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Abstract

Magnetic Resonance (MR) images are affected by random noise which limits the accuracy of any quantitative measurements from the
data. In the present work, a recently proposed filter for random noise removal is analyzed and adapted to reduce this noise in MR mag-
nitude images. This parametric filter, named Non-Local Means (NLM), is highly dependent on the setting of its parameters. The aim of
this paper is to find the optimal parameter selection for MR magnitude image denoising. For this purpose, experiments have been con-
ducted to find the optimum parameters for different noise levels. Besides, the filter has been adapted to fit with specific characteristics of
the noise in MR magnitude images (i.e. Rician noise). From the results over synthetic and real images we can conclude that this filter can

be successfully used for automatic MR image denoising.
© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Magnetic Resonance (MR) images are affected by sev-
eral artifacts and noise sources. One of them is the random
fluctuation of the MR signal which is mainly due to ther-
mal noise. Such a noise seriously degrades the acquisition
of any quantitative measurements from the data (especially
functional MR imaging [fMRI] is very sensitive to the noise
level since BOLD signal variations are in the same range).

Abbreviations: NLM, Non-Local Means; UNLM, Unbiased Non-Local
Means; BOLD, Blood Oxygen Level Dependent; ADF, Anisotropic Dif-
fusion Filter; NSA, Number of Signal Averages; TV, Total Variation;
RMSE, Root Mean Square Error; SNR, Signal to Noise Ratio.
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Although random noise can be naturally minimized by
increasing the Number of Signal Averages (NSA) during
the acquisition of the MR images (Gerig et al., 1992), this
may not be a suitable alternative in clinical MR imaging
where there is an increasing need for speed.

The removal of noise from noisy data to obtain the
unknown signal is often referred to as denoising. Postpro-
cessing filtering techniques have the advantage of not to
increase the acquisition time and, therefore, they have been
extensively used in MRI denoising. Most denoising meth-
ods are based on the signal averaging principle by using
the spatial pattern redundancy in the image. However,
there are other filtering techniques that use other statistical
estimates such us the median (Ling and Bovik, 2002; Liévin
et al., 2002). Gaussian filters have been largely used in some
applications such as fMRI (Ashburner and Friston, 2000)
but they have the disadvantage of blurring edges by averag-
ing pixels with non-similar patterns. In order to avoid such
problem many edge preserving filters, like the Anisotropic
Diffusion Filter (ADF) (Perona and Malik, 1990; Gerig
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et al., 1992; Samsonov and Johnson, 2004) have been used.
Such filters respect edges by averaging pixels in the orthog-
onal direction of the local gradient. However, such filtering
usually erases small features and transforms image statis-
tics due to its edge enhancement effect resulting in an
unnatural image.

Modern wavelet-based filters have been also applied to
MRI denoising (Nowak, 1999; Wood and Johnson, 1999;
Pizurica et al., 2003) but such filters may introduce
characteristic artifacts that can be quite problematic.
More recently, the trilateral filter (Wong and Chung,
2004), an evolution of the bilateral filter (Tomasi and
Manduchi, 1998), has been proposed to take into
account local structure in addition to intensity and geo-
metric features.

Our objective was to study and improve the application
of a new filter, recently proposed by Buades et al. (2005) to
denoise magnitude MR images. This filter is named Non-
Local Means (NLM). In the comparative provided by the
authors, it is shown that this method outperforms clearly
other classic methods like ADF, Total Variation (TV)

(Rudin et al., 1992) or wavelet thresholding methods (Coif-
man and Donoho, 1995) among others.

2. Materials and methods
2.1. The NLM filter

The NLM filter is an evolution of the Yaroslavsky filter
(Yaroslavsky, 1985) which averages similar image pixels
according to their intensity distance. Some filters, like the
SUSAN (Smith and Brady, 1997) or the bilateral filters
are based in the same principle. The main differences of
the NLM with these methods is that the similarity between
pixels is more robust in front of the noise level by using
region comparison rather than pixel comparison and that
pattern redundancy is not restricted to be local (therefore,
non-local). Pixels far from the pixel being filtered are not
penalized due to its distance to the current pixel, as hap-
pens with the bilateral filter.

Let us introduce the description of the NLM filter.

Fig. 2. From left to right: T1-weighted synthetic noise-free MR image, the corresponding noisy image (¢ = 12) and the applied noise (difference between
both images). Note that the background pixels have a higher value than the foreground due to the Rician bias.
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Given an image Y, the filtered value at a point p using

the NLM method is calculated as a weighted average of

all the pixels in the image following this formula:
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Fig. 3. Left: optimum / values for different noise levels and different radius of the similarity window. Right: RMSE for different noise levels and different
values of radius of the similarity window. Dotted lines represent the results of the unbiased NLM filter.
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Table 1 els p and ¢. N; is defined as a square neighbourhood win-
Optimal / values for different types of MR images and different values of dow centered around pixel i with a user-defined radius
Rsim parameter (Rcaren = 5) Rg;,. The similarity w(p, q) is then calculated as

Riim 1 2 3 4 5 | i
_dwa)
Optimal / Tl 130c 1226 118  118¢ llda¢  w(p,q) =——e » (2)
PD 1260 1IS¢  Llds  Llds  Lllo Z(p)
T2 1256 1.18¢ 1l46  1.13¢ 1100 _dia)
Zp)=> e r (3)

where p is the point being filtered and ¢ represents each one ~ Z(p) is the normalizing constant, /4 is a exponential decay
of the pixels in the image. The weights w(p, ¢q) are based on  control parameter and d is a Gaussian weighted Euclidian
the similarity between the neighborhoods N, and N, of pix-  distance of all the pixels of each neighbourhood:

Fig. 4. Top row; from left to right: T1-weighted synthetic noise-free MR image with 5% Rician noise, UNLM filtered image (using the optimum
parameters above estimated) and the corresponding residuals. Middle row; and bottom row: same results for a simulated PD-weighted and T2-weighted
images. Note that the background pixels have a higher value than the foreground due to Rician bias correction in both cases.
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d(p,q) = G| Y(N,) = Y(N))Ilz,, (4)

where G, is a normalized Gaussian weighting function with
zero mean and p standard deviation (usually set to 1) that
penalizes pixels far from the center of the neighbourhood
window by giving more weight to pixels near the center.
The center pixel of the Gaussian weighting window is set
to the same value that the pixels at a distance 1 to avoid
over-weighting effects.

In Eq. (1) there is a special case when p = ¢. As the self
similarity is very high, it can produce an over-weighting
effect. To solve this situation w(p,p) is calculated as

w(p, p) = max(w(p, q)Vq # p) (5)

2.2. The special nature of the MR magnitude images

As the magnitude of the MRI signal is the square root of
the sum of the squares of Gaussian distributed real and
imaginary parts, it follows a Rician distribution (Sijbers
and den Dekker, 2004). In low intensity regions of the image,
the Rician distribution tends to a Rayleigh distribution while
in high intensity regions it approaches to a Gaussian distri-
bution. As a result the image contrast is reduced.

It was shown that this problem can be efficiently over-
come by filtering the square of the MRI magnitude image
(Nowak, 1999). In the squared magnitude image, the noise
bias is not longer signal-dependent and it can be easily
removed. Such bias is equal to 2¢” as shown by Nowak
and, therefore, a simple bias subtraction will recover its ori-
ginal value. This value can be estimated as the mean value

of the background intensities of the squared noisy image
were the signal should be zero.

Thus, the unbiased NLM (UNLM) estimation will be
defined as follows:

UNLM(Y) = \/NLM(Y)* — 262 (6)

2.2.1. UNLM — method summary
The proposed method can be summarized as follows:

1. Estimate image noise: this can be done from the image
background (Eq. (8)).

2. For every pixel in the image use Eq. (1) to compute the
filtered value (optimum filter parameters are describe in
the next section).

3. For every pixel in the image calculate the unbiased value

by applying Eq. (6).
3. Experiments and results

The NLM algorithm has three parameters and the filter
results depend highly on their setting. Let us to describe
each one of them.

The first parameter, Rgearch, 1S the radius of a search win-
dow. Although the original method claims to use all the
pixels in the image by taking the weighted average of every
pixel, it is very inefficient and, therefore, the search window
has to be reduced to a window N, of smaller size:

NLM(Y(p)) = > wlp,q)Y(q) (7)

VgeN,

Fig. 5a. Left: noisy T1-weighted image (estimated sigma = 10.2). Center up: results for NLM (5,2, 1.2¢) and down results for UNLM (5,2, 1.20). At the
right, the corresponding image residuals. Note that the background is truncated due the application of a defacer to the dataset.
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The second parameter, Ry, is the radius of the neighbour-
hood window used to find the similarity between two pix-
els. If the value of R, is increased the similarity
measure will be more robust but fewer similar neighbour-
hoods will be found.

The third parameter, /, is related to the decay of the
exponential curve and controls the degree of smoothing.
If & is too small, little noise will be removed while if 7 is
set too high, the image will become blurry.

In our experiments we have set Ryen to 5 (this is a
11 x 11 search window), which seems a reasonable value
for medical images. The best settings for Ry, and / under
different noise levels were evaluated as follows.

3.1. Synthetic data

To conduct the experiments over synthetic data 3 simu-
lated MR images (T1, PD and T2) with 1 mm® voxel reso-

Fig. 5b. Left column: noisy T1-weighted abdominal image, results for UNLM (5,2,1.2¢) and image residuals. Right column: noisy T2-weighted spine

image, results for UNLM (5,2,1.2¢) and image residuals.
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lution (8 bit quantization) from the Brainweb phantom
(Cocosco et al., 1997) (Fig. 1) were used. To simulate
Rician noise we added zero mean Gaussian noise to the
real and imaginary parts of the simulated MR data and
afterwards the magnitude image was computed (Fig. 2).
All experiments were performed using MATLAB 7.0
(Mathwoks Inc.).

To measure the quality of the filter, the Root Mean
Squared Error (RMSE) was used. For each Ry, value
(Rsim € [1,5]) an exhaustive search for the optimum h value
(using the RMSE criteria) was performed. Results for dif-
ferent noise levels (1%, 3%, 5%, 7% and 9% of the maxi-
mum intensity) and image type can be seen in Fig. 3.

As can be observed, there is a linear relation between
noise level and the optimum /4 value. In Table 1, the opti-
mal /& values for different R, values and image type (in
terms of the noise level) are shown. As expected, the RMSE
is minimized as Ry, increases (Fig. 3). However, as the
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temporal cost of the filter increased drastically as a func-
tion of Ry, a good compromise between accuracy and
computational load was found to be Rg;,, = 2, since further
increasing this value did not produce a noticeable improve-
ment but increased notably the filter temporal cost. From
the obtained results over synthetic data we suggest, in a
general framework, to use an h value around 1.2¢ with
Rgm =2 and Rearen = 5.

In Fig. 4, an example of filtering results with the pro-
posed parameters for different MR image types can be
qualitatively evaluated. Almost no anatomical information
can be noticed in the image residuals. The Rician bias cor-
rection is also noticeable in the residuals.

3.2. Application to clinical MR data

To test the filter over real data we used two different
datasets covering brain and body locations. The first image

PD weighted image

30
—6— UNLM
o5t —H&— Wavelet i
ADF
20} E
7
s 15 R
o
10F E
°l / 1
0 1 1 1 1
0 5 10 15 20 25

NoiseStandard Deviation

T2 weighted image

i

20
18 —©— UNLM
—HB— Wavelet
161 ADF
14
w12
()]
=
o 10
sl
6l
o—
41
2 1
0 5

15 20 25

Noise Standard Deviation

Fig. 6. RMSE comparison of the different filters for different image types and noise conditions. The proposed method outperforms the others in almost all

the cases (in terms of RMSE).
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was a T1-weighted sagittal MP-RAGE scan acquired on a
Siemens 1.5 Tesla Vision scanner (Erlangen, Germany).
This data was obtained from the fMRI Data Center data-
base (http://www.fmridc.org/).

The second set was two body images acquired on a Phi-
lips 3 Tesla scanner (Achieva, Philips Medical Systems,
Best, The Netherlands). This data was obtained from Hos-
pital Quirén of Valencia (Spain).

To apply the UNLM to real magnitude MR images the
standard deviation of the complex Gaussian noise ¢ needs
to be estimated. This can be calculated from the back-
ground of the squared magnitude image (Nowak, 1999)
as follows:

Original

ADF

0= 2 (8)

where u is the mean value of the background of the squared
magnitude image which was selected using an Otsu thres-
holding method (Otsu, 1979). Example results can be ob-
served in Figs. 4 and 5.

3.3. Method comparative
We have compared, qualitative and quantitatively, the

performance of our proposed algorithm (with optimal
estimated parameters) with two state-of-the-art filtering

DI
Residuals

Residuals .

Residuals

Fig. 7. Qualitative comparison of the filtering results obtained with the different compared methods (9% noise corrupted T1-weighted image). The quality
of the proposed filter can be noticed in both filtered image and the corresponding residuals.
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Fig. 8. Qualitative comparison of the filtering results obtained with the different compared methods (close up of a real T1-weighted image with an
estimated noise standard deviation of 10.2). From top to down: UNLM, Wavelet and ADF results. From left to right: original image, denoised and the

corresponding residuals.

algorithms, the ADF (Perona and Malik, 1990) and a mod-
ern wavelet-based denoising algorithm (Pizurica et al.,
2003). We have manually tuned all the free parameters of
the ADF in order to give the best possible results and we
have used the parameters proposed by the authors in the
case of wavelet-based denoising.

The proposed algorithm was quantitatively compared,
using the synthetic data referred in Section 3.1, with the
other two referred methods showing a lower RMSE in
almost all the cases (Fig. 6). Besides, the real T1-weighted
image of the Section 3.2 was also used to compare the dif-
ferent filters (Fig. 8).

Qualitatively, the proposed algorithm gives a residual
(difference between denoised and original image) that is sig-
nificantly less correlated (Figs. 7 and 8). The ADF shows
an unnatural edge enhancement and a blurring of small
edges. Finally, the wavelet-based denoising algorithm also
seems to introduce artifacts in the denoised image.

4. Conclusion/discussion

We have presented and analyzed the application of the
NLM filter for magnitude MR image denoising. This filter

can be used to increase the SNR of the MR images without
affecting noticeable structures in the image. Proper param-
eterization of the filter has been studied using an objective
criterion (i.e. RMSE). Furthermore, an unbiased version of
the filter has been proposed that outperforms the original
method in the MRI denoising context.

Although RMSE is a very useful quantitative criterion
for evaluating filter performance, it does not guarantee
optimal filtering in the visual perception sense. A good fil-
ter must extract as much noise as possible from the image
while keeping image features unaltered. As there is no
objective criteria fully meeting such requirements, visual
inspection of the image residuals (i.e. the difference between
the original and the filtered image) was also used to evalu-
ate filter efficacy: the so called method noise proposed by
Buades et al. (2005). According to this criteria, the optimal
h value was estimated to be around ¢ for Rg;,,, = 2. As this
is a subjective impression we have not conducted our
experiments according to this criteria.

It is clear that the extension of the UNLM filter to three-
dimensions will further improve the results due to mainly
two reasons. First, a 3D neighbourhood will produce a
more robust similarity measure than in 2D and, second,
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the number of similar patterns surrounding each voxel will
be increased. In a similar manner, results can be further
improved by using multiple channels (i.e. multispectral
imaging) to compute pixel similarities on a more robust
way. It is our intention to explore all this issues in a near
future.

However, it should be noted that the computational cost
of the filter increases notably in 3D. A typical size dataset
(256 x 256 x 90 pixels) takes around 7 min to be filtered
with the 2D version of the filter and the proposed parameter
settings (using a mex file in Matlab 7.0). A 3D version of this
filter will take several hours and the multispectral version
will increase this time lineary with the number of channels.
An appropriate solution to reduce the computational
burden may be the use of a Grid system (Blanquer et al.,
2006) since the filter can be easily adapted to work on a
parallel system by dividing the volume on small independent
volumes. Another possibility to speed up the method is to
do a selection of the most similar pixels by using local
intensity and gradient features (Mahmoudi and Sapiro,
2005) to avoid neighbourhood distance calculations which
are the most time consuming part of the filter.

Finally, it is our aim to improve the filter results using a
rotational invariant similarity measure in the region com-
parison step since presently a rotated similar pattern have
a low similarity value. This new similarity measure will
increase the number of similar patterns in the search win-
dow by taking into account not only structure but also
orientation.

Acknowledgements

We want to thank Dr. A. Buades for his useful com-
ments along this project. We want also to thank the Hospi-
tal Quirdn of Valencia and the fMRI Data Center database
(http://www.fmridc.org/) for providing access to the MR
data used in this paper. This work has been possible thanks
to the IM3 (ISCIII — G03/185) and INBIOMED (ISCIII —
GO03/160) Spanish research networks. This research was
also supported by ADIRM association.

References

Ashburner, J., Friston, K.J., 2000. Voxel-based morphometry — the
methods. Neurolmage 11, 805-821.

Blanquer, 1., Herndndez, V., Monleén, D., Carbonell, J., Moratal, D.,
Celda, B., Robles, M., Marti-Bonmati, L., 2006. Using the grid to

analyze the pharmacokinetic modelling after contrast administration
in dynamic MRI. Studies in Health Technologies and Informatics 120,
82-92.

Buades, A., Coll, B., Morel, J.M., 2005. A review of image denoising
algorithms, with a new one. Multiscale Modeling and Simulation 4 (2),
490-530.

Cocosco, C.A., Kollokian, V., Kwan, R.K.-S., Evans, A.C., 1997.
BrainWeb: online interface to a 3D MRI simulated brain database.
Neurolmage 5 (4).

Coifman, R.R., Donoho, D., 1995. Translation-invariant De-noising, in
Wavelets and Statistics. Springer-Verlag, New York, pp. 125-150.
Gerig, G., Kubler, O., Kikinis, R., Jolesz, F.A., 1992. Nonlinear
anisotropic filtering of MRI data. IEEE Transactions on Medical

Imaging 11, 221-232.

Liévin, M., Luthon, F., Keeve, E., 2002. Entropic estimation of noise for
medical volume restoration. Pattern Recognition 3, 871-874.

Ling, J., Bovik, A.C., 2002. Smoothing low-SNR molecular images via
anisotropic median-diffusion. IEEE Transactions on Medical Imaging
21 (4), 377-384.

Mahmoudi, M., Sapiro, G., 2005. Fast image and video denoising via
nonlocal means of similar neighborhoods. IEEE Signal Processing
Letters 12 (12), 839-842.

Nowak, R.D., 1999. Wavelet-based Rician noise removal for magnetic
resonance imaging. IEEE Transactions on Image Processing 8 (10),
1408-1419.

Otsu, N., 1979. A threshold selection method from gray-level histograms.
IEEE Transactions on Systems, Man and Cybernetics 9 (1), 62-69.
Perona, P., Malik, J., 1990. Scale space and edge detection using
anisotropic diffusion. IEEE Transactions on Pattern Analysis and

Machine Intelligence 12, 629-639.

Pizurica, A., Philips, W., Lemahieu, I., Acheroy, M., 2003. A versatile
wavelet domain noise filtration technique for medical imaging. IEEE
Transactions on Medical Imaging 22 (3), 323-331.

Rudin, L., Osher, S., Fatemi, E., 1992. Nonlinear total variation based
noise removal algorithms. Physica D 60, 259-268.

Samsonov, A., Johnson, C., 2004. Noise-adaptive nonlinear diffusion
filtering of MR images with spatially varying noise levels. Magnetic
Resonance in Medicine 52, 798-806.

Sijbers, J., den Dekker, A.J., 2004. Maximum likelihood estimation of
signal amplitude and noise variance from MR data. Magnetic
Resonance in Medicine 51 (3), 586-594.

Smith, S.M., Brady, J.M., 1997. SUSAN - a new approach to low level
image processing. International Journal of Computer Vision 23 (1),
45-78.

Tomasi, C., Manduchi, R., 1998. Bilateral filtering for gray and color
images. In: Sixth International Conference on Computer Vision,
pp. 839-846.

Wong, W., Chung, A., 2004. Trilateral filtering: a non-linear noise
reduction technique for MRI. In: International Society for Magnetic
Resonance in Medicine, p. 2218.

Wood, J.C., Johnson, K.M., 1999. Wavelet packet denoising of magnetic
resonance images: importance of Rician noise at low SNR. Magnetic
Resonance in Medicine 41, 631-635.

Yaroslavsky, L.P., 1985. Digital Picture Processing — An Introduction.
Springer-Verlag.


http://www.fmridc.org/

	MRI denoising using Non-Local Means
	Introduction
	Materials and methods
	The NLM filter
	The special nature of the MR magnitude images
	UNLM - method summary


	Experiments and results
	Synthetic data
	Application to clinical MR data
	Method comparative

	Conclusion/discussion
	Acknowledgements
	References


