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Abstract—Computer-aided diagnosis (CAD) systems in 

gray-scale breast ultrasound images have the potential to reduce 
unnecessary biopsy of breast masses. The purpose of our study is 
to develop a robust CAD system based on the texture analysis. 
First, gray-scale invariant features are extracted from ultrasound 
images via multi-resolution ranklet transform. Thus, one can 
apply linear support vector machines (SVMs) on the resulting 
gray-level co-occurrence matrix (GLCM)-based texture features 
for discriminating the benign and malignant masses. To verify the 
effectiveness and robustness of the proposed texture analysis, 
breast ultrasound images obtained from three different platforms 
are evaluated based on cross-platform training/testing and 
leave-one-out cross-validation (LOO-CV) schemes. We compare 
our proposed features with those extracted by wavelet transform 
in terms of receiver operating characteristic (ROC) analysis. The 
AUC values derived from the area under the curve for the three 
databases via ranklet transform are 0.918 (95% confidence 
interval [CI], 0.848 to 0.961), 0.943 (95% CI, 0.906 to 0.968) and 
0.934 (95% CI, 0.883 to 0.961), respectively, while those via 
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wavelet transform are 0.847 (95% CI, 0.762 to 0.910), 0.922 (95% 
CI, 0.878 to 0.958) and 0.867 (95% CI, 0.798 to 0.914), respectively. 
Experiments with cross-platform training/testing scheme between 
each database reveal that the diagnostic performance of our 
texture analysis using ranklet transform is less sensitive to the 
sonographic ultrasound platforms. Also, we adopt several 
co-occurrence statistics in terms of quantization levels and 
orientations (i.e., descriptor settings) for computing the 
co-occurrence matrices with 0.632+ bootstrap estimators to verify 
the use of the proposed texture analysis. These experiments 
suggest that the texture analysis using multi-resolution gray-scale 
invariant features via ranklet transform is useful for designing a 
robust CAD system. 
 

Index Terms—Breast sonography, computer-aided tumor 
diagnosis, texture analysis, gray-scale invariant features, 
multi-resolution approach, 0.632+ bootstrap estimators. 
 

I. INTRODUCTION 
REAST ultrasound (BUS) imaging is a useful tool for early 
detection of breast cancer as well as diagnosing the breast 
lesions [1, 2]. Stavros et al. [3] have reported the sensitivity 

for tumor diagnosis can reach 98.4% by interpreting BUS. Berg 
et al. [4] demonstrated supplemental screening ultrasound can 
depict small, node-negative breast tumors not obviously seen on 
mammography. In addition, the studies in [5, 6] have reported 
BUS screening can yield an incremental detection rate from 2.8 
to 4.6 cancers per 1,000 women with dense breasts and negative 
mammograms.  
 Nonetheless, interpretation of BUS images for robust 
diagnosis requires experienced radiologists, and the diagnosis is 
often subjective. Hence, recent studies advocate to investigate 
and develop computer-aided diagnosis (CAD) [7-9] systems for 
addressing this issue. Using extracted textural or morphological 
features [7, 10] from the located tumor regions (i.e., regions of 
interest (ROIs)); the CAD system can automatically interpret 
and classify the breast tumors into malignant and benign ones. 
Several studies have shown the potential of BUS CAD to reduce 
the unnecessary biopsy [11, 12]. 
 Texture patterns in BUS have been deemed a useful 
characteristic for distinguishing benign and malignant tumors 
[13, 14]. Recently, several studies aim to extract useful texture 
features for tumor diagnosis based on the gray-level 
co-occurrence matrix (GLCM) [15, 16]. Furthermore, Chen et 
al. [17] dedicate to investigate useful texture features extracted 
from wavelet transformed BUS images. Tsiaparas et al. [18] 
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advance to extract the textures using wavelet-based transform 
with multi-resolution approach and SVM classifier [13, 19] is 
adopted for discriminating the atherosclerotic tissue from 
B-mode ultrasound. Gómes et al. [20] devote to analyze the 
gray-level co-occurrence statistics with six quantization levels 
and select the effective texture descriptors (e.g. quantization 
level, orientation and distance) for BUS tumor diagnosis. 
 Nevertheless, a challenge task arises for conventional texture 
analyses [15-17, 20, 21] while the adjustable parameters of the 
ultrasonic device [22] will introduce incoherent texture feature 
extraction from original BUS images or wavelet transformed 
BUS images and lead to non-robust diagnostic capability for 
tumor diagnosis. In this study, we refer the non-robust 
diagnostic capability to variant texture analysis. Since the 
invariant texture analysis is highly demanded for developing 
clinical applications, more recent studies are directed to extract 
the gray-scale invariant texture features for pattern recognition. 
The local binary patterns (LBPs) [23] are firstly investigated to 
deal with gray-scale and rotation invariant texture classification. 
Masumoto et al. [24] aim to extract the textures based on local 
binary patterns for classifying the solid masses in BUS images. 
As firstly proposed to use the ranklets (i.e., ranklet transformed 
images) for robust face recognition [25], several researches pay 
more attention to ranklet transform which is adopted for robust 
texture classification and mass classification in the 
mammograms [26, 27]. 
 The ranklet transform is an image processing technique 
characterized by a multi-resolution and orientation-selective 
approach similar to that of the wavelet transform. Yet, 
differently from the latter, it deals with the rank of the pixels 
rather than their gray-scale intensity values. Herein, we develop 
a robust CAD system based on the gray-scale invariant features 
via ranklet transform. GLCM textures are extracted from 
multi-resolution ranklet transformed BUS images, which allow 
standard linear support vector machines (SVMs) [13, 19] for 
performing BUS tumor diagnosis. While performing on three 
different BUS platforms, we carry out the experiments 
concerning leave-one-out (LOO-CV) scheme and 
cross-platform training/testing schemes for BUS texture 
analyses to verify the robustness and stability of the proposed 
method. The experiments reveal the texture analyses using 
ranklet transform are less sensitive to different ultrasonic 
devices and properly adopted for designing a robust CAD 
system for tumor diagnosis. 

 

II. MATERIALS 
 In this study, BUS images of three databases are used for 
evaluation. Database A includes 116 subjects (78 benign and 38 
malignant cases) which were obtained (from August 2003 to 
January 2004) with Acuson Sequoia (Acuson Siemens, 
California, USA) equipment, using an 8-15 MHz linear-array 
52-mm ultrasound probe. The ages of the subjects were from 17 
to 82 years (mean age 44.48±11.22 years). Database B includes 
193 subjects (133 benign and 60 malignant cases) which were 
obtained (from April 2003 to February 2004) with GE LOGIQ 7 
(GE Medical Systems, Milwaukee, Wisc., USA) equipment, 
using a 4.5-14 MHz linear-array 40-mm ultrasound probe. The 

ages of the subjects were from 21 to 71 years (mean age 
46.77±9.07 years). Database C includes 161 subjects (104 
benign and 57 malignant cases) which were obtained (from 
August 2004 to March 2005) with Voluson 730 expert (GE 
Medical systems, Kretz Ultrasound, Zipf, Austria) equipment, 
using a 4.0-10.5 MHz linear-array 38-mm ultrasound probe. 
The ages of the subjects were from 20 to 85 years (mean age 
42.22±8.34 years). The image pixel resolution of the three 
databases are 0.12 mm/pixel for database A, 0.10 mm/pixel for 
database B, and 0.11 mm/pixel for database C, respectively. 
Note that all the BUS images are captured with whole ultrasonic 
screen (640×480 pixels) and stored in 8-bit pixel depth (i.e., 256 
gray scales) with DICOM format. Detailed tumor 
characteristics of the three databases are listed in Table I. All 
breast tumors were histopathologically proven by means of 
BUS-guided core needle biopsy or fine-needle aspiration 
cytology (FNAC). The institutional review board approved this 
retrospective study and informed consent was obtained from 
each patient prior to performing the biopsy. 
 For effectively retrieving the representative image frames to 
characterize the breast tumors, the images with largest 
diameters of the tumors are selected and captured by the 
radiologists while operating the whole breast examination. On 
the other hand, in order to extract the tumor regions (i.e., ROIs), 
the tumor boundaries were manually demarcated by two 
experienced radiologists who have clinical experience of 6 and 
13 years in BUS screening respectively. Note that the sizes of 
the ROIs vary from 724 (65×28) to 55,186 (340×207) pixels for 
Database A. For Database B, the maximum and minimum ROI 
sizes are 788 (34×25) and 43,400 (325×197) pixels. As for 
Database C, the sizes are between 543 (36×18) and 27,781 
(213×193) pixels. 
 

III. METHODS 
 This study focuses on robust texture analysis for tumor 
diagnosis using multi-resolution gray-scale invariant features 
via ranklet transform [26, 28, 29]. Automatic texture analysis 
involves three major procedures [26, 29] as drawn in Fig. 1. 
First, we decompose each BUS image I from the test database 
(as shown in Fig. 1 (a)) into ranklets (i.e., a series of images 
represented in the ranklet domain) in terms of multi-resolution 
and orientation-selective properties of the ranklet transform [26] 
as depicted in Fig. 1 (b). Afterwards, the gray-scale invariant 
texture features based on GLCM [21, 30, 31] can be calculated 
from each transformed (ranklet) image with the regions of 
interest (ROIs) as depicted in Fig. 1 (c). In order to retrieve 
multi-resolution features for texture analysis [23], the texture 
features derived from different resolutions (scales) and 
orientations of original BUS image can be combined into one 
compact texture features as the image texture representation for 
each breast tumor. As a result, the SVM [19, 41] classifier is 
adopted to distinguish a benign tumor from a malignant one as 
drawn in Fig. 1 (d). Several experiments are conducted using 
three different sonographic BUS platforms (i.e., Databases A, B 
and C) to evaluate the robustness and effectiveness of the 
proposed texture analysis approach for tumor diagnosis via 
ranklet transform. 
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A. Robust Gray-Scale Invariant Ranklet Transform 
 The ranklet transform involves non-parametric analysis, 
orientation-selective and multi-resolution properties as analog 
to Haar wavelets [32], which can be used as a rank descriptor of 
the pixels within a local region [26]. Since the ranklet transform 
considers the relative rank of the pixels [27] instead of 
corresponding gray values, it can be defined as an invariant 
operator to any monotonic changes of any arbitrary observed 
gray pixels. For example, given an arbitrary matrix S and an 
additive matrix P (all entries have the same value), the rank 
descriptive matrix RS with ranklet transform π of S, S+P or c⋅S 
(c is a positive scalar) can be described as follows: 
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In (1), the rank value of each entry of the matrix RS is started 

with 1 and ended up with the number of the matrix size. Note 
that the rank values in RS remain unchanged, since the transform 
operation (e.g., c or P) converts entries of S monotonically. 
Thus, this study aims to extract the gray-scale invariant features 
via ranklet transform for tumor diagnosis, which would be less 
sensitive to the database collection with operator-dependent 
issues. We refer ranklets to a series of transformed images from 
an input BUS image based on the multi-resolution and 
orientation-selective property of the ranklet transform and can 
be derived using ranklet decomposition [26, 28] as drawn in Fig. 
1 (b).  
 More specifically, for a clipping square crop, the 
multi-resolution property of the ranklet decomposition can be 
described by giving an arbitrary point p and even resolutions r 
of the clipping crop as drawn in Fig. 2 (a). In the clipping crop, 
we separate the gray pixels into two clusters of pixels with the 
same size (i.e., subset A and B). The orientations of the two 
separated subsets A and B can be defined as horizontal (H), 
vertical (V) and diagonal (D) directions as drawn in Fig. 2 (b). 
To determine the ranklet coefficient with an arbitrary point p in 
ranklet image with specified resolution r and orientation t, we 
firstly rank the gray values of the pixels within the observed 
crop (i.e., all observed gray points in A∪B) via ranklet 
transform to obtain the rank descriptive matrix (R_AB = 
π(A∪B)). Meanwhile, we perform the sorting operation for 
subsets A and B in terms of the rank numbers of R_AB to obtain 
the sorted rank descriptive vectors SA and SB, respectively (i.e., 
the rank numbers existed in sub-region A or B are rearranged in 
ascending order to form the vectors, SA and SB). Hence, the 
ranklet coefficient RCr

t(p) can be defined as follows: 
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where SAr
t(p, i) and SBr

t(p, i) are the i-th sorted rank number in 
the respective subset while N (N = r2) is the total pixels of the 
clipping crop. We note that the dynamic range of the ranklet 

coefficient is [0, +1] and represents the contrast strength 
between two sub-region Ar

t(p) and Br
t(p). In other words, if the 

ranklet coefficient RCr
t(p) is approaching +1 indicating the gray 

pixels with higher gray-scales in original BUS image are 
centralized at one subset (i.e., Ar

t(p) or Br
t(p)). That is, the 

ranklet coefficient can be regarded as a directional gray-scale 
invariant gradient descriptor of a local region. The higher 
ranklet coefficients (gradients) might represent edge or corner 
structures and the lower ones might represent some specific 
texture patterns instead. Herein, we derive the ranklet 
coefficient for each target point within the ROI of a BUS image. 
Thus, the ranklet image is composed of the ranklet coefficients 
derived for this ROI, and this image will be applied for texture 
analysis. 
 

B. Multi-Resolution Gray-scale Invariant GLCM Texture 
Extraction 

 Conventional texture analyses measures the local texture 
information as the histograms to characterize the histological 
textures for B-mode BUS diagnosis [33]. Nevertheless, 
regarding the related position between the pixels within a local 
region might offer more geometry information for feature 
representation [23]. GLCM textures [21, 30, 31] are proposed 
to calculate the texture feature depends on the spatial 
dependence of the gray values, which have shown the success in 
the image classification [30] and tumor diagnosis [15, 20].  
 The GLCM characterizes all the joint frequencies between 
the quantized level p and q by given a distance d and rotation 
angle θ between two arbitrary pixels (k, l) and (m, n) within the 
region of interest R. Herein, we can define the multi-resolution 
ranklet GLCMs as [20, 30]  
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where # denotes the joint frequency of the entry (p, q) within the 
ranklet co-occurrence matrix RCM and b is the number of 
quantization levels. 
 As previously studied in [21, 30, 31], we adopt twelve 
GLCM-based texture features (codes) as given in Appendix I 
for texture extraction. After we quantized the ranklet 
coefficients into b levels, each texture code can be calculated 
from the normalized ranklet GLCMs (θ = {0°, 45°, 90°, 135°}); 
besides, 1-pixel displacement distance (i.e., d = 1) between two 
points as used in [26, 34] within ROIs is adopted for computing 
the co-occurrence matrices. Previously, Masotti et al. [26] 
proposed to calculate the mean of these invariant angular 
features for texture classification. Therefore, we would derive 
each representative texture code by averaging the angular 
features, which can be defined as [30] 
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After we derived the feature codes for each BUS image, the 
multi-resolution feature extraction approach is applied to 
different resolution of ranklet image and the calculated texture 
codes are merged to produce the representative compact 
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textures for further texture analysis. In this paper, we adopt 
1-pixel displacement (d=1), averaged angular feature (i.e., 
averaged four canonical angles) and 256 quantization levels 
(b=256) as our default texture descriptor. Also, we would adopt 
several texture descriptors as suggested in [20] to verify the 
diagnostic capability of the remarkable texture analyses [20, 26, 
34]. 
 

C. Detailed Implementations of the Texture Analyses 
 To evaluate the stability and robustness of the texture 
analyses using ranklet transform for breast sonographic 
diagnoses, the GLCM-based textural features using original 
image (origin), multi-resolution wavelet images (wavelets) and 
multi-resolution ranklet images (ranklets) are extracted for 
texture analyses in this study, respectively.  
 In our proposed texture analysis based on ranklets, we 
decompose each BUS image into four ranklet resolutions (i.e., 
r = {4, 8, 16, 32}) and corresponding three orientations (i.e., t = 
{H, V, D}) to produce 12 ranklet transformed images (ranklets). 
After computing the ranklet GLCMs for deriving the texture 
codes, we will produce 144 (i.e., 4 resolutions × 3 orientations × 
12 texture codes) texture features to form the compact image 
texture representation for a BUS image.  
 Similarly, we also apply the multi-resolution approach based 
on wavelets [17, 32, 34, 35] for texture analysis as well. Since 
we apply multi-resolution (multi-scale) wavelet decomposition 
for an input BUS image via Haar wavelet transform [17], we can 
generate wavelet transformed images (wavelets) for further 
GLCMs texture extraction. To objectively compare the 
diagnostic performance with the ranklets, we decompose the 
BUS images into four scales while the image size in specific 
scale j would shrink into the quarter of that in scale j+1 (j=-1, -2, 
-3, -4. j=0 indicates the original image and lower-resolution 
images while j<0). Instead of particularly choosing specific 
subband for extracting the textures [17], we derive three 
frequency subbands in each scale; namely, HH (Diagonal 
subband, D), HL (Horizontal subband, H), LH (Vertical 
subband, V) to generate 12 wavelet transformed images (i.e., Wj

t, 
-1≦j≦-4, t = {H, V, D}) and 144 texture features as those of the 
ranklets. We note that the derived image with low frequency LL 
subband in scale j is the down-sampled version of that in scale j 
+ 1 from which we cannot derive the wavelet coefficients.  
 Conventional GLCM-based texture analyses extracted 
textures from original BUS images for tumor diagnosis [20, 21, 
30, 31]. Since merely one image scale is used for feature 
extraction, we can derive twelve texture features from each BUS 
image for training the classifier. Compared to texture analyses 
via multi-resolution wavelet transform and ranklet transform, 
the diagnostic performance can be regarded as the performance 
baseline. Particularly, we note the coefficients within the 
extracted ROIs for the three compared texture analyses are 
scaled to the same range [0, 1] (which is also adopted in [20]).  
 Ultimately, we clarify the gray-scale invariant property of the 
BUS image pre-processed with varied contrast settings. Thus, 
two non-linear monotonic gray-scale transformation filters; 
namely, gamma correction and histogram equalization [36] are 
applied to produce those enhanced images. The ranklets R8 and 

wavelets W-1 are derived from an input image I or I filtered by 
three different non-linear monotonic transformations (i.e., the 
histogram equalization and the gamma correction with gamma 
value set to 0.5 and 1.5, respectively). As depicted in Fig. 3, the 
ranklets derived from original input image or enhanced images 
are gray-scale invariant as compared to those of wavelets. In 
other words, we can further extract the gray-scale invariant 
texture features from input BUS images for robust tumor 
diagnoses whether which distribution of texture representation 
collected from BUS databases are addressed. The experiments 
would demonstrate the effectiveness of the tumor diagnosis via 
robust GLCM texture extraction from the ranklets. 
 

D. Texture Analysis for Breast Ultrasound Diagnosis using 
Support Vector Machine (SVM) 

 The Support Vector Machines (SVMs) have been widely 
used for pattern recognition research fields [13, 26, 37-39] due 
to the high classification accuracy and capability in dealing with 
high dimensional data [39, 40]. In SVM model training, we aim 
to solve the following convex quadratic optimization problem: 
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In (5), the parameter b is the off-set of the constructed 
hyperplane and N is the number of training tumor cases. 
Furthermore, the parameter yi is the class label and xi is the 
multi-resolution texture features of the training sample, 
respectively. Φ(xi) is the multi-resolution texture features 
represented in the transformed space (if linear kernel is adopted, 
Φ(xi) is the identity transformation to xi), w is the derived 
normal vector to classification hyperplane of the objective 
quadratic function and C controls the tradeoff between the 
model complexity and training error. Before training the SVM 
classifier, we perform feature normalization which scales each 
feature dimension to the same range of [0, 1] as suggested in 
[19]. To effectively deal with the parameter selection problem, 
we apply the grid search on the parameter selection [19] for 
constructing the SVM models. The parameter of the model can 
be determined by performing the k-fold cross-validation (k = 10) 
using the training data with varied input parameters; the model 
parameter with the best classification performance would be 
chosen as the model parameter [19, 41]. To clarify the kernel 
selection issue for SVM classifier, we carry out the experiments 
using linear and non-linear kernel (RBF kernel) for texture 
analysis. We use the parameter settings for linear and RBF 
kernels: 1. C automatically selected by the k-fold cross 
validation (for linear SVMs) 2. C = 1 and gamma = 1/(# of 
features) (default setting for non-linear SVM in [19]) 3. (C, 
gamma) automatically selected by the k-fold cross validation 
(non-linear). It is worth noting that, we do not limit using 
specific kernel for data discrimination. Nevertheless, the 
experiments have shown the effectiveness of adopting linear 
SVM model for tumor classification in terms of the promising 
diagnostic performances and the efficiency of that which only 
requires one to train and store the SVM solution vector (i.e., w 
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in eq. 5) for future classification.  
 

E.  Statistical Analysis  
 The binary SVM [19] is used to classify the tumors as a 
malignant case or a benign one based on the proposed GLCM 
texture features. The probability of each tumor sample predicted 
by the SVM model lies between 0 and 1. We choose a threshold 
of 0.5 to classify the benign and malignant tumors while 
conducting the experiments. A tumor is classified as a malignant 
case if the predicted probability is equal to or larger than 0.5; 
otherwise, the tumor is regarded as a benign case. Furthermore, 
we adopt two evaluation schemes for performance comparison, 
namely, LOO-CV and cross-platform training/testing schemes. 
If the training set and testing set are the same database, then the 
leave-one-out cross-validation (LOO-CV) method (i.e., 
LOO-CV scheme) [42] is adopted for objective performance 
evaluation. Contrarily, the classifier trained from the training 
database is used to evaluate the diagnostic performance of the 
testing database (i.e., cross-platform training/testing scheme).  
 Diagnostic performance of the binary SVM model based on 
the proposed texture features for classifying the breast tumors is 
evaluated with accuracy (ACC), sensitivity (SENS), specificity 
(SPEC), positive and negative predictive values (PPV and 
NPV). Moreover, the receiver operating characteristic (ROC) 
curves are obtained by using ROCKIT software (C. Metz; 
University of Chicago, Chicago, IL, USA) and the area under 
the ROC curve (AUC) is adopted as one of the indicator of 
diagnostic performance. The AUC value can be derived by 
adjusting different thresholds of the class probability and can be 
generated by the ROCKIT software. In addition, statistical 
analyses except ROC (AUC) are performed by using the 
software (SPSS, version 16 for Windows; SPSS, Chicago, IL, 
USA). 

 

IV. EXPERIMENTS  
 Experiments are conducted using three different breast 
sonographic platforms for performance comparisons based on 
the proposed texture analyses (i.e., origin, wavelets and 
ranklets). To clarify the issues about the selection of scales for 
the proposed multi-resolution features and that of SVM kernels, 
we carry out the experiments with aforementioned parameter 
settings for building the SVM models.  Furthermore, the texture 
descriptor as used in [26] (i.e., 1-pixel displacement and 
averaged angular feature) with 256 quantization levels (default 
texture descriptor) is adopted. As shown in Fig. 4, we observed 
using two resolutions (or image scales) for wavelets and 
ranklets with linear SVM kernel can produce promising 
diagnostic performance for tumor classification (i.e., the first 
two scales are used for wavelets while resolutions {4, 8} are 
adopted for ranklets). Though we can use more training features 
for objects classification to increase the model complexity and 
simultaneously decrease the training errors [28, 29]. 
Nevertheless, the training linear SVM models would over-fit the 
training data with limited observed samples while using too 
much features for training the classifier [43]. For objectively 
comparing the diagnostic performance, we adopt two 

resolutions (i.e., 72 texture features) for feature extraction and 
linear SVM kernel for building the training models to verify the 
stability and robustness of the proposed texture analysis via 
ranklet transform. Note that all algorithms except SVM 
classifiers (LIBSVM package [19]) were implemented in 
MATLAB R2010a on an Intel quad-core PC with 2.23 GHz 
processor and 2G RAM. We also list the computation time for 
deriving a ranklet pixel with specific resolutions in Appendix II. 
 

A. Stability of the Texture Analysis via Ranklet Transform  
 To verify the stability of the proposed texture analysis, we 
derived the area under the ROC curve (i.e., AUC values) to 
demonstrate the stable diagnostic performances of ranklets. In 
Fig. 4, AUC values for the three databases via ranklet transform 
are 0.918 (95% confidence interval [CI], 0.848 to 0.961), 0.943 
(95% CI, 0.906 to 0.968) and 0.934 (95% CI, 0.883 to 0.961), 
respectively; whereas for texture analysis via wavelet transform 
are 0.847 (95% CI, 0.762 to 0.910), 0.922 (95% CI, 0.878 to 
0.958) and 0.867 (95% CI, 0.798 to 0.914), respectively. The 
experiments demonstrate the stability of the texture analysis via 
ranklets, which is observed to be less sensitive to the breast 
sonographic platforms.  
 Considering the performance evaluation with LOO-CV 
bootstrap scheme might be upward bias [44], we adopt 0.632+ 
bootstrap estimators [45] (as also used in [20]) with 500 
independent bootstrap samples to evaluate the diagnostic 
performance. To build each independent bootstrap sample, we 
randomly resample the training dataset with replacement, and 
the test samples are selected which are not included in the 
training set. Furthermore, we consider the combination of 
rotation angle (i.e., averaged angular feature and 90 rotation 
angle) and quantization level (i.e., 32, 64 and 256) as suggested 
in [20, 26] for computing the co-occurrence matrices. The 
average AUC values calculated from the 500 bootstrap samples 
for the three texture analyses of each database are shown in Fig. 
5. The experiments show that texture analysis using original 
images (origin) are basically consistent with those reported in 
[20] and the best diagnostic performances of wavelets and 
ranklets are obtained while default texture descriptor is adopted 
(as also used in [26]). To be more specific, we list the detailed 
diagnostic performance using default texture descriptor for the 
three texture analyses in Table II. 
 To the best of our knowledge, there is no study aiming at 
searching for the optimal GLCM texture descriptors using 
wavelets or ranklets for BUS tumor classification. The averaged 
angular feature of texture descriptor as used in [26, 30] seems to 
perform well for rotation-invariant ranklet transform instead of 
merely considering specific rotation angle for texture analysis. 
Moreover, [20, 46] have shown the effectiveness of coefficients 
quantization for improving the classification performance, the 
ranklet transform quantizes (decomposes) the gray values of the 
BUS images into ranklet coefficients which is robust to the 
speckle noise existed in BUS images [20]. There is worth to 
note, we do not assume the default texture descriptor adopted in 
this paper would be the optimal. Particularly, we aim to examine 
how the variant textures would influence the diagnostic 
performance while applying varied texture representations of 
collected BUS data for texture analyses. Our experiments show 
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the usefulness of extracting invariant textures for developing a 
stable CAD system. 
 

B. Robustness of the Texture Analysis via Ranklet Transform 
 To verify the robustness of the texture analyses using ranklets 
for tumor diagnosis, we conduct the experiments to derive the 
AUC values of cross-platform training/testing combination 
between each database. There is worth noting that, we resize the 
BUS images using bicubic interpolation down-sampling from 
different databases into the same pixel resolution before texture 
feature extraction to validate the correctness of cross-platform 
training/testing scheme. More specifically, all images from the 
two databases (i.e., Database B and C) are resized to a lower 
image resolution (0.12 mm/pixel) as Database A. The robust 
texture analysis for breast sonographic tumor diagnosis 
concerns one of the possible scenarios while the training data of 
new BUS platform are unavailable and patient cases need to be 
recollected for months for training a new SVM model. We have 
to note that the parameter of the training linear SVM model with 
input data from the training platform is tuned as suggested in 
[19]. Afterward, the trained SVM model is adopted to evaluate 
the test data from the testing platform. As shown in Table III, the 
diagnostic performances (i.e., AUC values) of ranklets 
outperform those of origin and wavelets whenever which 
combinations of training/testing platforms are performed. 
Furthermore, we observed that the diagnostic performance 
would suffer from performance degradation while the 
cross-platform training/testing scheme is applied (LOO-CV 
scheme is the performance baseline). The percentages of the 
performance degradation (based on AUC values) of the test 
databases for ranklets are between 0.93% and 6.50% 
(4.77%±2.25%), for wavelets are between 2.90% and 21.74% 
(11.70%±6.62%) and for origin are between 1.92% and 10.28% 
(7.20%±3.43%). We note that the texture analysis using 
ranklets presents a better generalization of SVM model in 
classifying BUS images collected from different sonographic 
platforms.  
 To clarify the issue about the performance degradation while 
comparing the two adopted evaluation schemes (i.e., 
cross-platform training/testing and LOO-CV schemes). One of 
the possible reasons might be related to the different gray-scale 
distribution between two databases. Thus, we further calculate 
the intensity mean and standard deviation for each tumor within 
ROI. And then, the mean and standard deviation (i.e., Means 
and SDs as shown in Table IV) for the intensity mean and 
standard deviation calculated from tumor ROI can be obtained. 
Table IV demonstrates that if the cross-platform training/testing 
scheme is applied, the trained SVM model is not properly for 
evaluating the test database with differentiable Means and SDs 
between training and testing database, which results in 
significant performance degradation (especially for wavelets 
which particularly consider the frequency information existed in 
the BUS image). Since there are no researches aiming to 
investigate the relationship between varied texture patterns and 
diagnostic performance using BUS images, our experiments 
obviously demonstrate that the diagnostic performances using 
invariant texture from ranklets are less sensitive to the breast 
sonographic platforms, which is relatively robust to address the 

BUS databases with different distributions of texture 
representation. 

 

C. Statistical Analysis for the Texture Analyses 
 We conduct a z-test [47, 48] on the AUC values of the 
experiments for the two aforementioned evaluation schemes to 
prove whether the diagnostic performance of ranklets 
statistically outperform the other two methods. The difference 
of the diagnostic performance between two methods is 
statistically significant if the p-value is less than 0.05. Table V 
indicates the diagnostic performance of ranklets outperforms 
the other two methods in most of the evaluations which shows 
the efficacy for tumor diagnosis while applying texture analysis 
via ranklet transform.  
 Moreover, we use AUC values generated by the 0.632+ 
bootstrap estimators with default texture descriptor to perform 
the statistical analysis for comparing the three texture analyses. 
Before we perform the significance test between the methods, 
the Kolmogorov-Smirnov test is applied to test the normality of 
the distribution of the AUC values generated by each evaluated 
group. Due to all the methods of each database present normal 
distribution, the F-test is further used for verifying the equality 
of variances between two groups. The Welch’s t-test (p <0.05) 
is substituted for the Student’s t test when the hypothesis of 
equal variances is rejected, which all the compared groups 
present unequal variance. Based on the 0.632+ bootstrap 
estimators, Table VI states the texture analysis using ranklets 
statistically outperform that using wavelets and origin, 
respectively. 
 

V. DISCUSSION AND CONCLUSION 
 Conventional texture analyses for tumor diagnosis aim at 
extracting textural features from gray-scale BUS images [13, 15, 
16, 20, 21] or gray-scale images represented in the frequency 
domain [17]. However, most prior work did not consider the 
stability and robustness when designing CAD for practical 
tumor diagnosis applications. Gomez-Flores et al [20] 
dedicated the selection of effective texture descriptors for 
deriving informative GLCM texture features for classifying the 
BUS images, and their best AUC performance can achieve 
0.87±0.02 using 0.632+ bootstrap estimators. In this paper, our 
experiments demonstrated that the GLCM-based texture 
analysis using multi-resolution features via wavelet transform 
[17, 32] further improved the diagnostic performance. 
Nevertheless, addressing varied texture representations of BUS 
images from different sonographic platforms would produce 
gray-scale variant features and affect the consistency of the 
diagnostic performance. While the robust and stable properties 
are desired for texture analyses, we developed a robust feature 
extraction scheme via ranklet transform [26, 29] to derive the 
gray-scale invariant features for this purpose. 
 Different from wavelet transform, the ranklet transform of 
BUS images merely consider the corresponding ranks of the 
gray values and the gray-scale invariant texture features can be 
extracted to train the robust classifier for classifying the masses. 
Our experiments show the diagnostic performances of the 
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texture analysis via ranklet transform can achieve best and 
consistent performance using the LOO-CV scheme and without 
significant performance variations for cross-platform train/test 
scheme. We also observed that the diagnostic performance 
would degrade remarkably using wavelets and origin. In 
addition, due to the operator-dependent issue in BUS, it is not 
clear whether training a classifier using data with varied texture 
representations collected by different operators on a 
sonographic platform is applicable. That is, the parameters of 
BUS systems would lead to increased difficulties in providing 
quantitative and qualitative tumor diagnosis. Since some studies 
[22, 49] proposed to enhance the texture patterns existing in 
BUS via fuzzy logic or to estimate the parameters of the 
ultrasonic devices with log-compressed K-distribution, texture 
analyses with gray-scale variant feature for these methods via 
original images or wavelet transform cannot be guaranteed to 
achieve robust and stable tumor diagnoses in different BUS 
platforms as well. 
 In this paper, we proposed to extract gray-scale invariant 
features via ranklet transform for designing a cross-platform and 
practical CAD application. Our experiments confirmed that we 
produced stable and robust tumor diagnosis while GLCM-based 
texture analysis using multi-resolution ranklet transform was 
applied. For improving BUS tumor classification, more 
effective GLCM-based textures as used in [20] and the range of 
angular features as suggested in [30] will be introduced in our 
further works. On the other hand, texture analysis using local 
binary patterns (LBPs) [23, 24] based on multi-resolution 
approach is known to result in gray-scale invariant features as 
well, which will also be considered and compared in our 
ongoing study. Finally, our future research directions also 
include the investigation of feature selection techniques, which 
have been widely used in pattern recognition for improving 
recognition performance based on robustness requirement 
assumption (i.e., the selected features set are useful across 
different ultrasonic devices). 
 

APPENDIX I 
Twelve texture features adopted in this work are extracted from 
the GLCMs as described in Table VII. The symbols used in this 
paper and detailed description are listed in Table VIII.  
 

APPENDIX II 
We test our proposed ranklet transform to derive the 
computation time with various input ranklet resolutions (i.e., r = 
{2, 4, 8, 16, 32, 64}). The computation time is expressed in 
microsecond (μs) per ranklet point (rp), which is shown in 
Fig.6. 
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Fig. 1 The framework of the proposed multi-resolution texture analysis via ranklet transform. (a) Database (b) A BUS image I is decomposed into multiple ranklet 
images (i.e., R2

H, R2
V, R2

D…) using ranklet transform (c) Multi-resolution (R2, R4 …) texture features are extracted from the ranklets to form the compact texture 
representation for each BUS image (d) SVM classifier is adopted to classify each BUS image from collected database into a benign tumor or a malignant one. 

Fig. 2 (a) The diagram for determining the ranklet coefficient of an arbitrary 
point p and resolution r in a moving square crop (b) The geometrical 
representation of the three orientations horizontal (H), vertical (V) and diagonal 
(D) directions of the square crop with subset Ar

t(p) and Br
t(p). 
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Fig. 3 The ranklets (R8) and wavelets (W-1) with corresponding three orientations horizontal (H), vertical (V) and diagonal (D) are derived from an input BUS image 
I, I filtered by histogram equalization and gamma correction, respectively. Note that the coefficients of the wavelet and ranklet images are scaled for clear 
visualization. 
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Fig. 4 The diagnostic performance (AUC) of origin, wavelets and ranklets using different number of scales (features) for training the SVM classifiers of each 
database. The selected parameter C for linear SVMs of the three databases are (a) {2, 2, 32} (b) {16, 16, 8} (c) {8, 8, 8}, respectively. Note that the parameter set 
for the three methods is expressed as {origin, wavelets, ranklets}. 
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Fig. 5 Average AUC values calculated from 500 bootstrap samples of each database for the three texture analyses (a) origin (b) wavelets (c) ranklets. 
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Fig. 6 The computation time (μs/rp) of the ranklet transform with specific 
resolution r = {2, 4, 8, 16, 32, 64} 
 

 
 

TABLE I  
TUMOR HISTOLOGICAL DISTRIBUTIONS OF THE COLLECTED DATABASES 

 Database A Database B Database C 
Finding No. of Cases Tumor Size (cm) No. of Cases Tumor Size (cm) No. of Cases Tumor Size (cm) 
Benign       

Fibroadenoma 44 1.65±0.65 72 1.47±0.55 61 1.83±0.73 

Fibrocystic change 32 1.03±0.50 53 0.97±0.52 40 1.25±0.55 

Papilloma 2 1.45±0.07 8 0.94±0.40 3 1.30±0.36 

Malignant       
Infiltrating ductal carcinoma 33 1.53±0.70 46 2.12±0.79 35 2.21±0.73 
Ductal carcinoma in situ 3 1.43±0.49 14 2.09±0.69 20 2.19±0.58 
Invasive tubular carcinoma 2 1.90±0.42 0 0 2 2.35±0.35 

Total 116 1.37±0.66 193 1.47±0.80 161 1.80±0.76 

TABLE II 
ROC TEXTURE ANALYSES (MEAN ± STANDARD DEVIATION) FOR ORIGIN, WAVELETS AND RANKLETS WITH DEFAULT TEXTURE DESCRIPTOR 

AS WELL AS MINIMUM PREDICTION ERROR ( ε̂ ) CALCULATED FROM 500 INDEPENDENT BOOTSTRAP SAMPLES 

Database Method AUC ACC 
(%) 

SENS 
(%) 

SPEC 
(%) PPV (%) NPV (%) ε̂  

A 
Origin 0.81±0.03 74.28±2.27 63.93±5.78 79.39±3.14 60.85±5.22 81.50±3.09 0.213 

Wavelets 0.84±0.03 79.45±1.73 70.54±4.23 83.76±2.39 68.20±4.18 85.23±2.32 0.174 
Ranklets 0.90±0.02 81.68±1.69 69.66±4.63 87.55±2.15 73.49±4.00 85.36±2.39 0.146 

B 
Origin 0.86±0.03 78.75±2.21 66.53±5.99 84.33±2.89 66.20±4.91 80.00±2.95 0.169 

Wavelets 0.92±0.02 84.23±1.71 74.99±4.74 88.38±2.12 74.66±3.82 88.60±2.18 0.118 
Ranklets 0.94±0.02 86.35±1.64 79.56±4.44 89.35±2.11 77.08±4.18 90.67±2.12 0.097 

C 
Origin 0.84±0.03 76.49±2.28 67.74±5.30 81.31±3.32 67.11±4.43 81.80±3.19 0.188 

Wavelets 0.85±0.02 77.14±1.74 69.27±3.87 81.48±2.51 67.63±3.82 82.60±2.43 0.193 
Ranklets 0.92±0.02 84.58±1.70 81.50±3.66 86.19±2.44 76.27±3.97 89.52±2.22 0.119 

 
Note. The best performance for each database is highlighted with bold. 
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 TABLE III 
DIAGNOSTIC PERFORMANCE EVALUATION (AUC VALUES AND 95% 

CI ARE LISTED) OF CROSS-PLATFORM TRAINING/TESTING 
COMBINATION BETWEEN EACH COLLECTED DATABASE 

Train 
Database Method Test Database 

A 

 B C B+C 
Origin 

(95% CI) 
0.783 

(0.717-0.846) 
0.823* 

(0.769-0.892) 
0.786 

(0.739-0.835) 
Wavelets 
(95% CI) 

0.722† 
(0.6283-0.788) 

0.752† 
(0.663-0.816) 

0.729† 
(0.679-0.782) 

Ranklets 
(95% CI) 

0.934* 
(0.896-0.965) 

0.877 
(0.825-0.929) 

0.876* 
(0.837-0.909) 

B 

 A C A+C 
Origin 

(95% CI) 
0.724  

(0.633-0.816) 
0.807* 

(0.736-0.869) 
0.764† 

(0.707-0.817) 
Wavelets 
(95% CI) 

0.757† 
(0.643-0.828) 

0.842* 
(0.784-0.906) 

0.832* 
(0.779-0.879) 

Ranklets 
(95% CI) 

0.867 
(0.792-0.929) 

0.873 
(0.817-0.922) 

0.875* 
(0.825-0.909) 

C 

 A B A+B 
Origin 

(95% CI) 
0.709† 

(0.614-0.806) 
0.789 

(0.720-0.860) 
0.765† 

(0.708-0.821) 
Wavelets 
(95% CI) 

0.795  
(0.677-0.864) 

0.785† 
(0.712-0.854) 

0.808† 
(0.731-0.843) 

Ranklets 
(95% CI) 

0.859  
(0.780-0.913) 

0.913* 
(0.871-0.949) 

0.891* 
(0.855-0.925) 

 
* The performance degradation is less than 5% for cross-platform 

training/testing scheme (regarding LOO-CV scheme as performance 
baseline). 

† The performance degradation is larger than 10% for cross-platform 
training/testing scheme (regarding LOO-CV scheme as performance 
baseline). 

 
TABLE IV  

MEAN (Means) AND STANDARD DEVIATION (SDs) FOR EACH 
DATABASE WITH INTENSITY MEAN AND STANDARD DEVIATION 

CALCULATED FROM EACH TUMOR ROI 

Database Pathology 
Type 

Means 
(mean ± standard deviation) 

SDs 
(mean ± standard deviation) 

A 

Benign 
(n=78) 47.04±15.30 19.79±6.30 

Malignant 
(n=38) 38.44±8.840 20.02±5.13 

All (n=116) 44.22±14.09 19.87±5.92 

B 

Benign 
(n=133) 82.93±18.54 26.99±5.07 

Malignant 
(n=60) 74.51±16.89 25.16±4.23 

All (n=193) 80.31±18.42 26.42±4.89 

C 

Benign 
(n=104) 57.55±16.68 26.98±7.80 

Malignant 
(n=57) 52.91±15.02 26.28±6.21 

All (n=161) 55.91±16.21 26.73±7.26 
 

 
TABLE V 

THE P-VALUE OF THE Z-TEST ON THE AUC VALUE WHILE APPLYING 
CROSS-PLATFORM TRAINING/TESTING OR LOO-CV SCHEME 

BETWEEN RANKLETS AND WAVELETS, RANKLETS AND ORIGIN 
Train 

Database 
Test 

Database Ranklets vs. Wavelets Ranklets vs. Origin 

A 

A 0.040* 0.006* 
B <0.001* <0.001* 
C <0.001* 0.152 

B+C <0.001* <0.001* 

B 

A 0.008* <0.001* 
B 0.397 0.008* 
C 0.438 0.009* 

A+C 0.026* <0.001* 

C 

A 0.136 <0.001* 
B <0.001* <0.001* 
C 0.042* 0.012* 

A+B <0.001* <0.001* 
* Indicates the performance difference between two methods is statistically 

significant. 
† If train and test database are the same, the LOO-CV scheme is applied. 
 

TABLE VI 
THE P-VALUE OF THE WELCH’S T-TEST ON THE DISTRIBUTION OF 

THE AUC VALUES BETWEEN RANKLETS AND WAVELETS, RANKLETS 
AND ORIGIN 

Database Ranklets vs. Wavelets Ranklets vs. Origin 
A <0.0001* <0.0001* 

B <0.01* 0.0000* 

C <0.0001* 0.0000* 

* Indicates the performance difference between two methods is statistically 
significant. 
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TABLE I   
TEXTURE FEATURES EXTRACTED FROM RANKLET GLCMS 

Code Feature Equation Ref. 
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TABLE II 

THE DESCRIPTION OF THE SYMBOLS USED IN THIS PAPER 
Symbols Description 

n The number of tumor cases 
t The orientation of the ranklet crop 
r The ranklet cropped resolution 
θ The rotation angle of the GLCM  
b The quantization levels of the GLCM  
d The displacement distance in pixels of the GLCM 

) ,(, qpRCM t
r q  

The (p, q) entry of the ranklet co-occurrence matrix 
with specified resolution r, orientation t and rotation  
angle θ 
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