =P  if the argument is true and otherwise, 

0{.} =P . For each φ  value, its 0φ  and 1φ values are 
referred as in the Table 1. One of the characteristic of 
the GLCM is, it is diagonally symmetry where 

mnnm CC ,, = . Thus, the computation of the GLCM 

can be simplified as in Equation 2. Now, the ±  and ∓  
signs are replaced with single operation of +  and – 
accordingly. As compensation, the resulting nmC ,  is 

added with mnC ,  to obtain a complete GLCM. For the 
rest of this paper, GLCM computation will be referred 
to the method as in Equation 2.  
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Table 1: Orientation constant 

φ  0φ  1φ  

00 0 1 
450 -1 -1 
900 1 0 
1350 1 -1 

 
In the classical paper [11], Haralick et. al 

introduced fourteen textural features from the GLCM 
and then in [12] stated that only six of the textural 
features are considered to be the most relevant. Those 
textural features are Energy, Entropy, Contrast, 
Variance, Correlation and Inverse Difference Moment. 

Energy is also called Angular Second Moment (ASM) 
where it measures textural uniformity [10]. If an image 
is completely homogeneous, its energy will be 
maximum. Entropy is a measure, which is inversely 
correlated to energy. It measures the disorder or 
randomness of an image [10]. Next, contrast is a 
measure of local gray level variation of an image. This 
parameter takes low value for a smooth image and high 
value for a coarse image. On the other hand, inverse 
difference moment is a measure that takes a high value 
for a low contrast image. Thus, the parameter is more 
sensitive to the presence of the GLCM elements, which 
are nearer to the symmetry line ),( mmC [10]. 
Variance as the fifth parameter is a measure that is 
similar to the first order statistical variables called 
standard deviation [13]. The last parameter, 
correlation, measures the linear dependency among 
neighboring pixels. It gives a measure of abrupt pixel 
transitions in the image [14].    
 
3. Haar Wavelet Transform 
 

An image that undergoes Haar wavelet transform 
will be divided into four bands at each of the transform 
level [15]. The first band represents the input image 
filtered with a low pass filter and compressed to half. 
This band is also called ‘approximation’. The other 
three bands are called ‘details’ where high pass filter is 
applied. These bands contain directional 
characteristics. The size of each of the bands is also 
compressed to half. Specifically, the second band 
contains vertical characteristics, the third band shows 
characteristics in the horizontal direction and the last 
band represents diagonal characteristics of the input 
image.  

Conceptually, Haar wavelet is very simple because 
it is constructed from a square wave, which is 
represented by Equation 3 and 4 [16]. Moreover, Haar 
wavelet computation is fast since it only contains two 
coefficients and it does not need a temporary array for 
multi-level transformation [17]. Thus, each pixel in an 
image that will go through the wavelet transform 
computation will be used only once and no pixel 
overlapping during the computation. Theoretically, this 
characteristic can be used to reduce the GLCM 
computation, which will be discussed in the subsequent 
topic.    
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According to Equation 3 and 4, the Haar basis only 

takes even-indexed pixel coordinates. The basis is also 
scaled by the factor of 2  so that it becomes 
orthonormal for a two points length basis. If the length 
of the basis is changed, the factorizing value will be 
different [16]. This subject matter will be discussed 
again later and for now, the computation will be 
focused on a two points Haar basis. From the Haar 
basis, wavelet transform of an image can be written in 
four different linear equations representing the four 
bands. Because image is a two-dimensional data, 
performing wavelet transform is done twice in each of 
its level. First, it is done at row wise and then at 
column wise. As Haar wavelet transform computes 
only on even-indexed coordinates and it has only two 
coefficients, this is why the transformation 
computation does not overlap on any image pixels. 

 
4. Haar Wavelet Based GLCM 

Computation 
 
4.1. Averaging and Differencing Formulation 
 

Besides the typical way of writing the GLCM 
equation based on each image pixel and its desired 
neighboring pixels as in Equation 2, another 
interpretation based on averaging and differencing 
filter is also possible. These filters come into the 
picture because they are the same filter types that 
construct the Haar basis [17]. Thus, formulating the 
GLCM computation using the averaging and 
differencing filters will be the turning point of 
formulating the GLCM computation based on the Haar 
wavelet transform.  

First, let α=),( yxI  and 
βφφ =−+ ),( 10 dydxI . As Haar basis is 

represented by Equation 3 and 4, then a simple two 
point length averaging and differencing basis can be 
written as 
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Manipulating these averaging and differencing 

bases for the GLCM computation leads to four 
formulations for each of the averaging and differencing 
filters. This is because the GLCM computation is 
engaged with four orientation of φ . These 
computations are simplified by Equation 7 and 8 
below.  
 

),(
2
1),(

2
1),( 10 φφφ dydxIyxIyxL −++=    (7) 

 

),(
2
1),(

2
1),( 10 φφφ dydxIyxIyxH −+−=    (8) 

 
Here, averaging and differencing operations are 
represented by ),( yxL  and ),( yxH  respectively 
instead of ),( yxave  and ),( yxdif  to maintain the 
symbol consistency for the low pass filter and high 
pass filter. To write the GLCM formulation based on 
the averaging and differencing filters, the inverse of 
Equation 7 and 8 are computed to get the α  and β . 
Equation 9 and 10 show the inverse operation while 
Equation 11 shows the GLCM computation based on 
the averaging and differencing filters.   
 

),(),(),( yxHyxLyxI φφα +==                    (9) 
 

),(),(),( 10 yxHyxLdydxI φφβφφ −==−+   (10) 
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4.2. Haar Wavelet Based GLCM 
 

Now, as GLCM computation has been written based 
on low pass (averaging) filter (Equation 7) and high 
pass (differencing) filter (Equation 8), it is easier to 
formulate it using the Haar basis. This is done by 
replacing the low pass filter and the high pass filter 
with the four bands of the Haar wavelet transform. 
Table 2 lists the filter replacements. 
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Table 2: Filter replacements 

Filter (original GLCM) Replacement 
(wavelet bands) 

),( yxLφ  )','( yxLL  

),(0 yxH °  )','( yxLH  

),(90 yxH °  )','( yxHL  

),(45 yxH °  and ),(135 yxH °  )','( yxHH  

 
Referring to Table 2, low pass filter for all 

orientation of the φ  are replaced with single 
approximation band. This is because the approximation 
band is the only band that performs pure low pass 
filtering process. Then, ),(0 yxH °  is replaced with 

)','( yxLH  as this band contains horizontal 

characteristics and )','( yxHL  is replaces ),(90 yxH °  
because it contains the vertical characteristics. For 

),(45 yxH °  and ),(135 yxH ° , the filters are replaced 

with single )','( yxHH  band. This is because Haar 
wavelet transform combines both diagonal orientations 
( °45  and °135 ) computation in a single band, which 
is the )','( yxHH . Hence, instead of four 
orientations computation in the original GLCM, Haar 
wavelet based computation of the GLCM will only 
compute in three orientations.      

Computing the GLCM based on the Haar wavelet 
bands is inefficient, similarly when computing the 
original GLCM based on the averaging and 
differencing filters. This is because a temporary array 
is needed to store the results of the bands. Fortunately, 
as mention in the previous topic, Haar wavelet 
transform does not need the temporary array for its 
computation. Thus, instead of computing the GLCM 
based on the wavelet bands, the computation of the 
GLCM based on the Haar wavelet can be done directly 
from the input image. To show how it is done, lets 
rearrange the formulation for the horizontal orientation.    

First, referring to Equation 9 and 10 and Table 2, 
α  and β  for the horizontal orientation can be written 
as 
 

)','()','( yxLHyxLL +=α                  (12) 
 

)','()','( yxLHyxLL −=β             (13) 
 

Then, referring to Equation 7 and 8, α  and β  can be 
written directly from the input image as below 
 

)1,(),( 2
1

2
1 ++= yxIyxIα                               (14) 

 
)1,1(),1( 2

1
2
1 ++++= yxIyxIβ                   (15) 

 
To generalize the formulation, variable d  (distance) is 
entered. This is shown in Table 3 where α  and β  are 
now indexed with φ  to differentiate their orientation. 
The table also shows α  and β  for vertical and 
diagonal orientation. In Equation 14 and 15, d  is 
equal to 1.  
 

Table 3: α  and β  values based on the wavelet 
orientation 

Wavelet 
band (φ ) φα  and φβ  

Horizontal 
( hor ) )1,(),(

)1,(),(

2
1

2
1

2
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2
1
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ydxIydxI
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Diagonal 
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),(),(

2
1

2
1

2
1

2
1

dyxIydxI
dydxIyxI

dia

dia

+++=
+++=

β
α

 

 
From the definition of GLCM, d  can take any 

value from 1 to M-1 or N-1, whichever is lower. In the 
Haar basis, as mentioned in the previous topic, 
changing d  is equivalent by the means of changing 
the length of the Haar basis. Thus, scaling φα  and φβ  

by the factor of 2  or 2 for an image with 1>d  will 
not conserve the orthonomality of the Haar basis. 
However, orthonomality is not an issue for the GLCM 
computation because the inverse computation of the 
GLCM is not necessary. Although the orthonomality is 
not conserved, the Haar basis is still orthogonal, which 
keeps the Haar basis uncorrelated. Based on these 
arguments, the scaling factor for φα  and φβ  is 

retained by the value of 2 for any possible value of d . 
Furthermore, this scaling value will actually average 
out the value of the pixels involved in each of the φα  
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and φβ  computation. Certainly, averaging process 
will preserve the gray level range of the image. Then, 
based on the φα  and φβ , GLCM formulation can be 
rewritten as Equation 10.    
 

}&{
' '

'
,, nmPC

x y
nm ===∑∑ φφφ βα           (10) 

 
4.3. Pixel Entries in GLCM Computation 
 

One way of determining the computational speed of 
the GLCM is by calculating its total pixel entries. This 
computation counts the total of how frequent each 
pixel in an image is used to compute the GLCM. As 
total pixel entries is about counting the pixel 
involvement, its computation has a linear relationship 
with the image size, which can be computed according 
to Equation 16 to Equation 18 below [18].  
 

2)1(0 ×−×= NMη              (16) 
 

2)1(90 ××−= NMη              (17) 
 

2)1()1(13545 ×−×−== NMηη            (18) 
 
M  is the row length and N  is the column length. 
Thus, as the size of the image is increased, the total 
pixel entries will also increase. For the GLCM 
computation based on the Haar wavelet, its total pixel 
entries computation is different. This is because the 
computation is applied only on the even-indexed 
coordinates )','( yx  of the input image. Hence, the 
total pixel entries is represented by Equation 19. This 
equation is true for all of the three orientations in the 
Haar wavelet based computation.  
 

NMw ×=η               (19) 
 

From Equation 16 to 19, it is obvious that the total 
pixel entries for Haar wavelet based computation is 
less than the original computation of the GLCM. As an 
example, if the input image size is 1010× , the total 
pixel entries for the original GLCM computation will 
be 180+180+162+162=684 while the total pixel entries 
for Haar wavelet based computation is 
100+100+100=300. In this example, the Haar wavelet 
based computation only consumes 43.9% pixel entries 
of the original GLCM computation, which is less than 
half. At minimum reduction, the proposed computation 
consumes 75% pixel entries of the original 

computation. For maximum reduction, it can reach 
until 37.5% where the image size is very large. This 
shows that larger image size will result in better 
reduction of the pixel entries.    
 
5. Experimental Results 
 

It has been proven that GLCM computation based 
on Haar wavelet reduces the computational cost in 
terms of the pixel entries. Now, the performance of the 
new formulation compared to the original computation 
will be investigated. To measure the performance, 
classification accuracy of 25 Brodatz texture images 
selected randomly from the Brodatz album [19] are 
computed. In the experiment, there are three sample 
sets with different image size. In the first sample set, 
each Brodatz texture image is divided into 4 similar 
size images of 320x320 (original image size is 
640x640). Thus, the first sample set will have 100 
images. Then, the second sample set will have 400 
images where each Brodatz texture image is divided 
into 16 images with the size of 160x160. For the third 
sample set, each Brodatz texture image is divided into 
smaller images with the size of 128x128. Thus, total 
images for the third set is 625 images. Larger images 
have more texture attributes compared to the smaller 
images. Therefore, the three sample sets of different 
image sizes will test both the original and the proposed 
computation with different image conditions. Figure 1 
shows the example of an image, which is divided 
accordingly to the three sample sets.  

In the classification process, the average value for 
the six textural features of the GLCM are computed for 
each of the Brodatz texture images that have been 
divided accordingly to the three sample sets. The 
purpose of this computation is to train the samples. 
Thus, for each sample set, there are 25 sets of trained 
data (value of the six textural features) as there are 25 
original Brodatz texture images. Then, for each sample 
set, each sample image is classified to the nearest 
trained data based on Euclidean distance. Basically, the 
GLCM is computed based on two parameters, which 
are d  and φ . In this work, the experiment is repeated 
for three value of d  from 1 to 3. Then for each value 
of d , the resulting matrixes for the four orientations 
are averaged out. The classification accuracy of the 
Haar wavelet based GLCM computation and the 
original GLCM computation are shown in Table 4.  

The aim for the proposed GLCM computation is to 
achieve at least similar classification accuracy 
compared to the original GLCM computation. 
Fortunately, referring to Table 4, most of the results 
show a slight improvement in the proposed GLCM 
computation except for the image size of 128x128 with 
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d  equals to 1. The results for the proposed GLCM 
computation are also very consistent through out all of 
the experiment conditions where they follow the results 
pattern of the original GLCM computation. 

 

       
                       (a)                                          (b) 

 
(c) 

 
Figure 1: Original image division. (a) Sample set 1, (b) 

Sample set 2, (c) Sample set 3 
 

Table 4: Classification results 
Classification Accuracy (%) Image 

size 
(MxN) 

d  Original 
GLCM 

Haar wavelet 
based GLCM 

1 93 93 
2 88 91 320x320 
3 90 92 
1 80.25 81.5 
2 75.25 80.25 160x160 
3 78.75 81.5 
1 78.24 77.76 
2 74.72 79.36 128x128 
3 77.6 80.48 

 
 Classification accuracies for the Haar wavelet 

based GLCM are better compared to its original 
GLCM computation due to the smoothing process, 
which is embedded in the Haar wavelet computation. 
This can be shown in Equation 14 and 15 where α  
and β  are the average (smoothing) of two pixel 
values. Thus, the image is enhanced when applied with 
smoothing. Smoothing is proven to be the factor that 
contributes to the increased classification accuracy as 
shown in Table 5. Results from Table 5 are obtained by 

repeating the earlier experiment using input images 
that have been filtered with an averaging filter. Table 5 
shows that filtered input images give better 
classification accuracy compared to non-filtered input 
images. Therefore, with smoothing process embedded 
in the Haar wavelet based GLCM computation, it gives 
better classification accuracy compared to the original 
GLCM computation. Table 5 also shows the repeated 
experiment results for Haar wavelet based GLCM. In 
this case, the smoothing process is done twice, first 
applied at the input image and then in the GLCM 
computation. The results pattern is also similar with 
the earlier experiment as shown in Table 4, which 
means that the consistency of the results is conserved.    
 

Table 5: Classification accuracy for filtered input 
image 

Classification Accuracy (%) 

Image 
size 

(MxN) 
d  

Original 
GLCM 
Without 

Smoothing 

Original 
GLCM 
With 

Smoothing 

Wavelet 
Based 
GLCM 
With 

Smoothing 
1 93 94 94 
2 88 88 94 320x320 
3 90 87 91 
1 80.25 83.75 84.75 
2 75.25 79 82.25 160x160 
3 78.75 79.25 79.5 
1 78.24 80.16 79.72 
2 74.72 77.12 80 128x128 
3 77.6 75.52 79.2 

 
6. Conclusion 
 

This paper has presented a new technique for 
GLCM computation based on Haar wavelet transform. 
Computing the GLCM based on Haar wavelet 
transform has the ability to reduced the computational 
burden in terms of pixel entries up to 62.5% reduction. 
In terms of performance measurement, Haar wavelet 
transform does not only reduce the computational 
burden but also increase the classification accuracy of 
Brodatz texture images when compared to the original 
computation. 
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